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By virtue of higher-order adjacent derivative of set-valued maps, relationships between higher-
order adjacent derivative of a set-valued map and its profile map are discussed. Some results
concerning stability analysis are obtained in parametrized vector optimization.

1. Introduction

Research on stability and sensitivity analysis is not only theoretically interesting but also
practically important in optimization theory. A number of useful results have been obtained
in scalar optimization (see [1, 2]). Usually, by stability, we mean the qualitative analysis,
which is the study of various continuity properties of the perturbation (or marginal)
function (or map) of a family of parametrized optimization problems. On the other hand,
by sensitivity, we mean the quantitative analysis, which is the study of derivatives of the
perturbation function.

Some authors have investigated the sensitivity of vector optimization problems. In [3],
Tanino studied some results concerning the behavior of the perturbation map by using the
concept of contingent derivative of set-valued maps for general multiobjective optimization
problems. In [4], Shi introduced a weaker notion of set-valued derivative (TP-derivative) and
investigated the behavior of contingent derivative for the set-valued perturbation maps in a
nonconvex vector optimization problem. Later on, Shi also established sensitivity analysis
for a convex vector optimization problem (see [5]). In [6], Kuk et al. investigated the
relationships between the contingent derivatives of the perturbation maps (i.e., perturbation
map, proper perturbation map, and weak perturbation map) and those of feasible set map
in the objective space by virtue of contingent derivative, TP-derivative and Dini derivative.
Considering convex vector optimization problems, they also investigated the behavior of the
above three kinds of perturbation maps under some convexity assumptions (see [7]).
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On the other hand, some interesting results have been proved for stability analysis in
vector optimization problems. In [8], Tanino studied some qualitative results concerning the
behavior of the perturbation map in convex vector optimization. In [9], Li investigated the
continuity and the closedness of contingent derivative of the marginal map in multiobjective
optimization. In [10], Xiang and Yin investigated some continuity properties of the mapping
which associates the set of efficient solutions to the objective function by virtue of the additive
weight method of vector optimization problems and the method of essential solutions.

To the best of our knowledge, there is no paper to deal with the stability of higher-order
adjacent derivative for weak perturbation maps in vector optimization problems. Motivated
by the work reported in [3–9], in this paper, by higher-order adjacent derivative of set-valued
maps, we first discuss some relationships between higher-order adjacent derivative of a set-
valued map and its profile map. Then, by virtue of the relationships, we investigate the
stability of higher-order adjacent derivative of the perturbation maps.

The rest of this paper is organized as follows. In Section 2, we recall some basic
definitions. In Section 3, after recalling the concept of higher-order adjacent derivative of set-
valued maps, we provide some relationships between the higher-order adjacent derivative
of a set-valued map and its profile map. In Section 4, we discuss some stability results of
higher-order adjacent derivative for perturbation maps in parametrized vector optimization.

2. Preliminaries

Throughout this paper, let X and Y be two finite dimensional spaces, and let K ⊆ Y be a
pointed closed convex cone with a nonempty interior intK, where K is said to be pointed
if K ∩ (−K) = {0}. Let F : X ⇒ Y be a set-valued map. The domain and the graph of
F are defined by Dom(F) = {x ∈ X : F(x)/= ∅} and Graph(F) = {(x, y) ∈ X × Y : y ∈
F(x), x ∈ Dom(F)}, respectively. The so-called profile map F + K : X ⇒ Y is defined by
(F +K)(x) := F(x) +K, for all x ∈ Dom(F).

At first, let us recall some important definitions.

Definition 2.1 (see [11]). Let Q be a nonempty subset of Y . An elements ŷ ∈ Q is said to be
a minimal point (resp. weakly minimal point) of Q if (Q − ŷ) ∩ (−K) = {0}(resp., (Q − ŷ) ∩
(− intK) = ∅). The set of all minimal points (resp., weakly minimal point) of Q is denoted by
MinKQ (resp., WMinKQ).

Definition 2.2 (see [12]). A base forK is a nonempty convex subset B ofKwith 0/∈B such that
every k ∈ K, k /= 0 has a unique representation k = αb, where b ∈ B and α > 0.

