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We establish a new Laypunov-type inequality for two nonlinear systems of partial differential
equations and the discrete analogue is also established. As application, boundness of the two-
dimensional Emden-Fowler-type equation is proved.

1. Introduction

In a celebrated paper of 1893, Liapunov [1] proved the following well-known inequality: if y
is a nontrivial solution of

y” + q(t)y = 0, (1.1)

on an interval containing the points a and b (a < b) such that y(a) = y(b) = 0, then

4 < (b − a)
∫b

a

∣∣q(s)∣∣ds. (1.2)

Since the appearance of Liapunov’s fundamental paper [1], considerable attention has
been given to various extensions and improvements of the Lyapunov-type inequality from
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different viewpoints [2–7]. In particular, the Lyapunov-type inequalities for the following
nonlinear system of differential equations were given in [8]

x′(t) = α1(t)x(t) + β1(t)|u(t)|γ−2u(t),

u′(t) = −β2(t)|x(t)|β−2x(t) − α1(t)u(t).
(1.3)

In this paper, we obtain new Lyapunov-type inequalities for the two-dimensional
nonlinear system and discrete nonlinear system, respectively.

2. The Lyapunov-Type Integral Inequality for
the Two-Dimensional Nonlinear System

∂2x(s, t)
∂s∂t

= α1(s, t)x(s, t) + β1(s, t)|u(s, t)|γ−2u(s, t),

∂2u(s, t)
∂s∂t

= −β2(s, t)|x(s, t)|β−2x(s, t) − α1(s, t)u(s, t).

(2.1)

We shall assume the existence of nontrivial solution (x(s, t), u(s, t)) of the system (2.1), and
furthermore, (2.1) satisfies the following assumptions (i), (ii), and (iii):

(i) γ > 1, β > 1 are real constants;

(ii) β1(s, t), β2(s, t) : [s0,∞) × [t0,∞) ⊂ R
2 → R are continuous functions such that

β1(s, t) > 0 for (s, t) ∈ [s0,∞) × [t0,∞);

(iii) α1(s, t) : [s0,∞) × [t0,∞) → R is a continuous function.

Theorem 2.1. Let the hypotheses (i)–(iii) hold. If the nonlinear system (2.1) has a real solution
(x(s, t), u(s, t)) such that x(a, t) = x(b, t) = x(s, c) = x(s, d) = 0 for (s, t) ∈ [a, b] × [c, d],
and (∂u(s, t)/∂s)(∂x(s, t)/∂t) + (∂u(s, t)/∂t)(∂x(s, t)/∂s) and x(s, t) is not identically zero on
[a, b] × [c, d], where a, b, c, d ∈ R with a < b, c < d, then

2 ≤
∫b

a

∫d

c

|α1(s, t)|dt ds +Mβ/α−1
(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β+2 (s, t)dt ds

)1/α

,
(2.2)

where (1/α) + (1/γ) = 1, M = max
a<s<b
c<t<d

|x(s, t)|, and β+2 (s, t) = max
a<s<b
c<t<d

{β2(s, t), 0} is the

nonnegative part of β2(s, t).

Proof. Since x(a, t) = x(b, t) = x(s, c) = x(s, d) = 0 and x(s, t) is not identically zero on
[a, b] × [c, d], we can choose (τ, σ) ∈ (a, b) × (c, d) such that |x(τ, σ)| = max

a<s<b
c<t<d

|x(s, t)| > 0.
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LetM = |x(τ, σ)| > 0. Integrating the first equation of system (2.1) over t from c to σ and over
s from a to τ , respectively, we obtain

∫ τ

a

∫σ

c

∂2x(s, t)
∂s∂t

dt ds =
∫ τ

a

∫σ

c

(
α1(s, t)x(s, t) + β1(s, t)|u(s, t)|γ−2u(s, t)

)
dt ds. (2.3)

On the other hand, we have

∫ τ

a

∫σ

c

∂2x(s, t)
∂s∂t

dt ds =
∫ τ

a

∫σ

c

∂

∂t

(
∂x(s, t)

∂s

)
dt ds

=
∫ τ

a

[∫σ

c

∂x(s, t)
∂s

∣∣∣∣
t

dt

]
ds

=
∫ τ

a

∂x(s, σ)
∂s

ds −
∫ τ

a

∂x(s, c)
∂s

ds

= x(τ, σ) − x(a, σ) − x(τ, c) + x(a, c)

= x(τ, σ).

