Research Article

Alon-Babai-Suzuki's Conjecture Related to Binary Codes in Nonmodular Version

K.-W. Hwang, ${ }^{1}$ T. Kim, ${ }^{2}$ L. C. Jang, ${ }^{3}$ P. Kim, ${ }^{4}$ and Gyoyong Sohn ${ }^{\mathbf{5}}$
${ }^{1}$ Department of Mathematics, Donga-A University, Pusan 604-714, South Korea
${ }^{2}$ Division of General Edu.-Math., Kwangwoon University, Seoul 139-701, South Korea
${ }^{3}$ Department of Mathematics and Computer Science, Konkook University, Chungju 139-701, South Korea
${ }^{4}$ Department of Mathematics, Kyungpook National University, Taegu 702-701, South Korea
${ }^{5}$ Department of Computer Science, Chungbuk National University, Cheongju 361-763, South Korea

Correspondence should be addressed to K.-W. Hwang, khwang7@kookmin.ac.kr
Received 23 August 2009; Accepted 22 January 2010
Academic Editor: Ram N. Mohapatra
Copyright © 2010 K.-W. Hwang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ and $L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$ be sets of nonnegative integers. Let $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a family of subsets of $[n]$ with $\left[F_{i}\right] \in K$ for each i and $\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$. Every subset F_{e} of $[n]$ can be represented by a binary code $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $a_{i}=1$ if $i \in F_{e}$ and $a_{i}=0$ if $i \notin F_{e}$. Alon et al. made a conjecture in 1991 in modular version. We prove Alon-Babai-Sukuki's Conjecture in nonmodular version. For any K and L with $n \geq s+\max k_{i}$, $|\mathcal{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-2 r+1}$.

1. Introduction

In this paper, \mathscr{F} stands for a family of subsets of $[n]=\{1,2, \ldots, n\}, K=\left\{k_{1}, \ldots, k_{r}\right\}$, and $L=\left\{l_{1}, \ldots, l_{s}\right\}$, where $\left|F_{i}\right| \in K$ for all $F_{i} \in \mathcal{F},\left|F_{i} \cap F_{j}\right| \in L$ for all $F_{i}, F_{j} \in \mathcal{F}, i \neq j$. The variable x will stand as a shorthand for the n-dimensional vector variable ($x_{1}, x_{2}, \ldots, x_{n}$). Also, since these variables will take the values only 0 and 1 , all the polynomials we will work with will be reduced modulo the relation $x_{i}^{2}=x_{i}$. We define the characteristic vector $v_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i n}\right)$ of F_{i} such that $v_{i j}=1$ if $j \in F_{i}$ and $v_{i j}=0$ if $j \notin F_{i}$. We will present some results in this paper that give upper bounds on the size of \mathcal{F} under various conditions. Below is a list of related results by others.

Theorem 1.1 (Ray-Chaudhuri and Wilson [1]). If $K=\{k\}$, and L is any set of nonnegative integers with $k>\max l_{j}$, then $|\mathcal{F}| \leq\binom{ n}{s}$.

Theorem 1.2 (Alon et al. [2]). If K and L are two sets of nonnegative integers with $k_{i}>s-r$, for every i, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.
Theorem 1.3 (Snevily [3]). If K and L are any sets such that $\min k_{i}>\max l_{j}$, then $|\mathscr{F}| \leq\binom{ n-1}{s}+$ $\binom{n-1}{s-1}+\cdots+\binom{n-1}{0}$.

Theorem 1.4 (Snevily [4]). Let K and L be sets of nonnegative integers such that $\min k_{i}>\max l_{j}$. Then, $|\mathscr{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-2 r+1}$.

Conjecture 1.5 (Snevily [5]). For any K and L with $\min k_{i}>\max l_{j},|\mathcal{F}| \leq\binom{ n}{s}$.
In the same paper in which he stated the above conjecture, Snevily mentions that it seems hard to prove the above bound and states the following weaker conjecture.

Conjecture 1.6 (Snevily [5]). For any K and L with $\min k_{i}>\max l_{j},|\mathscr{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+$ $\binom{n-1}{s-r}$.

Hwang and Sheikh [6] proved the bound of Conjecture 1.6 when K is a consecutive set. The second theorem we prove is a special case of Conjecture 1.6 with the extra condition that $\bigcap_{i=1}^{m} F_{i} \neq \emptyset$. These two theorems are stated hereunder.