Definition 2.3 (see [13]). The weak domination property is said to hold for a subset H of Y if
H ⊆ WMinKH + intK ∪ {0}.

Definition 2.4 (see [14]). Let F be a set-valued map from X to Y .

(i) F is said to be lower semicontinuous (l.s.c) at x ∈ X if for any generalized sequence
{xn} with xn → x and y ∈ F(x), there exists a generalized sequence {yn} with
yn ∈ F(xn) such that yn → y.

(ii) F is said to be upper semicontinuous (u.s.c) at x ∈ X if for any neighborhood
N(F(x)) of F(x), there exists a neighborhood N(x) of x such that F(x) ⊆ N(F(x)),
for all x ∈ N(x).
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(iii) F is said to be closed at x ∈ X if for any generalized sequence (xn, yn) ∈ Graph(F),
(xn, yn) → (x, y), it yields (x, y) ∈ Graph(F).

We say that F is l.s.c (resp., u.s.c, closed) on X if it is l.s.c (resp., u.s.c, closed) at each x ∈ X.
F is said to be continuous on X if it is both l.s.c and u.s.c on X.

Definition 2.5 (see [14]). F is said to be Lipschitz around x ∈ X if there exist a real number
M > 0 and a neighborhood N(x) of x such that

F(x1) ⊆ F(x2) +M‖x1 − x2‖BY , ∀x1, x2 ∈ N(x), (2.1)

where BY denotes the closed unit ball of the origin in Y .

Definition 2.6 (see [14]). F is said to be uniformly compact near x ∈ X if there exists a
neighborhood N(x) of x such that

⋃

x∈N(x) F(x) is a compact set.

3. Higher-Order Adjacent Derivatives of Set-Valued Maps

In this section, we recall the concept of higher-order adjacent derivative of set-valued maps
and provide some basic properties which are necessary in the following section. Throughout
this paper, let m be an integer number and m > 1.

Definition 3.1 (see [15]). Let x ∈ C ⊆ X and u1, . . . , um−1 be elements of X. The set
T
b(m)
C (x, u1, . . . , um−1) is called the mth-order adjacent set of C at (x, u1, . . . , um−1), if and only

if, for any x ∈ T
b(m)
C (x, u1, . . . , um−1), for any sequence {hn} ⊆ R+ \ {0} with hn → 0, there

exists a sequence {xn} ⊆ X with xn → x such that

x + hnu1 + h2
nu2 + · · · + hm−1

n um−1 + hm
n xn ∈ C, ∀n. (3.1)

Definition 3.2 (see [15]). Let (x, y) ∈ Graph(F) and (ui, vi) ∈ X × Y , i = 1, 2, . . . , m − 1.
Themth-order adjacent derivativeDb(m)F(x, y, u1, v1, . . . , um−1, vm−1) of F at (x, y) for vectors
(u1, v1), . . . , (um−1, vm−1) is the set-valued map from X to Y defined by

Graph
(

Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

)

= T
b(m)
Graph(F)

(

x, y, u1, v1, . . . , um−1, vm−1
)

. (3.2)

Proposition 3.3. Let (x, y) ∈ Graph(F) and (ui, vi) ∈ X × Y , i = 1, 2, . . . , m − 1. Then, for any
x ∈ Dom(Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)),

Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) +K ⊆ Db(m)(F +K)
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).
(3.3)

Proof. The proof follows on the lines of Proposition 2.1 in [3] by replacing contingent
derivative bymth-order adjacent derivative.

Note that the converse inclusion of (3.3)may not hold. The following example explains
the case where we only take m = 2, 3.
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Example 3.4. Let X = Y = R and K = R+, let F : X ⇒ Y be defined by

F(x) =

⎧

⎨

⎩

{0} if x ≤ 0,
{−1, x3} if x > 0.

