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We give some interesting equation of p-adic g-integrals on Z,. From those p-adic g-integrals,
we present a systemic study of some families of extended Carlitz type g-Bernoulli numbers and
polynomials in p-adic number field.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Z,, Q,, C, and C,, will, respectively,
denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Q. Let N be the set of natural
numbers and Z, = {0} UN.

Let v, be the normalized exponential valuation of C, with |p|, = p™»®) = p~'. When
one talks of g-extension, g is considered as an indeterminate, a complex number g € C, or
p-adic number g € C,. If g € C, we normally assume that |g| < 1, and if g € C,, we normally
assume that [1 - g|, < 1. We use the notation

[x], = . (1.1)
The g-factorial is defined as

[n],! = [n],[n =11, --- 121,111, (1.2)
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and the Gaussian g-binomial coefficient is defined by

N (' R I US| RN R S
<k>q_'hr—kbﬂkh!_ [k],! ’ (1.3)
(see [1]). Note that
e n nn-1)---(n-k+1)
tm (k) = (k)= K - (14)

q

From (1.3), we easily see that

SORENEIO RS A RARINE

q

(see [2, 3]). For a fixed positive integer f, (f,p) =1, let

. Z
X = Xf = h}%?(fp—NZ)/ X1 = Zp/

X* = U (a+ fpZy,), a+prZp = {xEX | x = a(modpr>},
O<a<fp

(a,p):l

(1.6)

where a € Zand 0 < a < fpN(see [1-14]).
We say that f is a uniformly differential function at a point a € Z, and denote this
property by f € UD(Z,) if the difference quotients

Fr(x,y) = P

have alimit! = f'(a) as (x,y) — (a,a). For f € UD(Z,), let us begin with the expression

pN-1
o 2O = 3 fou(x+pVy), (1.8)

1
[pN] q x=0 O§x<pN

representing a g-analogue of the Riemann sums for f, (see [1-3, 11-18]). The integral of f
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on Z, is defined as the limit (N — oo) of the sums (if exists). The p-adic g-integral (= g-
Volkenborn integral) of f € UD(Z,)) is defined by

1
(N = [ fdu@ = [ feodu= lim o 3 f@a )

[ N] q 0<x<pN

(see [12]). Carlitz’s g-Bernoull numbers i , can be defined recursively by ffy, = 1 and by the
rule that

1, ifk=1,

* k *
qa(af” +1)" - Pry = . (1.10)
0, ifk>1,

with the usual convention of replacing (ﬂ*)i by B o (see [1-13]).
It is well known that

fra= |, bl = [ (el mez,

(1.11)
Prq(x) = fz [y +x],dpq(y) = fx [y +x],dug(y), nez,

(see [1]), where B;, ,(x) are called the nth Carlitz’s g-Bernoulli polynomials (see [1, 12, 13]).
Let y be the Dirichlet’s character with conductor f € N, then the generalized Carlitz’s
g-Bernoulli numbers attached to y are defined as follows:

Pryq = J; x () [x]gdpq(x), (1.12)

(see [13]). Recently, many authors have studied in the different several areas related to g-
theory (see [1-13]). In this paper, we present a systemic study of some families of multiple
Carlitz’s type g-Bernoulli numbers and polynomials by using the integral equations of p-adic
g-integrals on Z,. First, we derive some interesting equations of p-adic g-integrals on Z,.
From these equations, we give some interesting formulae for the higher-order Carlitz’s type
g-Bernoulli numbers and polynomials in the p-adic number field.

2. On the Generalized Higher-Order g-Bernoulli Numbers
and Polynomials

In this section, we assume that g € C, with [1 - g|, < 1. We first consider the g-extension of
Bernoulli polynomials as follows:

0

- tn — X+ t X+m| t _x+m
Z.Bn,q(x)ﬁ = ’[Z g ¥el vl dpq(y) = —tZe[ il g, (2.1)
n=0 : 14

m=0
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From (2.1), we note that

(= -1 +1)x 1 +
_ ﬁ%(n l >q(’ 1) <1 o > (<1 (22)

= —anm“‘[x +mly !
m=0
Note that
lim f,q (x) = -n Y (x+m)"! = B,(x), (2.3)
9= m=0

where B,(x) are called the n th ordinary Bernoulli polynomials. In the special case, x = 0,
Pn,q(0) = B4 are called the n th g-Bernoulli numbers.
By (2.2), we have the following lemma.