(2.4)

Hence,

x(τ, σ) =
∫ τ

a

∫σ

c

(
α1(s, t)x(s, t) + β1(s, t)|u(s, t)|γ−2u(s, t)

)
dt ds, (2.5)

and similarly, we have

x(τ, σ) =
∫b

τ

∫d

σ

(
α1(s, t)x(s, t) + β1(s, t)|u(s, t)|γ−2u(s, t)

)
dt ds. (2.6)

Employing the triangle inequality gives

|x(τ, σ)| ≤
∫ τ

a

∫σ

c

|α1(s, t)||x(s, t)|dt ds +
∫ τ

a

∫σ

c

β1(s, t)|u(s, t)|γ−1dt ds, (2.7)

|x(τ, σ)| ≤
∫b

τ

∫d

σ

|α1(s, t)||x(s, t)|dt ds +
∫b

τ

∫d

σ

β1(s, t)|u(s, t)|γ−1dt ds. (2.8)

Summing (2.7) and (2.8), we obtain

2|x(τ, σ)| ≤
∫b

a

∫d

c

|α1(s, t)||x(s, t)|dt ds +
∫b

a

∫d

c

β1(s, t)|u(s, t)|γ−1dt ds. (2.9)
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By using Hölder inequality on the second integral of the right side of (2.9)with indices
α and γ , we have

∫b

a

∫d

c

β1(s, t)|u(s, t)|γ−1dt ds

=
∫b

a

∫d

c

β1(s, t)1/γβ1(s, t)1/α|u(s, t)|γ−1dt ds

≤
(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β1(s, t)|u(s, t)|α(γ−1)dt ds
)1/α

=

(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β1(s, t)|u(s, t)|γdt ds
)1/α

,

(2.10)

where (1/α) + (1/γ) = 1.
Therefore, we obtain from (2.9)

2|x(τ, σ)| ≤
∫b

a

∫d

c

|α1(s, t)||x(s, t)|dt ds

+

(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β1(s, t)|u(s, t)|γdt ds
)1/α

.

(2.11)

On the other hand, we have

∂2

∂s∂t
(x(s, t)u(s, t)) =

∂

∂t

(
∂x(s, t)

∂s
· u(s, t) + x(s, t) · ∂u(s, t)

∂s

)

=
∂2x(s, t)
∂s∂t

· u(s, t) + ∂x(s, t)
∂s

· ∂u(s, t)
∂t

+
∂x(s, t)

∂t
· ∂u(s, t)

∂s
+ x(s, t) · ∂

2u(s, t)
∂s∂t

.

(2.12)

Multiplying the first equation of (2.1) by u(s, t) and the second one by x(s, t), adding
the result, and noting (∂u(s, t)/∂s)(∂x(s, t)/∂t) + (∂u(s, t)/∂t)(∂x(s, t)/∂s) = 0, we have

∂2

∂s∂t
[x(s, t)u(s, t)] = β1(s, t)|u(s, t)|γ − β2(s, t)|x(s, t)|β. (2.13)
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Integrating the left side of (2.13) over t from c to d and over s from a to b, respectively,
we get

∫b

a

∫d

c

∂2

∂s∂t
[x(s, t)u(s, t)]dt ds

=
∫b

a

∫d

c

∂

∂t

[
∂(x(s, t)u(s, t))

∂s

]
dt ds

=
∫b

a

[∫d

c

∂(x(s, t)u(s, t))
∂s

|
t
dt

]
ds

=
∫b

a

∂(x(s, d)u(s, d))
∂s

ds −
∫b

a

∂(x(s, c)u(s, c))
∂s

ds

= x(b, d)u(b, d) − x(a, d)u(a, d) − x(b, c)u(b, c) + x(a, c)u(a, c).