(3.4)

Let (x, y) = (0, 0) ∈ Graph(F) and (u1, v1) = (u2, v2) = (1, 0). For any x > 0, we have

Db(2)F
(

x, y, u1, v1
)

(x) = {0}, Db(2)(F +K)
(

x, y, u1, v1
)

(x) = R,

Db(3)F
(

x, y, u1, v1, u2, v2
)

(x) = {1}, Db(3)(F +K)
(

x, y, u1, v1, u2, v2
)

(x) = R.
(3.5)

Thus, for any x > 0, we have

Db(2)(F +K)
(

x, y, u1, v1
)

(x) /⊆ Db(2)F
(

x, y, u1, v1
)

(x) +K,

Db(3)(F +K)
(

x, y, u1, v1, u2, v2
)

(x) /⊆ Db(3)F
(

x, y, u1, v1, u2, v2
)

(x) +K.
(3.6)

Proposition 3.5. Let (x, y) ∈ Graph(F) and (ui, vi) ∈ X × Y , i = 1, 2, . . . , m − 1. Assume that K
has a compact base. Then, for any x ∈ Dom(Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)),

WMinKD
b(m)

(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) ⊆ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).

(3.7)

where ˜K is a closed convex cone contained in (intK) ∪ {0}.

Proof. If WMinKD
b(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x) = ∅, the inclusion holds trivially.

Thus, we suppose that WMinKD
b(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x)/= ∅. Let y0 ∈

WMinKD
b(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x). Then,

y0 ∈ Db(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.8)

Since ˜K ⊆ intK ∪ {0},

WMinKD
b(m)

(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)

⊆ Min
˜KD

b(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x),
(3.9)

then it follows that

y0 ∈ Min
˜KD

b(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.10)



Journal of Inequalities and Applications 5

From (3.8) and the definition ofmth-order adjacent derivative, we have that for any sequence
{hn} ⊆ R+ \ {0} with hn → 0, there exist sequences {(xn, yn)} with (xn, yn) → (x, y0) and
{˜kn} ⊆ ˜K such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n yn − ˜kn ∈ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

. (3.11)

Since ˜K is a closed convex cone contained in (intK) ∪ {0}, ˜K has a compact base. It is clear
that B ∩ ˜K is a compact base for ˜K, where B is a compact base for K. In this proposition, we
assume that ˜B is a compact base of ˜K. Since ˜kn ∈ ˜K, there exist αn > 0 and bn ∈ ˜B such that
˜kn = αnbn. Since ˜B is compact, we may assume without loss of generality that bn → b ∈ ˜B.

Now, we show that αn/h
m
n → 0. Suppose that αn/h

m
n � 0. Then, for some ε > 0, we

may assume, without loss of generality, that αn/h
m
n ≥ ε, for all n. Let kn = (εhm

n /αn)˜kn ∈ ˜K.
Then, we have

˜kn − kn ∈ ˜K. (3.12)

By (3.11) and (3.12), we obtain that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n yn − kn ∈ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

+ ˜K. (3.13)

From (3.13) and kn/h
m
n = (ε/αn)˜kn = εbn → εb /= 0, we have

y0 − εb ∈ Db(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x), (3.14)

which contradicts (3.10). Therefore, αn/h
m
n → 0 and yn − ˜kn/h

m
n → y0. Thus, it follows from

(3.11) that y0 ∈ Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x), and the proof is complete.

Remark 3.6. The inclusion of

WMinKD
b(m)(F +K)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) ⊆ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)
(3.15)

may not hold under the assumptions of Proposition 3.5. The following example explains the
case where we only take m = 2, 3.

Example 3.7. Let X = R and Y = R2, let K = R2
+ and F : X ⇒ Y be defined by

F(x) =
{

y ∈ R2 : y =
(

x3, x3
)}

. (3.16)
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Suppose that (x, y) = (0, (0, 0)) ∈ Graph(F), (u1, v1) = (u2, v2) = (1, (0, 0)). Then, for any
x ∈ X,

Db(2)F
(

x, y, u1, v1
)

(x) = {(0, 0)},

Db(3)F
(

x, y, u1, v1, u2, v2
)

(x) = {(1, 1)},

Db(2)(F +K)
(

x, y, u1, v1
)

(x) =
{

(

y1, y2
) ∈ R2 : y1 ≥ 0, y2 ≥ 0

}

,

Db(3)(F +K)
(

x, y, u1, v1, u2, v2
)

(x) =
{

(

y1, y2
) ∈ R2 : y1 ≥ 1, y2 ≥ 1

}

.

