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A Hájek-Rényi-type maximal inequality is established for multidimensional arrays of random
elements. Using this result, we establish some strong laws of large numbers for multidimensional
arrays. We also provide some characterizations of Banach spaces.

1. Introduction and Preliminaries

Throughout this paper, the symbol C will denote a generic positive constant which is not
necessarily the same one in each appearance. Let d be a positive integer, the set of all
nonnegative integer d-dimensional lattice points will be denoted by �

d
0 , and the set of all

positive integer d-dimensional lattice points will be denoted by �d . We will write 1,m, n, and
n + 1 for points (1, 1, . . . , 1), (m1, m2, . . . , md), (n1, n2, . . . , nd), and (n1 + 1, n2 + 1, . . . , nd + 1),
respectively. The notation m � n (or n � m) means that mi � ni for all i = 1, 2, . . . , d, the
limit n → ∞ is interpreted as ni → ∞ for all i = 1, 2, . . . , d (this limit is equivalent to
min{n1, n2, . . . , nd} → ∞), and we define |n| = ∏d

i=1ni.
Let {bn,n ∈ �

d} be a d-dimensional array of real numbers. We define Δbn to be the
dth-order finite difference of the b’s at the point n. Thus, bn =

∑
1�k�nΔbk for all n ∈ �

d . For
example, if d = 2, then for all (i, j) ∈ �2 ,Δbij = bij − bi,j−1 − bi−1,j + bi−1,j−1 (with the convention
that b0,0 = bi,0 = b0,j = 0). We say that {bn,n ∈ �

d} is a nondecreasing array if bk � bl for any
points k � l.

Hájek and Rényi [1] proved the following important inequality: If (Xj, j � 1) is a
sequence of (real-valued) independent random variables with zero means and finite second
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moments, and (bj , j � 1) is a nondecreasing sequence of positive real numbers, then for any
ε > 0 and for any positive integers n, n0 (n0 < n),

�

⎛

⎝ max
n0�i�n

1
bi

∣
∣
∣
∣
∣
∣

i∑

j=1

Xj

∣
∣
∣
∣
∣
∣
� ε

⎞

⎠ �
1
ε2

⎛

⎝
n0∑

j=1

�X2
j

b2n0

+
n∑

j=n0+1

�X2
j

b2j

⎞

⎠. (1.1)

This inequality is a generalization of the Kolmogorov inequality and is a useful tool to
prove the strong law of large numbers. Fazekas and Klesov [2] gave a general method for
obtaining the strong law of large numbers for sequences of random variables by using a
Hájek-Rényi-type maximal inequality. Afterwards, Noszály and Tómács [3] extended this
result to multidimensional arrays (see also Klesov et al. [4]). They provided a sufficient
condition for d-dimensional arrays of random variables to satisfy the strong law of large
numbers

1
bn

∑

1�k�n
Xk −→ 0 a.s. as n −→ ∞, (1.2)

where {bn,n ∈ �
d} is a positive, nondecreasing d-sequence of product type, that is, bn =

∏d
i=1b

(i)
ni
, where {b(i)ni

, ni � 1} is a nondecreasing sequence of positive real numbers for each
i = 1, 2, . . . , d. Then, we have

bn =
∑

1�k�n
Δbk = b

(1)
n1 b

(2)
n2 · · · b(d)nd

, n ∈ �d . (1.3)

This implies that

Δbn =
(
b
(1)
n1 − b

(1)
n1−1

)(
b
(2)
n2 − b

(2)
n2−1

)
· · ·

(
b
(d)
nd

− b
(d)
nd−1

)
, n ∈ �

d . (1.4)

Therefore,

Δbn � 0, n ∈ �
d , (1.5)

ΔbnΔbn+1 = Δbn1n2 ···nd−1 ,nd+1Δbn1+1,n2+1,...,nd−1+1,nd , n ∈ �d . (1.6)

On the other hand, we can show that under the assumption that {bn,n ∈ �
d} is an array

of positive real numbers satisfying (1.5), it is not possible to guarantee that (1.6) holds (for
details, see Example 2.8 in the next section).