Theorem 1.7 (Hwang and Sheikh [6]). Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ where $k_{i}=k_{1}+i-1, k_{1}>s-r$, and $L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be such that $\left|F_{i}\right| \in K$ for each $i,\left|F_{i}\right| \notin L$, and $\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$. Then $|\mathscr{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-r}$.

Theorem 1.8 (Hwang and Sheikh [6]). Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}, L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$, and $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be such that $\left|F_{i}\right| \in K$ for each $i,\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$, and $k_{i}>s-r$. If $\bigcap_{i=1}^{m} F_{i} \neq \emptyset$, then $|\mathcal{F}| \leq\binom{ n-1}{s}+\binom{n-1}{s-1}+\cdots+\binom{n-1}{s-r}$.

Theorem 1.9 (Alon et al. [2]). Let K and L be subsets of $\{0,1, \ldots, p-1\}$ such that $K \cap L=\emptyset$, where p is a prime and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ a family of subsets of $[n]$ such that $\left|F_{i}\right|(\bmod p) \in K$ for all $F_{i} \in \mathcal{F}$ and $\left|F_{i} \cap F_{j}\right|(\bmod p) \in L$ for $i \neq j$. If $r(s-r+1) \leq p-1$, and $n \geq s+\max k_{i}$, then $|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

Conjecture 1.10 (Alon et al. [2]). Let K and L be subsets of $\{0,1, \ldots, p-1\}$ such that $K \cap L=\emptyset$, where p is a prime and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ a family of subsets of $[n]$ such that $\left|F_{i}\right|(\bmod p) \in K$ for all $F_{i} \in \mathcal{F}$ and $\left|F_{i} \cap F_{j}\right|(\bmod p) \in L$ for $i \neq j$. If $n \geq s+\max k_{i}$, then $|\mathscr{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

In [2], Alon et al. proved their conjectured bound under the extra conditions that $r(s-$ $r+1) \leq p-1$ and $n \geq s+\max k_{i}$. Qian and Ray-Chaudhuri [7] proved that if $n>2 s-r$ instead of $n \geq s+\max k_{i}$, then the above bound holds.

We prove an Alon-Babai-Suzuki's conjecture in non-modular version.
Theorem 1.11. Let $K=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}, L=\left\{l_{1}, l_{2}, \ldots, l_{s}\right\}$ be two sets of nonnegative integers and let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be such that $\left|F_{i}\right| \in K$ for each $i,\left|F_{i} \cap F_{j}\right| \in L$ for any $i \neq j$, and $n \geq s+\max _{i}\left|F_{i}\right|$. then $|\mathscr{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

2. Proof of Theorem

Proof of Theorem 1.11. For each $F_{i} \in \mathcal{F}$, consider the polynomial

$$
\begin{equation*}
f_{i}(x)=\prod_{\substack{j \\ l_{j}<\left|F_{i}\right|}}\left(v_{i} \cdot x-\left(k_{i}-l_{j}\right)\right) \tag{2.1}
\end{equation*}
$$

where v_{i} is the characteristic vector of F_{i} and v_{i}^{*} is the characteristic vector of $F_{i}^{*}=F_{i}-\{1\}$. Let $\overline{v_{i}}$ the characteristic vector of F_{i}^{c}, and \bar{v}_{i}^{*} be the characteristic vector of $\left(F_{i}^{c}\right)^{*}$.

We order $\left\{F_{i}\right\}$ by size of F_{i}, that is, $\left|F_{j}\right| \leq\left|F_{k}\right|$ if $j<k$. We substitute the characteristic vector $\overline{v_{i}}$ of F_{i}^{c} by order of size of F_{i}. Clearly, $f_{i}\left(\overline{v_{i}}\right) \neq 0$ for $1 \leq i \leq m$ and $f_{i}\left(\overline{v_{j}}\right)=0$ for $1 \leq j<i \leq m$. Assume that

$$
\begin{equation*}
\sum_{i} \alpha_{i} f_{i}(x)=0 \tag{2.2}
\end{equation*}
$$

We prove that $\left\{f_{i}(x)\right\}$ is linearly independent. Assume that this is false. Let i_{0} be the smallest index such that $\alpha_{i_{0}} \neq 0$. We substitute $\overline{v_{i_{0}}}$ into the above equation. Then we get $\alpha_{i_{0}} f_{i_{0}}\left(\overline{v_{i_{0}}}\right)=0$. We get a contradiction. So $\left\{f_{i}(x)\right\}$ is linearly independent. Let $\varepsilon=\left\{E_{1}, \ldots, E_{e}\right\}$ be the family of subsets of $[n]$ with size at most $s-r$, which is ordered by size, that is, $\left|E_{i}\right| \leq\left|E_{j}\right|$ if $i<j$, where $e=\sum_{i=0}^{s-r}\binom{n}{i}$. Let u_{i} denote the characteristic vector of E_{i}. We define the multilinear polynomial g_{i} in n variables for each E_{i} :

$$
\begin{equation*}
g_{i}(x)=\prod_{l=1}^{r}\left(\sum_{t=1}^{n} x_{t}-\left(n-k_{l}\right)\right) \prod_{j \in E_{i}} x_{j} . \tag{2.3}
\end{equation*}
$$