Lemma 2.1. For n >0, one has

Pra(x) = fz a7 [ ylidug(v) = —n 2q™ x + mly”
m=0
’ (2.4)
B 1 " n) N
a2 (),
Now, one considers the g-Bernoulli polynomials of order r € N as follows:
Zﬂf{;(x); = J‘ .. j q—(x1+~~+xr)e[x+x1+~-+xr]qt d//lq (x1) -+ d,uq(xr).

n=0 n: Zy Zp (2.5)

r times
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By (2.5), one sees that
B = [ oo [ g g (0 -y )
Z, Z,
r times (26)

<1q"§<)(wﬂ<5>r

In the special case, x = 0, the sequence ﬂ(r)

ﬂ(r) is refereed to as the g-extension of Bernoulli
numbers of order r. For f € N, one has

0 = [ [ ) g )
—

r times

" = I (2.7)
l(x+ai+-+a;) _*
g "Z<y”a§f i,

f-1
_ n-r (r) <a1+~-+ar+x>
[f]q Oﬁn,qf f

By (2.5) and (2.7), one obtains the following theorem.

Theorem 2.2. Forr € Z,, f € N, one has

1 o

(r) _ ll(a1+<--+a,+x)l_r
0= 5 (1) i

1=0 25y a,—O

(2.8)

i 5 g ()

Let x be the primitive Dirichlet's character with conductor f € N, then the generalized q-
Bernoulli polynomials attached to y are defined by

Zﬁnxq(x) f X()gve™ Ve du, (). (2.9)
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From (2.9), one derives

P (%) = fX X [x+y],duq ()

S vta tim A S e gl
= > y(a) lim [a+x+fy
a=0 N—e0 [fPN]., y=0

c 1 l(x+a)L
- s Zx( 2 (1) g @.10)

f-1 o
= Zox(a)Z(—n[x+ a+ mf];H)

m=0

]n—l'

= —nix(m) [x +m]g
m=0

By (2.9) and (2.10), one can give the generating function for the generalized q-Bernoulli polynomials
attached to x as follows:

= X+m| ¢ - tTl
Fyq(x,t) = —tZX(m)e[ mlg an,m(x)ﬁ. (2.11)
m=0 n=0 :

From (1.3), (2.10), and (2.11), one notes that

Brsoa®) = Zx<a> [ arvlas = foldu ()

a=0
I, (2.12)

n— 1ZX a)ﬂan<a;x>

In the special case, x = 0, the sequence Py, 4(0) = Pn,y,q are called the n th generalized gq-
Bernoulli numbers attached to y.
Let one consider the higher-order g-Bernoulli polynomials attached to y as follows:

(2.13)

r
Ix - IX <HX(xi)> el g dpg (o) - dpg (xr) = Zﬁn (X
i=1

r times

where ﬁff,))(,q (x) are called the n th generalized q-Bernoulli polynomials of order r attaches to y.
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By (2.13), one sees that

n

Pia(x) = a 1q)nZ(’Z)< q )ﬂ]Z <Hx( J) ’le“l[ZTr]q

= N7 ay.. a,=0
(2.14)
_ n—r (r)y (Xt+tar+---ta,
= [f] al/w%r—()(HX( 1)>ﬂan< f )

In the special case, x = 0, the sequence ﬂn xq(o) (r)

numbers of order r attaches to .

\q are called the n th generalized g-Bernoulli

By (2.13) and (2.14), one obtains the following theorem.