Thus, if {bn,n ∈ �d} is a positive, nondecreasing d-sequence of product type, then it is
an array of positive real numbers satisfying (1.5), but the reverse is not true.

In this paper, we use the hypothesis that {bn,n ∈ �
d} is an array of positive real

numbers satisfying (1.5) and continue to study the problem of finding the sufficient condition
for the strong law of large numbers (1.2). We also establish a Hájek-Rényi-type maximal
inequality for multidimensional arrays of random elements and some maximal moment
inequalities for arrays of dependent random elements.
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The paper is organized as follows. In the rest of this section, we recall some definitions
and present some lemmas. Section 2 is devoted to our main results and their proofs.

Let (Ω,F,�) be a probability space. A family {Fn,n ∈ �
d
0 } of nondecreasing sub-σ-

algebras of F related to the partial order � on �d
0 is said to be a stochastic basic.

Let {Fn,n ∈ �
d
0 } be a stochastic basic such that Fn = {∅,Ω} if |n| = 0, let E be a real

separable Banach space, let B(E) be the σ-algebra of all Borel sets in E, and let {Xn,n ∈ �
d}

be an array of random elements such that Xn is Fn/B(E)-measurable for all n ∈ �
d . Then

{Xn,Fn,n ∈ �
d} is said to be an adapted array.

For a given stochastic basic {Fn,n ∈ �
d
0 }, for n ∈ �

d
0 , we set

F1
n =

∨

ki�1 (2�i�d)

Fn1k2k3···kd :=
∞∨

k2=1

∞∨

k3=1

· · ·
∞∨

kd=1

Fn1k2k3···kd ,

Fj
n =

∨

ki�1 (1�i�j−1)

∨

ki�1 (j+1�i�d)
Fk1···kj−1njkj+1···kd if 1 < j < d,

Fd
n =

∨

ki�1 (1�i�d−1)
Fk1k2···kd−1nd ,

(1.7)

in the case d = 1, we set F1
n = Fn.

An adapted array {Xn,Fn,n ∈ �
d} is said to be a martingale difference array if

�(Xn |Fi
n−1) = 0 for all n ∈ �

d and for all i = 1, 2, . . . , d.
In Quang and Huan [5], the authors showed that the set of all martingale difference

arrays is really larger than the set of all arrays of independent mean zero random elements.
A Banach space E is said to be p-uniformly smooth (1 � p � 2) if

ρ(τ) = sup

{∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥

2
− 1, ∀x, y ∈ E, ‖x‖ = 1,

∥
∥y

∥
∥ = τ

}

= O(τp). (1.8)

A Banach space E is said to be p-smoothable if there exists an equivalent norm under which E
is p-uniformly smooth.

Pisier [6] proved that a real separable Banach space E is p-smoothable (1 � p � 2)
if and only if there exists a positive constant C such that for every Lp integrable (E-valued)
martingale difference sequence {Xj, 1 � j � n},

�

∥
∥
∥
∥
∥
∥

n∑

j=1

Xj

∥
∥
∥
∥
∥
∥

p

� C�
n∑

j=1

∥
∥Xj

∥
∥p

. (1.9)

In Quang and Huan [5], this inequality was used to define p-uniformly smooth Banach
spaces.