(3.17)

Naturally, we have

WMinKD
b(2)(F +K)

(

x, y, u1, v1
)

(x) =
{

(

y1, y2
) ∈ R2 : y1y2 = 0, y1 ≥ 0, y2 ≥ 0

}

,

WMinKD
b(3)(F +K)

(

x, y, u1, v1, u2, v2
)

(x) =
{

(

y1, y2
) ∈ R2 : y1 ≥ 1, y2 = 1

}

∪
{

(

y1, y2
) ∈ R2 : y1 = 1, y2 ≥ 1

}

.

(3.18)

Thus, for any x ∈ X,

WMinKD
b(2)(F +K)

(

x, y, u1, v1
)

(x) /⊆ Db(2)F
(

x, y, u1, v1
)

(x),

WMinKD
b(3)(F +K)

(

x, y, u1, v1, u2, v2
)

(x) /⊆ Db(3)F
(

x, y, u1, v1, u2, v2
)

(x).
(3.19)

Proposition 3.8. Let (x, y) ∈ Graph(F), and (ui, vi) ∈ X × Y , i = 1, 2, . . . , m − 1, and let K
has a compact base. Suppose that P(x) := Db(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x) fulfills the
weak domination property for any x ∈ Dom(Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)). Then, for any
x ∈ Dom(Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)),

WMinKD
b(m)

(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)

= WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x),
(3.20)

where ˜K is a closed convex cone contained in (intK) ∪ {0}.

Proof. Let y0 ∈ WMinKD
b(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x). Then,

y0 ∈ Db(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.21)

By Proposition 3.5, we also have y0 ∈ Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x).
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Suppose that y0 /∈WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x). Then, there exists y′ ∈

Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x) such that

y0 − y′ ∈ intK. (3.22)

From y′ ∈ Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x) and Proposition 3.3, we have

y′ ∈ Db(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.23)

So, by (3.21), (3.22), and (3.23), y0 /∈WMinKD
b(m)(F+ ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x),which

leads to a contradiction. Thus, y0 ∈ WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x).

Conversely, let y0 ∈ WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x). Then,

y0 ∈ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) ⊆ Db(m)
(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).

(3.24)

Suppose that y0 /∈WMinKD
b(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x). Then, there exists y′ ∈

Db(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x) such that

y0 − y′ = k ∈ intK. (3.25)

Since P(x) fulfills the weak domination property for any x ∈ Dom(Db(m)F(x, y, u1, v1, . . . ,
um−1, vm−1)), there exists k′ ∈ intK ∪ {0} such that

y′ − k′ ∈ WMinKD
b(m)

(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.26)

From (3.25) and (3.26), we have

y0 − k − k′ ∈ WMinKD
b(m)

(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.27)

It follows from Proposition 3.5 and (3.27) that

y0 − k − k′ ∈ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x), (3.28)

which contradicts y0 ∈ WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x). Thus, y0 ∈

WMinKD
b(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x), and the proof is complete.

Obviously, Example 3.4 can also show that the weak domination property of P(x) is
essential for Proposition 3.8.
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Remark 3.9. From Example 3.7, the equality of

WMinKD
b(m)(F +K)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)

= WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)
(3.29)

may still not hold under the assumptions of Proposition 3.8.

Proposition 3.10. Let (x, y) ∈ Graph(F) and (ui, vi) ∈ X × Y , i = 1, 2, . . . , m − 1.
Suppose that F is Lipschitz at x. Then, Db(m)F(x, y, u1, v1, . . . , um−1, vm−1) is continuous on
Dom(Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)).

Proof. Since F is Lipschitz at x, there exist a real number M > 0 and a neighborhood N(x) of
x such that

F(x1) ⊆ F(x2) +M‖x1 − x2‖BY , ∀x1, x2 ∈ N(x). (3.30)

First, we prove thatDb(m)F(x, y, u1, v1, . . . , um−1, vm−1) is l.s.c. at x̂ ∈ Dom(Db(m)F(x, y,
u1, v1, . . . , um−1, vm−1)). Indeed, for any ŷ ∈ Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x̂). From the
definition of mth-order adjacent derivative, we have that for any sequence {hn} ⊆ R+ \ {0}
with hn → 0, there exists a sequence {(x̂n, ŷn)}with (x̂n, ŷn) → (x̂, ŷ) such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n ŷn ∈ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n x̂n

)

. (3.31)

Take any x ∈ X and xn → x. Obviously, x + hnu1 + · · · + hm−1
n um−1 + hm

n xn, x + hnu1 + · · · +
hm−1
n um−1 + hm

n x̂n ∈ N(x), for any n sufficiently large. Therefore, by (3.30), we have

F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n x̂n

)

⊆ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

+Mhm
n ‖x̂n − xn‖BY .