Theorem 2.3. Let y be the primitive Dirichlet’s character with conductor f € N. Forn € Z,,r €N,
one has

B q(x) = - q)”i< >( q) Z <l_[x( 1)> IS [l]:]q

= N7  ay., a,=0
(2.15)
f-1
> Hx(az B0 <w>
ai,...,a,=0 an f

For h € Z, and r € N, one introduces the extended higher-order g-Bernoulli polynomials as
follows:

p hr)( ) = fz ...fz g= BTN [ ey Xr|gdpq(x1) - - dpg ().
——

r times

(2.16)

From (2.16), one notes that

n l+h-1 !
ﬁ(h )( x) = (1 nZ( > l lx ((Hh 1)) [: 2.17)

9)" =
and
(hyr) n-r = St (h=j)aj o(hr) xXxX+ay+---+a,
ui’ ()= [fI;" 20 q> "B, — ) (2.18)
ay,...,a,=0
In the special case, x = 0, ﬂ(h 7 (0) = ﬁ(h ") are called the n th (h, q)-Bernoulli numbers of order
r.

By (2.17), one obtains the following theorem.
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Theorem 2.4. For h € Z,r € N, one has

() N oy )
ﬂ (X) (1 nZ( >( q ) (1+;;_1)q [r]q!/

9)" =
(2.19)
(h, r) n 7 (h-j)aj phry (Xt a1+ -+ ar
Bl i gy (AL,
ay za:‘,—O n,qf f

Let x be the primitive Dirichlet’s character with conductor f € N, then one considers the
generalized (h, q)-Bernoulli polynomials attached to y of order r as follows:

r
) (%) =f f g= M09 (T () ) [+ 20+ + 21 dpg () -+ dpeg(x).
X X j=1 (220)
e ——

r times

By (2.20), one sees that

1 r
h, — T (h=f)a; h, xX+ay+---+a
ﬁlxrz [f]Z r Z qZFI(h 7)aj <| |X(aj)>ﬂ£l’qrf) (f) (2.21)
aiy,...,a,=0 j=1

In the special case, x = 0, ﬂflhxr;(O) = ﬁi,hxr; are called the n th generalized (h, q)-Bernoulli numbers

attached to x of order r.
From (2.20) and (2.21), one notes that

(h,r) (h 1r) (h 1,r)
nia = (4= DBt pq + Prxd - (2.22)

By (2.16), it is easy to show that

= j fZ [x1 4+ 2 1= n T DN dp (1) - - dpeg (%)

r times

n 2 (h=j-2)x;
= IZ "'fZ [x1 +"'+xr]q{[x1 +~--+xr]q(q_1) +1}q

4 4

dpg(x1) -+ dpg ().
(2.23)

Thus, one has

h, h— h—
vy = (- + By (2.24)
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From (2.16) and (2.23), one can also derive

f . f q(n72)x1+(n73)x2+...+(n7r71)x,d#q(xl) - d#q(xr)
ZP ZP

r times
" 1 ! P g (ertobay) g1 =2x0=-12, d
g-1) .rzp"'fzp [x1+--~+xr]qq q Hq(x1) -~ dpg(xy)

)
0<l>(q QUK

I J q(n 2)x1+(n=3)xp++(n—r— l)x,d# (xl) dﬂq(xr) —
Z

, (") [rlgt
r/q

q —(x1+- +x7)qn(x1+ +xr)q‘xl—zxZ_"'_rx'dﬂq(xl) dﬂq(x’)

1l
M- £M=

(2.25)
It is easy to see that
Z( )(q 1) f [x1q "2 dpag (x) = f ((a-1)lxl, +1) "> dpy(x)
- n+h-1 (2.26)
C[m+h- 1]q'
By (2.23), (2.25), and (2.26), one obtains the following theorem.
Theorem 2.5. Forh € Z,r € N,and n € Z.., one has
h r) h-1,r h r
wi = @-Dp, + Py,
" 1) . (2.27)

TNGH
r/q

%(?)( ~1)p07 -

Furthermore, one gets

L (h1) _ n+h-1
%(,)( -1)'p; = e hoil, (2.28)
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Now, one considers the polynomials of ﬂﬁgﬁ’;) (x) by

n (x )—f f [+ 21+ 4 2, g 2Dy (x) - dpg ()

r times

(1 qnlzn:<) 1)1 lx((lrl)) 7!