Let {Yj, j � 1} be a sequence of independent identically distributed random variables
with �(Y1 = 1) = �(Y1 = −1) = 1/2. Let E∞ = E × E × E × · · · and define

�(E) =

⎧
⎨

⎩
(v1, v2, . . .) ∈ E∞ :

∞∑

j=1

Yjvj converges inprobability

⎫
⎬

⎭
. (1.10)
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Let 1 � p � 2. Then, E is said to be of Rademacher type p if there exists a positive constant C
such that

�

∥
∥
∥
∥
∥
∥

∞∑

j=1

Yjvj

∥
∥
∥
∥
∥
∥

p

� C
∞∑

j=1

∥
∥vj

∥
∥p ∀(v1, v2, . . .) ∈ �(E). (1.11)

It is well known that if a real separable Banach space is of Rademacher type p(1 � p �
2), then it is of Rademacher type q for all 1 � q � p. Every real separable Banach space is of
Rademacher type 1, while theLp-spaces and �p-spaces are of Rademacher type 2∧p for p � 1.
The real line � is of Rademacher type 2. Furthermore, if a Banach space is p-smoothable, then
it is of Rademacher type p. For more details, the readermay refer to Borovskikh and Korolyuk
[7], Pisier [8], and Woyczyński [9].

Now, we present some lemmas which will be needed in what follows. The first lemma
is a variation of Lemma 2.6 of Fazekas and Tómács [10] and is a multidimensional version of
the Kronecker lemma.

Lemma 1.1. Let {xn,n ∈ �
d} be an array of nonnegative real numbers, and let {bn,n ∈ �

d} be a
nondecreasing array of positive real numbers such that bn → ∞ as n → ∞. If

∑

n�1
xn < ∞, (1.12)

then

1
bn

∑

1�k�n
bkxk −→ 0 as n −→ ∞. (1.13)

Proof. For every ε > 0, there exists a point n0 ∈ �d such that

∑

k�1
xk −

∑

1�k�n0

xk � ε. (1.14)

Therefore, for all n � n0,

0 �
1
bn

(
∑

1�k�n
bkxk −

∑

1�k�n0

bkxk

)

�

(
∑

1�k�n
xk −

∑

1�k�n0

xk

)

� ε. (1.15)

It means that

lim
n→∞

1
bn

(
∑

1�k�n
bkxk −

∑

1�k�n0

bkxk

)

= 0. (1.16)
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On the other hand, since bn → ∞ as n → ∞,

lim
n→∞

1
bn

∑

1�k�n0

bkxk = 0. (1.17)

Combining the above arguments, this completes the proof of Lemma 1.1.

The proof of the next lemma is very simple and is therefore omitted.

Lemma 1.2. Let (Ω,F,�) be a probability space, and let {An,n ∈ �
d} be an array of sets in F such

that An ⊂ Am for any points m � n. Then,

�

(
⋂

n�1
An

)

= lim
n→∞

�(An). (1.18)

Lemma 1.3. Let {Xn,n ∈ �
d} be an array of random elements. If for any ε > 0,

lim
n→∞

�

(

sup
k�n

‖Xk‖ � ε

)

= 0, (1.19)

then Xn → 0 a.s. as n → ∞.

Proof. For each i � 1, we have

�

(
⋂

n�1

⋃

k�n

(

‖Xk‖ � 1
i

))

= lim
n→∞

�

(
⋃

k�n

(

‖Xk‖ � 1
i

))
(
by Lemma 1.2

)

� lim
n→∞

�

(

sup
k�n

‖Xk‖ � 1
i

)

= 0.

(1.20)

Set

A =
⋃

i�1

⋂

n�1

⋃

k�n

(

‖Xk‖ � 1
i

)

. (1.21)

Then, �(A) = 0 and for allω/∈A, for any i � 1, there exists a point l ∈ �d such that ‖Xk(ω)‖ <
1/i for all k � l. It means that

Xk −→ 0 a.s. as k −→ ∞. (1.22)

The proof is completed.

Lemma 1.4 (Quang and Huan [5]). Let 1 � p � 2, and let E be a real separable Banach space.
Then, the following two statements are equivalent.
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(i) The Banach space E is p-smoothable.