(3.32)

So, with (3.31), there exists −bn ∈ BY such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n

(

ŷn +M‖x̂n − xn‖bn
) ∈ F

(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

.

(3.33)

We may assume, without loss of generality, that bn → b ∈ BY . Thus, by (3.33),

ŷ +M‖x̂ − x‖b ∈ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x). (3.34)

It follows from (3.34) that for any sequence {xk} with xk → x̂, ŷ ∈ Db(m)F(x, y, u1, v1, . . . ,
um−1, vm−1)(x̂), there exists a sequence {yk}with

yk := ŷ +M‖x̂ − xk‖b ∈ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(xk). (3.35)
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Obviously, yk → ŷ. Hence, Db(m)F(x, y, u1, v1, . . . , um−1, vm−1) is l.s.c. on Dom(Db(m)F(x, y,
u1, v1, . . . , um−1, vm−1)).

Wewill prove thatDb(m)F(x, y, u1, v1, . . . , um−1, vm−1) is u.s.c. on x̂ ∈ Dom(Db(m)F(x, y,
u1, v1, . . . , um−1, vm−1)). In fact, for any ε > 0, we consider the neighborhood x̂ + (ε/M)BX of
x̂. Let x ∈ x̂ + (ε/M)BX and y ∈ Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x). From the definition
of Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x), we have that for any sequence {hn} ⊆ R+ \ {0} with
hn → 0, there exists a sequence {(xn, yn)}with (xn, yn) → (x, y) such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n yn ∈ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

. (3.36)

Take any x̂n → x̂. Obviously, x+hnu1+ · · ·+hm−1
n um−1+hm

n xn, x+hnu1+ · · ·+hm−1
n um−1+hm

n x̂n ∈
N(x), for any n sufficiently large. Therefore, by (3.30), we have

F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

⊆ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n x̂n

)

+Mhm
n ‖xn − x̂n‖BY .

(3.37)

Similar to the proof of l.s.c., there exists b ∈ BY such that

y +M‖x − x̂‖b ∈ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x̂). (3.38)

Thus, y ∈ Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x̂) + εBY . Hence,
Db(m)F(x, y, u1, v1, . . . , um−1, vm−1) is u.s.c. on Dom(Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)),
and the proof is complete.

4. Continuity of Higher-Order Adjacent Derivative for
Weak Perturbation Map

In this section, we consider a family of parametrized vector optimization problems. Let F be a
set-valued map fromU to Y , whereU is the Banach space of perturbation parameter vectors,
Y is the objective space, and F is considered as the feasible set map in the objective space.
In the optimization problem corresponding to each parameter valued x, our aim is to find
the set of weakly minimal points of the feasible objective valued set F(x). Hence, we define
another set-valued map S from U to Y by

S(x) = WMinKF(x), for any x ∈ U. (4.1)

The set-valued map S is called the weak perturbation map. Throughout this section, we
suppose that ˜K is a closed convex cone contained in (intK) ∪ {0}.

Definition 4.1 (see [11]). F is said to be K-minicomplete by S near x if F(x) ⊆ S(x) + K, for
any x ∈ N(x),where N(x) is a neighborhood of x.
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Remark 4.2. Since S(x) ⊆ F(x), the K-minicompleteness of F by S near x implies that

S(x) +K = F(x) +K, for any x ∈ N(x). (4.2)

Hence, if F is K-minicomplete by S near x, then, for any y ∈ S(x)

Db(m)(F +K)
(

x, y, u1, v1, . . . , um−1, vm−1
)

= Db(m)(S +K)
(

x, y, u1, v1, . . . , um−1, vm−1
)

.

(4.3)

The following lemma palys a crucial role in this paper.