(2.14)

Now integrating both sides of (2.13) over t from c to d and over s from a to b,
respectively, and noting x(a, t) = x(b, t) = 0, we get

∫b

a

∫d

c

β1(s, t)|u(s, t)|γdt ds =
∫b

a

∫d

c

β2(s, t)|x(s, t)|βdt ds. (2.15)

Substituting equality (2.15) by (2.11), we have

2|x(τ, σ)| ≤
∫b

a

∫d

c

|α1(s, t)||x(s, t)|dt ds

+

(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β2(s, t)|x(s, t)|βdt ds
)1/α

.

(2.16)

Noticing that M = |x(τ, σ)| = max
a<s<b
c<t<d

|x(s, t)| > 0 and β+2 (s, t) = max
a<s<b
c<t<d

{β2(s, t), 0},
we obtain

2 ≤
∫b

a

∫d

c

|α1(s, t)|dt ds +Mβ/α−1
(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β+2 (s, t)dt ds

)1/α

. (2.17)

The proof is complete.
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Remark 2.2. Let x(s, t), u(s, t), α1(s, t), and β1(s, t) change to x(t), u(t), α1(t), and β1(t) in (2.2),
and with suitable changes, (2.2) changes to the following result:

2 ≤
∫b

a

|α1(t)|dt +Mβ/α−1
(∫b

a

β1(t)dt

)1/γ(∫b

a

β+2 (t)dt

)1/α

. (2.18)

This is just a new Lyapunov-type inequality which was given by Tiryaki et al. [8].

3. The Lyapunov-Type Discrete Inequality for
the Two-Dimensional Nonlinear System

Δ1Δ2x(s, t) = α1(s, t)x(s + 1, t + 1) + β1(s, t)|u(s, t)|γ−2u(s, t),

Δ1Δ2u(s, t) = −β2(s, t)|x(s + 1, t + 1)|β−2x(s + 1, t + 1) − α1(s, t)u(s, t),
(3.1)

where s, t ∈ Z,Δ1 denotes the forward difference operator for s, that is,Δ1x(s, t) = x(s+1, t)−
x(s, t), and Δ2 denotes the forward difference operator for t, that is, Δ2x(s, t) = x(s, t + 1) −
x(s, t).We shall assume the existence of nontrivial solution (x(s, t), u(s, t)) of the system (3.1),
and furthermore, (3.1) satisfies the following assumptions (i), (ii), and (iii):

(i) γ > 1, β > 1 are real constants;

(ii) β1(s, t), β2(s, t) are real-valued functions such that β1(s, t) > 0 for all s, t ∈ Z;

(iii) α1(s, t) is a real-valued function for all s, t ∈ Z.

Theorem 3.1. Let the hypotheses (i)–(iii) hold. Assume n1, m1, n2, m2 ∈ Z and n1 < m1 − 2, n2 <
m2−2. If the nonlinear system (3.1) has a real solution (x(s, t), u(s, t)) such that x(n1, t) = x(m1, t) =
x(s, n2) = x(s,m2) = 0 for all (s, t) ∈ [n1, m1] × [n2, m2], and Δ1x(s, t + 1) · Δ2u(s, t) + Δ2x(s +
1, t) ·Δ1u(s, t) = 0 and x(s, t) is not identically zero on [n1, m1] × [n2, m2], then

2 ≤
m1−2∑
s=n1

m2−2∑
t=n2

|α1(s, t)| +Mβ/α−1
(

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)

)1/γ(m1−2∑
s=n1

m2−2∑
t=n2

β+2 (s, t)

)1/α

,
(3.2)

where (1/α) + (1/γ) = 1,M = |x(τ, σ)| = max
n1+1<s<m1−1
n2+1<t<m2−1

|x(s, t)|, and β+2 (s, t) =

max
n1+1<s<m1−1
n2+1<t<m2−1

{β2(s, t), 0}.