(ii) For every Lp integrable martingale difference array {Xn,Fn,n ∈ �
d}, there exists a positive

constant C(p,d) (depending only on p and d) such that

�

∥
∥
∥
∥
∥

∑

1�k�n
Xk

∥
∥
∥
∥
∥

p

� C(p,d)

∑

1�k�n
�‖Xk‖p, n ∈ �d . (1.23)

2. Main Results

Theorem 2.1 provides a Hájek-Rényi-type maximal inequality for multidimensional arrays of
random elements. This theorem is inspired by the work of Shorack and Smythe [11].

Theorem 2.1. Let p > 0, let {bn,n ∈ �
d} be an array of positive real numbers satisfying (1.5), and

let {Xn,n ∈ �
d} be an array of random elements in a real separable Banach space. Then, there exists a

positive constant C(p,d) such that for any ε > 0 and for any pointsm � n,

�

(

max
m�k�n

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

�
C(p,d)

εp
� max

1�k�n

∥
∥
∥
∥
∥

∑

1�l�k

Xl

bl + bm

∥
∥
∥
∥
∥

p

. (2.1)

Proof. Since {bn,n ∈ �
d} is a nondecreasing array of positive real numbers,

�

(

max
m�k�n

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

� �

(

max
m�k�n

1
bk + bm

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
�

ε

2

)

� �

(

max
1�k�n

1
bk + bm

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
�

ε

2

)

.

(2.2)

For k ∈ �
d , set

rk = bk + bm, Dk =
∑

1�l�k

Xl

rl
. (2.3)

Then, by interchanging the order of summation, we obtain the following

∑

1�l�k
Xl =

∑

1�l�k

(
∑

1�t�l
Δrt

)
Xl

rl
=

∑

1�t�k
Δrt

(
∑

t�l�k

Xl

rl

)

. (2.4)

Thus, since Δrt � 0,

max
1�k�n

1
rk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� 2dmax

1�l�n
‖Dl‖. (2.5)
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By (2.2) and (2.5) and the Markov inequality, we have

�

(

max
m�k�n

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

� �

(

max
1�l�n

‖Dl‖ � ε

2d+1

)

�
2p(d+1)

εp
� max

1�l�n
‖Dl‖p.

(2.6)

This completes the proof of the theorem.

Now, we use Theorem 2.1 to prove a strong law of large numbers formultidimensional
arrays of random elements. This result is inspired by Theorem 3.2 of Klesov et al. [4].

Theorem 2.2. Let p > 0, let {an,n ∈ �
d} be an array of nonnegative real numbers, let {bn,n ∈ �

d}
be an array of positive real numbers satisfying (1.5) and bn → ∞ as n → ∞, and let {Xn,n ∈ �

d}
be an array of random elements in a real separable Banach space such that for any pointsm � n,

� max
1�k�n

∥
∥
∥
∥
∥

∑

1�l�k

Xl

bl + bm

∥
∥
∥
∥
∥

p

� C
∑

1�k�n

ak

(bk + bm)p
. (2.7)

Then, the condition

∑

n�1

an

b
p
n
< ∞ (2.8)

implies (1.2).

Proof. By (2.7) and Theorem 2.1, for any ε > 0 and for any points m � n, we have

�

(

max
m�k�n

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

�
C

εp

∑

1�k�n

ak

(bk + bm)p
. (2.9)

This implies, by letting n → ∞, that

�

(

sup
k�m

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

�
C

εp

∑

k�1

ak

(bk + bm)p

�
C

εp

(
∑

1�k�m

ak

b
p
m

+

(
∑

k�1

ak

b
p

k

−
∑

1�k�m

ak

b
p

k

))

.

(2.10)
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Letting m → ∞, by (2.8) and Lemma 1.1, we obtain

lim
m→∞

�

(

sup
k�m

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

= 0. (2.11)

Lemma 1.3 ensures that (1.2) holds. The proof is completed.

The next theorem provides three characterizations of p-smoothable Banach spaces. The
equivalence of (i) and (ii) is an improvement of a result of Quang and Huan [5] (stated as
Lemma 1.4 above).

Theorem 2.3. Let 1 � p � 2, and let E be a real separable Banach space. Then, the following four
statements are equivalent.