Lemma 4.3. Let (x, y) ∈ Graph(S) and (ui, vi) ∈ U × Y , i = 1, 2, . . . , m − 1, and let K have a
compact base. Suppose that the following conditions are satisfied:

(i) P(x) := Db(m)(F + ˜K)(x, y, u1, v1, . . . , um−1, vm−1)(x) fulfills the weak domination
property for any x ∈ Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1));

(ii) F is Lipschitz at x;

(iii) F is ˜K-minicomplete by S near x.

Then, for any x ∈ Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)),

Db(m)S
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) = WMinKDb(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).
(4.4)

Proof. We first prove that

WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) ⊆ Db(m)S
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).
(4.5)

In fact, from Proposition 3.5, Proposition 3.8, and the ˜K-minicompleteness of F by S near x,
we have

WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)

= WMinKD
b(m)

(

F + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)

= WMinKD
b(m)

(

S + ˜K
)

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x)

⊆ Db(m)S
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).

(4.6)

Thus, result (4.5) holds.
Now, we prove that

Db(m)S
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) ⊆ WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).
(4.7)
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In fact, assume that y ∈ Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)(x). Then, for any sequence {hn} ⊆
R+ \ {0} with hn → 0, there exists a sequence {(xn, yn)}with (xn, yn) → (x, y) such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n yn ∈ S
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

⊆ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

.

(4.8)

Suppose that y /∈WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x). Then, there exists ŷ ∈

Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x) such that y−ŷ ∈ intK. Thus, for the preceding sequence
{hn}, there exists a sequence {(x̂n, ŷn)}with (x̂n, ŷn) → (x, y) such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n ŷn ∈ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n x̂n

)

. (4.9)

Obviously, x + hnu1 + · · · + hm−1
n um−1 + hm

n xn, x + hnu1 + · · · + hm−1
n um−1 + hm

n x̂n ∈ N(x), for any
n sufficiently large. Therefore, by (ii), we have

F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n x̂n

)

⊆ F
(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

+Mhm
n ‖x̂n − xn‖BY .

(4.10)

So, with (4.9), there exists −bn ∈ BY such that

y + hnv1 + · · · + hm−1
n vm−1 + hm

n

(

ŷn +M‖x̂n − xn‖bn
) ∈ F

(

x + hnu1 + · · · + hm−1
n um−1 + hm

n xn

)

.

(4.11)

Since yn − (ŷn +M‖x̂n − xn‖bn) → y − ŷ and y − ŷ ∈ intK, yn − (ŷn +M‖x̂n − xn‖bn) ∈ intK,
for n sufficiently large. Then, we have

y + hnv1 + · · · + hm−1
n vm−1 + hm

n yn −
(

y + hnv1+· · ·+hm−1
n vm−1+hm

n

(

ŷn+M‖x̂n−xn‖bn
)

)

∈ intK,

(4.12)

which contradicts (4.8). Then, y ∈ WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x). This

completes the proof.

The following example shows that the ˜K-minicompleteness of F is essential in
Lemma 4.3, where we only take m = 2, 3.

Example 4.4 (F is not ˜K-minicomplete by S near x). Let U = R, Y = R2 and K = R2
+, and let

F : U ⇒ Y be defined by

F(x) =
{

(

y1, y2
) ∈ R2 : y1 ≥ 0, y2 ≥ 0

}

∪
{

(

y1, y2
) ∈ R2 : y2 >

∣

∣y1
∣

∣

}

. (4.13)
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Then, for any x ∈ U,

F(x) + ˜K = F(x), S(x) =
{

(

y1, y2
) ∈ R2 : y1 ≥ 0, y2 = 0

}

. (4.14)

Suppose that (x, y) = (0, (0, 0)) ∈ Graph(S), (u1, v1) = (u2, v2) = (1, (0, 0)). Then, F is
Lipschitz at x, and for any x ∈ U,

Db(2)
(

F + ˜K
)

(

x, y, u1, v1
)

(x) = Db(3)
(

F + ˜K
)

(

x, y, u1, v1, u2, v2
)

(x)

=
{

(

y1, y2
) ∈ R2 : y1 ≥ 0, y2 ≥ 0

}

∪
{

(

y1, y2
) ∈ R2 : y2 ≥

∣

∣y1
∣

∣

}

(4.15)

fulfills the weak domination property. We also have

Db(2)F
(

x, y, u1, v1
)

(x) = Db(3)F
(

x, y, u1, v1, u2, v2
)

(x)

=
{

(

y1, y2
) ∈ R2 : y1 ≥ 0, y2 ≥ 0

}

∪
{

(

y1, y2
) ∈ R2 : y2 ≥

∣

∣y1
∣

∣

}

.