Proof. Let (x(s, t), u(s, t)) be nontrivial real solution of system (3.1) such that x(n1, t) =
x(m1, t) = x(s, n2) = x(s,m2) = 0 and x(s, t) is not identically zero on [n1, m1] × [n2, m2].
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Then multiplying the first equation of (3.1) by u(s, t) and the second one by x(s + 1, t + 1),
adding the result, and noting Δ1x(s, t + 1) ·Δ2u(s, t) + Δ2x(s + 1, t) ·Δ1u(s, t) = 0, and

Δ1Δ2[x(s, t)u(s, t)]

= Δ2((x(s + 1, t) − x(s, t))u(s, t) + x(s + 1, t)(u(s + 1, t) − u(s, t)))

= Δ2((x(s + 1, t) − x(s, t))u(s, t)) + Δ2(x(s + 1, t)(u(s + 1, t) − u(s, t)))

= (x(s + 1, t + 1) − x(s, t + 1) − (x(s + 1, t) − x(s, t)))u(s, t)

+ (x(s + 1, t + 1) − x(s, t + 1))(u(s, t + 1) − u(s, t))

+ (x(s + 1, t + 1) − x(s + 1, t))(u(s + 1, t) − u(s, t))

+ x(s + 1, t + 1)(u(s + 1, t + 1) − u(s, t + 1) − (u(s + 1, t) − u(s, t)))

= (Δ1Δ2x(s, t))u(s, t) + Δ1x(s, t + 1)Δ2u(s, t)

+ Δ2x(s + 1, t)Δ1u(s, t) + x(s + 1, t + 1)(Δ1Δ2u(s, t)),

(3.3)

we have

Δ1Δ2[x(s, t)u(s, t)] = β1(s, t)|u(s, t)|γ − β2(s, t)|x(s + 1, t + 1)|β. (3.4)

Summing the left side of (3.4) over t from n2 to m2 − 1 and over s from n1 to m1 − 1,
respectively, we have

m1−1∑
s=n1

m2−1∑
t=n2

Δ1Δ2(x(s, t)u(s, t))

=
m1−1∑
s=n1

m2−1∑
t=n2

(x(s + 1, t + 1)u(s + 1, t + 1) − x(s + 1, t)u(s + 1, t)

−(x(s, t + 1)u(s, t + 1) − x(s, t)u(s, t)))

=
m1−1∑
s=n1

(x(s + 1, m2)u(s + 1, m2) − x(s,m2)u(s,m2)

−(x(s + 1, n2)u(s + 1, n2) − x(s, n2)u(s, n2)))

= x(m1, m2)u(m1, m2) − x(n1, m2)u(n1, m2) − x(m1, n2)u(m1, n2)

+ x(n1, n2)u(n1, n2).

(3.5)

Summing both sides of (3.4) over t from n2 to m2 − 1 and over s from n1 to m1 − 1,
respectively, and noting x(n1, t) = x(m1, t) = 0, we obtain

m1−1∑
s=n1

m2−1∑
t=m1

β1(s, t)|u(s, t)|γ =
m1−1∑
s=n1

m2−1∑
t=n2

β2(s, t)|x(s + 1, t + 1)|β. (3.6)
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Noticing that x(m1, t) = x(s,m2) = 0 and β+2 (s, t) = max
n1+1<s<m1−1
n2+1<t<m2−1

{β2(s, t), 0}, we have

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)|u(s, t)|γ =
m1−2∑
s=n1

m2−2∑
t=n2

β2(s, t)|x(s + 1, t + 1)|β

≤
m1−2∑
s=n1

m2−2∑
t=n2

β+2 (s, t)|x(s + 1, t + 1)|β.
(3.7)

Choose (τ, σ) ∈ [n1 + 1, m1 − 1] × [n2 + 1, m2 − 1] such that M = |x(τ, σ)| =
max

n1+1<s<m1−1
n2+1<t<m2−1

|x(s, t)|. Hence M = |x(τ, σ)| > 0. Summing the first equation of (3.1) over t

from n2 to σ − 1 and over s from n1 to τ − 1, respectively, we obtain

τ−1∑
s=n1

σ−1∑
t=n2

Δ1Δ2x(s, t) =
τ−1∑
s=n1

σ−1∑
t=n2

α1(s, t)x(s + 1, t + 1) +
τ−1∑
s=n1

σ−1∑
t=n2

β1(s, t)|u(s, t)|γ−2u(s, t). (3.8)