(i) The Banach space E is p-smoothable.

(ii) For every Lp integrable martingale difference array {Xn,Fn,n ∈ �
d}, there exists a positive

constant C(p,d) such that

� max
1�k�n

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥

p

� C(p,d)

∑

1�k�n
�‖Xk‖p, n ∈ �d . (2.12)

(iii) For every Lp integrable martingale difference array {Xn,Fn,n ∈ �
d}, for every array of

positive real numbers {bn,n ∈ �
d} satisfying (1.5), for any ε > 0, and for any points

m � n, there exists a positive constant C(p,d) such that

�

(

max
m�k�n

1
bk

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥
� ε

)

�
C(p,d)

εp

∑

1�k�n
�

∥
∥
∥
∥

Xk

bk + bm

∥
∥
∥
∥

p

. (2.13)

(iv) For every martingale difference array {Xn,Fn,n ∈ �
d}, for every array of positive real

numbers {bn,n ∈ �
d} satisfying (1.5) and bn → ∞ as n → ∞, the condition

∑

n�1

�‖Xn‖p
b
p
n

< ∞ (2.14)

implies (1.2).

Proof. (i)⇒(ii): We easily obtain (2.12) in the case p = 1. Now, we consider the case 1 < p � 2.
By virtue of Lemma 1.4, it suffices to show that

� max
1�k�n

∥
∥
∥
∥
∥

∑

1�l�k
Xl

∥
∥
∥
∥
∥

p

�

(
p

p − 1

)pd

�

∥
∥
∥
∥
∥

∑

1�k�n
Xk

∥
∥
∥
∥
∥

p

, n ∈ �
d . (2.15)

First, we remark that for d = 1, (2.15) follows from Doob’s inequality. We assume that
(2.15) holds for d = D − 1 � 1, we wish to show that it holds for d = D.
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For k ∈ �
D , we set

Sk =
∑

1�l�k
Xl, YkD = max

1�ki�ni (1�i�D−1)
‖Sk‖. (2.16)

Then,

�

(
Sk1k2···kD−1kD | FD

k1k2···kD−1,kD−1
)

= �

(
Sk1k2···kD−1,kD−1 | FD

k1k2···kD−1 ,kD−1
)

+ �

⎛

⎝
∑

1�li�ki (1�i�D−1)
Xl1l2···lD−1kD | FD

k1k2···kD−1,kD−1

⎞

⎠

= Sk1k2···kD−1,kD−1.

(2.17)

Therefore,

�

(
YkD | FD

k1k2···kD−1 ,kD−1
)
= �

(

max
1�ki�ni (1�i�D−1)

‖Sk‖ | FD
k1k2···kD−1 ,kD−1

)

� max
1�ki�ni (1�i�D−1)

∥
∥
∥�

(
Sk | FD

k1k2···kD−1,kD−1
)∥
∥
∥

= YkD−1 .

(2.18)

It means that {YkD ,FD
k1k2···kD−1kD

, kD � 1} is a nonnegative submartingale. Applying Doob’s
inequality, we obtain

� max
1�k�n

‖Sk‖p = �

(

max
1�kD�nD

YkD

)p

�

(
p

p − 1

)p

�Y
p
nD

=
(

p

p − 1

)p

� max
1�ki�ni (1�i�D−1)

‖Sk1k2···kD−1nD‖p.
(2.19)

We set

X
(D−1)
k1k2···kD−1

=
nD∑

kD=1

Xk1k2···kD−1kD , F(D−1)
k1k2···kD−1

=
∞∨

kD=1

Fk1k2···kD−1kD . (2.20)
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Then we again have that {X(D−1)
k1k2···kD−1

,F(D−1)
k1k2···kD−1

, (k1, k2, . . . , kD−1) ∈ �
D−1} is a martingale

difference array. Therefore, by the inductive assumption, we obtain

� max
1�ki�ni (1�i�D−1)

‖Sk1k2···kD−1nD‖p

= � max
1�ki�ni (1�i�D−1)

∥
∥
∥
∥
∥
∥

∑

1�li�ki (1�i�D−1)
X

(D−1)
l1l2···lD−1

∥
∥
∥
∥
∥
∥

p

�

(
p

p − 1

)p(D−1)
�

∥
∥
∥
∥
∥
∥

∑

1�li�ni (1�i�D−1)
X

(D−1)
l1l2···lD−1

∥
∥
∥
∥
∥
∥

p

=
(

p

p − 1

)p(D−1)
�‖Sn1n2···nD‖p.