(4.16)

On the other hand,

Db(2)S
(

x, y, u1, v1
)

(x) = Db(3)S
(

x, y, u1, v1, u2, v2
)

(x) = S(x),

WMinKD
b(2)F

(

x, y, u1, v1
)

(x) = WMinKD
b(3)F

(

x, y, u1, v1, u2, v2
)

(x)

=
{

(

y1, y2
) ∈ R2 : y1 ≥ 0, y2 = 0

}

∪
{

(

y1, y2
) ∈ R2 : y2 = −y1, y1 < 0

}

.

(4.17)

Thus, for any x ∈ X,

Db(2)S
(

x, y, u1, v1
)

(x)/=WMinKD
b(2)F

(

x, y, u1, v1
)

(x),

Db(3)S
(

x, y, u1, v1, u2, v2
)

(x)/=WMinKD
b(3)F

(

x, y, u1, v1, u2, v2
)

(x).
(4.18)

Theorem 4.5. Let (x, y) ∈ Graph(S) and (ui, vi) ∈ U × Y ,i = 1, 2, . . . , m − 1. Then,
Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)(x) is closed on Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)).

Proof. From the definition of Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)(x), we have that

Graph
(

Db(m)S
(

x, y, u1, v1, . . . , um−1, vm−1
)

)

= T
b(m)
Graph(S)

(

x, y, u1, v1, . . . , um−1, vm−1
)

. (4.19)
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Since T
b(m)
Graph(S)(x, y, u1, v1, . . . ,um−1, vm−1) is closed set, Db(m)S(x, y, u1, v1, . . . , um−1, vm−1) is

closed on Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)), and the proof is complete.

Theorem 4.6. Let (x, y) ∈ Graph(S) and (ui, vi) ∈ U×Y, i = 1, 2, . . . , m−1. If Y is a compact space,
then Db(m)S(x, y, u1, v1, . . . , um−1, vm−1) is u.s.c. on Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)).

Proof. Since Y is a compact space, it follows from Corollary 9 of Chapter
3 in [14] and Theorem 4.5 that Db(m)S(x, y, u1, v1, . . . , um−1, vm−1) is u.s.c. on
Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)). Thus, the proof is complete.

Theorem 4.7. Let x̂ ∈ Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)). Suppose that Db(m)F(x, y,
u1, v1, . . . , um−1, vm−1)(x̂) is a compact set and the assumptions of Lemma 4.3 are satisfied. Then,
Db(m)S(x, y, u1, v1, . . . , um−1, vm−1) is u.s.c. at x̂.

Proof. It follows from Lemma 4.3 and Theorem 4.5 that WMinKD
b(m)F(x, y,

u1, v1, . . . , um−1, vm−1) is closed. By Proposition 3.10, we have that Db(m)F(x, y, u1, v1, . . . ,
um−1, vm−1) is u.s.c. at x̂. Since Db(m)F(x, y, u1, v1, . . . , um−1, vm−1)(x̂) is a compact set, it
follows from Theorem 8 of Chapter 3 in [14] that

Db(m)S
(

x, y, u1, v1, . . . , um−1, vm−1
)

= WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

=
[

WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

]

∩Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(4.20)

is u.s.c. at x̂, and the proof is complete.

Now, we give an example to illustrate Theorem 4.7, where we also take m = 2, 3.