(2.29)

By (2.29), one obtains the following theorem.

Theorem 2.6. Forr € Nand n € Z,, one has

(1-4)"Buy) (x) = l};( )(— 'q" ((,_ﬁ)) & (2.30)

By using multivariate p-adic g-integral on Z,, one sees that

.. JZ qnx+(n—2)x1+~.-+(n—r—1)x, dﬂq (xl) . d;tq (xr)

n (2.31)
= f .. I ((q — 1) [x +x1+ 0+ xr]q + 1> q72x1..,7(r+1)x,d#q(xl) . d‘uq(xr)
Z, Z,
Z <n> (q 1) f f [x+x1+- ]qq72X1m7(H1)xrdﬂq(xl) e d.uq(xr)
=0 ! Zyp Zp
IO ICERE
1=0
Therefore, one obtains the following corollary.
Corollary 2.7. Forr € Nand n € Z,, one has
() ot ¢ <n> 07
g = (9-1)'B%" (x). (2.32)
(1), [rly! 12(; ! v
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It is easy to show that

J’ I [+ X1+ +xr]Zq—2x1<..—(r+1)xrd#q(xl) ...d‘uq(xr)
z, Jz,

r times

-1
13 g 9
9 .~
X ..
ZP

Dyeeeflr=
f fZ

From (2.33), one notes that

0

. x+3 0 & 1"

g 2l [% + sz] Apgr (x1) -+ dpgr (x).
I=1 q'

P

-1 . ,
v n-r iy 2yt pOr) (X T UL A A 1y
g ) =1, 3 g ﬁfqu)<f>. (2.34)

From the multivariate p-adic g-integral on Zy, one has

f .. J‘ [x +x1 4+ + xr]Zq—le—3x2—~~—(r+1)xydﬂq(xl) . d‘uq(xr)
z, Jz,

r times

n

: j (Tl + g7 T+ o+ ], ) @270 D5y (o) - dpy ()
Z

p P
1=0 P P

(2.35)

r times

_ (7) []/] Z—lqu IZ . IZ [xX+x1++ xr]Zq—2x1—3xZ—...—(r+1)xrdﬂq(xl) ... d‘uq(xr).
1=0 P P
(2.36)

By (2.35) and (2.36), one obtains the following corollary.
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Corollary 2.8. Forr € Nand n € Z,, one has

) < (1 g g0

n, ( )= ’

m §<l> o (2.37)
B o) = 35 () g o

—
1l
(=}

Now, one also considers the polynomial of ﬁﬁi’,;l)(x). From the integral equation on Z,, one
notes that

AU () = fz [x + 21 10q% "2y (x1)

P

(2.38)
1 z":< >(_ 1l I+h-1
(1_ )" 5 [I+h-1],
By (2.38), one easily gets
I Ix no(n I _Ix
(h1) 1 (1 (=1)'q l h-1 (7)(=1)q
Prg (%) = (1—q)" 1 12 1— gl (1 B q)n—lé 1 g1
_ n-1 ( n-1 _1lxlx _ n n_1llx
- i -1 S l)+:z7 T é 1n—1 > it l+)hf11 (2.39)
Q-9 = 1-4 (1-9)" 10 1-4
= —anhm“‘[x + m]Z_1 +(h-1)(1- q)Zq(h‘l)m[x +m]y.
m=0 m=0
Thus, one obtains the following theorem.
Theorem 2.9. For h € Z and n € Z,, one has
Py (x) = nzqh"“x[x el () (=) S el @40)
m=0
From the definition of p-adic q-integral on Z,, one notes that
q" P x + x1 ] dpg (x1)
ZP
(2.41)

1 =
fql=0

it X+i " )x
q(h 1) [l]q’[ [_ +x1] qf(h 2) dptgr (x1).
7, L f f
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Thus, one has

1

f-
(h1) 1 (h-1)i () (X +i
0 () = [l ( )

By (2.38), one easily gets
| ERE A TNES
ZP

= q*x IZ [.X' + xl];l{ [x + x1]q(q - 1) + 1}qx1(h*3)d‘uq(xl)-

From (2.43), one has
pr ) = a7 ((a- DAL 0 + iy ().
That is,
g Pui’ () = (q-D)pyr @) + g (x).