(2.21)

Combining (2.19) and (2.21) yields that (2.15) holds for d = D.
(ii) ⇒ (iii): let {Xn,Fn,n ∈ �

d} be an arbitrary Lp integrable martingale difference
array. Then, for all m ∈ �

d , {Xn/(bn + bm),Fn,n ∈ �
d} is also an Lp integrable martingale

difference array. Therefore, the assertion (ii) and Theorem 2.1 ensure that (2.13) holds.
(iii) ⇒ (iv): the proof of this implication is similar to the proof of Theorem 2.2 and is

therefore omitted.
(iv) ⇒ (i): for a given positive integer d, assume that (iv) holds. Let {Xj,Fj , j � 1} be

an arbitrary martingale difference sequence such that

∞∑

j=1

�
∥
∥Xj

∥
∥p

jp
< ∞. (2.22)

For n ∈ �
d , set

Xn = Xn1 if ni = 1 (2 � i � d),

Xn = 0 if there exists a positive integer i (2 � i � d) such that ni > 1,

Fn = Fn1 , bn = n1.

(2.23)

Then, {Xn,Fn,n ∈ �
d} is a martingale difference array, and {bn,n ∈ �d} is an array of positive

real numbers satisfying (1.5) and bn → ∞ as n → ∞. Moreover, we see that

∑

n�1

�‖Xn‖p
b
p
n

=
∞∑

n1=1

�‖Xn1‖p
n
p

1

< ∞, (2.24)
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and so (1.2) holds. It means that

1
n1

n1∑

j=1

Xj −→ 0 a.s. as n1 −→ ∞. (2.25)

Then, by Theorem 2.2 of Hoffmann-Jørgensen and Pisier [12], E is p-smoothable.

Remark 2.4. The inequality (2.15) holds for every p > 1 and for every martingale difference
array without imposing any geometric condition on the Banach space.

In the case d = 1, Theorem 2.3 reduces to the following corollary which was proved by
Gan [13] and Gan and Qiu [14].

Corollary 2.5. Let 1 � p � 2, and let E be a real separable Banach space. Then, the following three
statements are equivalent.

(i) The Banach space E is p-smoothable.

(ii) For every Lp integrable martingale difference sequence {Xj,Fj , j � 1}, for every
nondecreasing sequence of positive real numbers {bj , j � 1}, for any ε > 0, and for any
positive integers n, n0 (n0 < n), there exists a positive constant C such that

�

⎛

⎝ max
n0�i�n

1
bi

∥
∥
∥
∥
∥
∥

i∑

j=1

Xj

∥
∥
∥
∥
∥
∥
� ε

⎞

⎠ �
C

εp

⎛

⎝
n0∑

j=1

�
∥
∥Xj

∥
∥p

b
p
n0

+
n∑

j=n0+1

�
∥
∥Xj

∥
∥p

b
p

j

⎞

⎠. (2.26)

(iii) For every martingale difference sequence {Xj,Fj , j � 1} and for every nondecreasing
sequence of positive real numbers {bj , j � 1} such that bj → ∞ as j → ∞, the condition

∞∑

j=1

�
∥
∥Xj

∥
∥p

b
p

j

< ∞ (2.27)

implies

1
bi

i∑

j=1

Xj −→ 0 a.s. as i −→ ∞. (2.28)

Remark 2.4 ensures that the inequality (2.15) holds for every p > 1 and for every array
of independent mean zero random elements in a real separable Banach space. Therefore, by
using the implication ((2.1.1) ⇒ (2.1.2)) of Theorem 2.1 of Hoffmann-Jørgensen and Pisier
[12] and the same arguments as in the proof of Theorem 2.3, we get the following theorem
which generalizes some results given by Christofides and Serfling [15] and Gan and Qiu [14].
We omit its proof.