Example 4.8. Let U = [0, 1], Y = R2, and K = R2
+, and let F : U ⇒ Y be defined by

F(x) =
{

(

y1, y2
) ∈ R2 : 0 ≤ y1 ≤ x3, 0 ≤ y2 ≤ x3

}

. (4.21)

Then, for any x ∈ U,

S(x) =
{

(

y1, y2
) ∈ R2 : 0 ≤ y1 ≤ x3, y2 = 0

}

∪
{

(

y1, y2
) ∈ R2 : y1 = 0, 0 ≤ y2 ≤ x3

}

. (4.22)

Suppose that (x, y) = (0, (0, 0)) ∈ Graph(S), x̂ = 1/3, (u1, v1) = (u2, v2) = (1, (0, 0)) and
˜K = {(y1, y2) ∈ R2

+ : (1/4)y2 ≤ y1 ≤ 4y2}. Obviously, K has a compact base, F is Lipschitz at
x, and F is ˜K-minicomplete by S near x. By direct calculating, for any x ∈ U,

Db(2)
(

F + ˜K
)

(

x, y, u1, v1
)

(x) = ˜K,

Db(3)
(

F + ˜K
)

(

x, y, u1, v1, u2, v2
)

(x) =
{

(

y1, y2
) ∈ R2 : 0 ≤ y1 ≤ 4y2 + 1, 0 ≤ y2 ≤ 4y1 + 1

}

(4.23)
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fulfill the weak domination property, which is a strong property for a set-valued map. We
also have

Db(2)F
(

x, y, u1, v1
)

(x) = {(0, 0)},

Db(2)S
(

x, y, u1, v1
)

(x) = {(0, 0)},

Db(3)F
(

x, y, u1, v1, u2, v2
)

(x) =
{

(

y1, y2
) ∈ R2 : 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1

}

,

Db(3)S
(

x, y, u1, v1, u2, v2
)

(x) =
{

(

y1, y2
) ∈ R2 : 0 ≤ y1 ≤ 1, y2 = 0

}

∪
{

(

y1, y2
) ∈ R2 : y1 = 0, 0 ≤ y2 ≤ 1

}

.

(4.24)

Thus, the conditions of Theorem 4.7 are satisfied. Obviously, both Db(2)S(x, y, u1, v1)(x) and
Db(3)S(x, y, u1, v1, u2, v2)(x) are u.s.c at x̂.

Theorem 4.9. Let x̂ ∈ Dom(Db(m)S(x, y, u1, v1, . . . , um−1, vm−1)). Suppose that Db(m)F(x, y,
u1, v1, . . . , um−1, vm−1) is uniformly compact near x̂ and the assumptions of Lemma 4.3 are satisfied.
Then, Db(m)S(x, y, u1, v1, . . . , um−1, vm−1) is l.s.c. at x̂.

Proof. By Lemma 4.3, it suffices to prove thatWMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1) is l.s.c.

at x̂. Let xn → x̂ and

ŷ ∈ WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x̂). (4.25)

By Proposition 3.10, we have that Db(m)F(x, y, u1, v1, . . . , um−1, vm−1) is l.s.c. at x̂. Then, there
exists a sequence {yn} with yn ∈ Db(m)F(x, y, u1, v1, . . . , um−1,vm−1)(xn) such that yn → ŷ.
Since ˜K ⊆ (intK) ∪ {0},

WMinKD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(x) ⊆ Min
˜KD

b(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x).
(4.26)

Then, for any sequence {y′
n} with y′

n ∈ WMinKD
b(m)F(x, y, u1, v1, . . . , um−1, vm−1)(xn), we

have

y′
n ∈ Min

˜KD
b(m)F

(

x, y, u1, v1, . . . , um−1, vm−1
)

(xn), (4.27)

then it follows that

yn − y′
n ∈ ˜K. (4.28)

Since Db(m)F(x, y, u1, v1, . . . , um−1, vm−1) is uniformly compact near x̂, we may assume,
without loss of generality, that y′

n → y. It follows from the closedness of Db(m)F(x, y,
u1, v1, . . . , um−1, vm−1) that

y ∈ Db(m)F
(

x, y, u1, v1, . . . , um−1, vm−1
)

(x̂). (4.29)
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From (4.28) and ˜K is closed, we have ŷ−y ∈ ˜K ⊆ intK∪{0}. Then, it follows from (4.25) and
(4.29) that y = ŷ. Thus, WMinKD

b(m)F(x, y, u1, v1, . . . , um−1, vm−1) is l.s.c. at x̂, and the proof
is complete.

It is easy to see that Example 4.8 can also illustrate Theorem 4.9.
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