We prove that $\left\{g_{i}(x)\right\}$ is linearly independent. Assume that

$$
\begin{equation*}
\sum_{i} \beta_{i} g_{i}(x)=0 \tag{2.4}
\end{equation*}
$$

Choose the smallest size of E_{i}. Let u_{i} be the characteristic vector of E_{i}. We substitute u_{i} into the above equation. We know that $g_{i}\left(u_{i}\right) \neq 0$ and $g_{j}\left(u_{i}\right)=0$ for any $i<j$. Since $n \geq s+\max k_{i}$, we get $\beta_{i}=0$. If we follow the same process, then the family $\left\{g_{i}(x)\right\}$ is linearly independent. Next, we prove that $\left\{f_{i}(x), g_{i}(x)\right\}$ is linearly independent. Now, assume that

$$
\begin{equation*}
\sum_{i} \alpha_{i} f_{i}(x)+\sum_{i} \beta_{i} g_{i}(x)=0 . \tag{2.5}
\end{equation*}
$$

Let F_{1} be the smallest size of F_{i}. We substitute the characteristic vector $\overline{v_{1}}$ of F_{1}^{c} into the above equation. Since $\left|F_{i}^{c}\right|=n-k_{l}, g_{i}\left(\overline{v_{1}}\right)=0$ for all i. We only get $\alpha_{1} f_{1}\left(\overline{v_{1}}\right)=0$. So $\alpha_{1}=0$. By the same way, choose the smallest size from $\left\{F_{i}\right\}$ after deleting F_{1}. We do the same process. We also can get $\alpha_{2}=0$. By the same process, we prove that all $\alpha_{i}=0$. We prove that $\left\{f_{i}(x), g_{i}(x)\right\}$ is linearly independent.

Any polynomial in the set $\left\{f_{i}(x), g_{i}(x)\right\}$ can be represented by a linear combination of multilinear monomials of degree $\leq s$. The space of such multilinear polynomials has dimension $\sum_{i=0}^{s}\binom{n}{i}$. We found $|\mathscr{F}|+\sum_{i=0}^{s-r}\binom{n}{i}$ linearly independent polynomials with degree at most s. So $|\mathscr{F}|+\sum_{i=0}^{S-r}\binom{n}{i} \leq \sum_{i=0}^{s}\binom{n}{i}$. Thus $|\mathscr{F}| \leq\binom{ n}{s}+\binom{n}{s-1}+\cdots+\binom{n}{s-r+1}$.

Acknowledgments

The authors thank Zoltán Füredi for encouragement to write this paper. The present research has been conducted by the research grant of the Kwangwoon University in 2009.

References

[1] D. K. Ray-Chaudhuri and R. M. Wilson, "On t-designs," Osaka Journal of Mathematics, vol. 12, no. 3, pp. 737-744, 1975.
[2] N. Alon, L. Babai, and H. Suzuki, "Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems," Journal of Combinatorial Theory. Series A, vol. 58, no. 2, pp. 165-180, 1991.
[3] H. S. Snevily, "On generalizations of the de Bruijn-Erdos theorem," Journal of Combinatorial Theory. Series A, vol. 68, no. 1, pp. 232-238, 1994.
[4] H. S. Snevily, "A sharp bound for the number of sets that pairwise intersect at k positive values," Combinatorica, vol. 23, no. 3, pp. 527-533, 2003.
[5] H. S. Snevily, "A generalization of the Ray-Chaudhuri-Wilson theorem," Journal of Combinatorial Designs, vol. 3, no. 5, pp. 349-352, 1995.
[6] K.-W. Hwang and N. Sheikh, "Intersection families and Snevily's conjecture," European Journal of Combinatorics, vol. 28, no. 3, pp. 843-847, 2007.
[7] J. Qian and D. K. Ray-Chaudhuri, "On mod-p Alon-Babai-Suzuki inequality," Journal of Algebraic Combinatorics, vol. 12, no. 1, pp. 85-93, 2000.