Theorem 2.6. Let 1 � p � 2, and let E be a real separable Banach space. Then, the following four
statements are equivalent.
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(i) The Banach space E is of Rademacher type p.

(ii) For every array of Lp integrable independent mean zero random elements {Xn,n ∈ �
d},

there exists a positive constant C(p,d) such that (2.12) holds.

(iii) For every array of Lp integrable independent mean zero random elements {Xn,n ∈ �d}, for
every array of positive real numbers {bn,n ∈ �

d} satisfying (1.5), for any ε > 0, and for
any pointsm � n, there exists a positive constant C(p,d) such that (2.13) holds.

(iv) For every array of independent mean zero random elements {Xn,n ∈ �
d}, for every array of

positive real numbers {bn,n ∈ �
d} satisfying (1.5) and bn → ∞ as n → ∞, the condition

(2.14) implies (1.2).

We close this paper by giving a remark on Theorem 2.6 and an example which
illustrates Theorems 2.2, 2.3, and 2.6.

Remark 2.7. By the same method as in the proof of Lemma 3 of Móricz et al. [16] and the
same arguments as in the proof of Theorem 2.3, we can extend Theorem 2.6 to M-dependent
random fields.

Example 2.8. Let d be a positive integer (d � 2), and let {Xn,n ∈ �
d} be an array of

independent random variables with

�

(
Xn = −|n|1/4

)
= �

(
Xn = |n|1/4

)
=

1
2
. (2.29)

Then, {Xn,n ∈ �
d} is an array of independent mean zero random variables taking values in

the 2-smoothable Banach space � (using the absolute value as norm).
Let bn = |n| +min{n1, n2, . . . , nd} (n ∈ �d ). Then,

Δbn =

⎧
⎨

⎩

2 if n1 = n2 = · · · = nd,

1 otherwise.
(2.30)

It means that {bn,n ∈ �
d} is an array of positive real numbers satisfying (1.5) and bn → ∞

as n → ∞. Moreover, by virtue of (1.6), we can show that {bn,n ∈ �
d} is not a positive,

nondecreasing d-sequence of product type. Therefore, (1.2) does not follow from Theorem
3.2 of Klesov et al. [4]. But for every array of positive real numbers {rn,n ∈ �

d}, {Xn/rn,Fn =
σ(Xk, 1 � k � n),n ∈ �

d} is a martingale difference array such that

� max
1�k�n

∣
∣
∣
∣
∣

∑

1�l�k

Xl

rl

∣
∣
∣
∣
∣

2

� C
∑

1�k�n

� |Xk|2
r2k

, n ∈ �d (
by Theorem 2.3

)

∑

n�1

� |Xk|2
b2n

�
∑

n�1

|n|1/2
|n|2

< ∞,

(2.31)

and so (2.7) and (2.8) are satisfied, Theorem 2.2 ensures that (1.2) holds.
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As we know, the limit |n| → ∞ is equivalent to max{n1, n2, . . . , nd} → ∞. Recently,
some authors have derived the sufficient conditions for the strong law of large numbers

b−1n
∑

1�k�n
Xk −→ 0 a.s. as |n| −→ ∞, (2.32)

where {bn,n ∈ �
d} is one of the special kinds of positive, nondecreasing d-sequences of

product type. For more details, the reader may refer to [17–19]. Therefore, this example also
shows that the implications ((i) ⇒ (iv)) of Theorem 2.3 and ((i) ⇒ (iv)) of Theorem 2.6 are
independent of results obtained in [17–19].
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