By (2.38) and (2.43), one easily sees that

"% [x + 1] dpg (1) = f g2 ([x], + q*al,) dpg(r)
ZV

Zp

- S (e[ at el e,

1=0

and

g PN [y + 1+ x] g (x1) - f gD [+ 2110 g (x1)
ZP

Zy

= q"n[x]Z"1 +h(g-1) [x]; - (g-1) [x]5-

For x = 0, this gives
q"! fZ g xr + 1] dpg (x1) = fZ q" P x1 ] gdpg(x1) = {
P P

and

(h 1) f q(h Z)xldﬂ (xl)

1, ifn=1,
0, ifn>1,

13

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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From (2.46) and (2.48), one can derive the recurrence relation for ﬁff;,l) as follows:

h1 h1
hlﬂ( )(1) ﬁ( )_ 111/

where 6,1 is kronecker symbol.

By (2.46), (2.48), and (2.50), one obtains the following theorem.

Theorem 2.10. For h € Z and n € Z,, one has

5D 2";< >[x]nl lxﬂ(hl),

B e+ 1) = pUD = gEnlx]l ! + h(g - 1) %] - (9 - 1) [x]

Furthermore,

(g -1 1) + ¢ 20V (1) - pD = 6,1,

n+l,q

where 6,1 is kronecker symbol.
From the definition of p-adic g-integral on Z,, one notes that

J g PPN - x + x1 g dpgr (x1)
Zp

= (-1)"q""? f gD [x + 1] dpg (x1).
ZP

By (2.53), one sees that

P (1=2) = (=1)"q"" 2" ().

Note that

B,(1-x) = lim g (1-x) = lim (- 1) g2 (x)
q—)

n,q!

where By, (x) are the n th ordinary Bernoulli polynomials.
In the special case, x = 1, one gets

ﬁ hl _ ( 1)nqn+h z,ﬁnhql (1) n n 1[55[}1[11),

= (-1)"Bu(x),

ifn>1.

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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It is not difficult to show that

A g (1)
i (2.57)

= JZ [fx+x1],q" P dpg(x1), feN.

P

)
X+ —=+XxXq

n—1f71
Tyl
1=0

Zyp

That is,

f-1

n— - , ! ,
A7) (< ) =80 ) s

Let one consider Barnes’ type multiple q-Bernoulli polynomials. For w1, ws, ..., w, € Zy, and
61,62,...,0, € Z, one defines Barnes” type multiple q-Bernoulli polynomials as follows:

ﬁflfl;(x |we,...,wy:61,...,06;)

= f | [wixg 4w, + x];’qur'=1(6f71)xfdyq(x1) e dpg(xy). (2.59)
A z,

r times

From (2.59), one can easily derive the following equation:

ﬁilr:é)i(x | wl/'-'/wr : 61,...,67)

i( > 1)l (lwy + 61)(lwy + 63) -+~ (lw, + 6,) (2.60)
(1 q nl:O [lw1 +61] [le+62] [lwr+6,]q'
Let 6, = 61 + r — 1, then one has
n lwi+61+r-1

) | ()

ol x|wiw 6,60 +1...,60+7r—-1 = -1

q| x 1w 1:01,01 1 (1 2) §< >( )q (lw1+61+rl) [,

r times
(2.61)

Therefore, one obtains the following theorem.
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Theorem 2.11. For wy € Zy,,r € N, and 6, € Z, one has

flrt), x|wy-wy 6,60 +1...,60+7r-1
——

r times (2.62)

(lw1+61+r 1 ) r'

3 _1)\ 4lx !
(l q)nlz< >( 1)'q (lw1+61+r 1) T]'
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