Considering the left side of (3.8) and noting x(n1, t) = x(s, n2) = 0 for all (s, t) ∈
[n1, m1] × [n2, m2], we have

τ−1∑
s=n1

σ−1∑
t=n2

Δ1Δ2x(s, t) =
τ−1∑
s=n1

(
σ−1∑
t=n2

(x(s + 1, t + 1) − x(s + 1, t) − (x(s, t + 1) − x(s, t)))

)

=
τ−1∑
s=n1

(x(s + 1, σ) − x(s, σ) − (x(s + 1, n2) − x(s, n2)))

= x(τ, σ) − x(n1, σ) − x(τ, n2) + x(n1, n2)

= x(τ, σ).

(3.9)

Hence,

x(τ, σ) =
τ−1∑
s=n1

σ−1∑
t=n2

α1(s, t)x(s + 1, t + 1) +
τ−1∑
s=n1

σ−1∑
t=n2

β1(s, t)|u(s, t)|γ−2u(s, t), (3.10)

and similarly, we have

x(τ, σ) =
m1−2∑
s=τ

m2−2∑
t=σ

α1(s, t)x(s + 1, t + 1) +
m1−1∑
s=τ

m2−1∑
t=σ

β1(s, t)|u(s, t)|γ−2u(s, t). (3.11)
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Employing the triangle inequality gives

|x(τ, σ)| ≤
τ−1∑
s=n1

σ−1∑
t=n2

|α1(s, t)||x(s + 1, t + 1)| +
τ−1∑
s=n1

σ−1∑
t=n2

β1(s, t)|u(s, t)|γ−1, (3.12)

|x(τ, σ)| ≤
m1−2∑
s=τ

m2−2∑
t=σ

|α1(s, t)||x(s + 1, t + 1)| +
m1−1∑
s=τ

m2−1∑
t=σ

β1(s, t)|u(s, t)|γ−1. (3.13)

Summing (3.12) and (3.13), we obtain

2|x(τ, σ)| ≤
m1−2∑
s=n1

m2−2∑
t=n2

|α1(s, t)||x(s + 1, t + 1)| +
m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)|u(s, t)|γ−1.
(3.14)

On the other hand, using Hölder inequality on the second sum of the right side of
(3.14)with indices α and γ,we have

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)|u(s, t)|γ−1 =
m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)1/γβ1(s, t)1/α|u(s, t)|γ−1

≤
(

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)

)1/γ(m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)|u(s, t)|α(γ−1)
)1/α

=

(
m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)

)1/γ(m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)|u(s, t)|γ
)1/α

,

(3.15)

where (1/α) + (1/γ) = 1. Therefore, from (3.7) and (3.10), we obtain

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)|u(s, t)|γ−1 ≤
(

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)

)1/γ(m1−2∑
s=n1

m2−2∑
t=n2

β+2 (s, t)|x(s + 1, t + 1)|β
)1/α

.

(3.16)

Substituting (3.16) to (3.14), we have

2|x(τ, σ)| ≤
m1−2∑
s=n1

m2−2∑
t=n2

|α1(s, t)||x(s + 1, t + 1)|

+

(
m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)

)1/γ(m1−2∑
s=n1

m2−2∑
t=n2

β+2 (s, t)|x(s + 1, t + 1)|β
)1/α

.

(3.17)
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Noticing that M = |x(τ, σ)| = max
n1+1<s<m1−1
n2+1<t<m2−1

|x(s, t)| > 0, we get

2 ≤
m1−2∑
s=n1

m2−2∑
t=n2

|α1(s, t)| +Mβ/α−1
(

m1−1∑
s=n1

m2−1∑
t=n2

β1(s, t)

)1/γ(m1−2∑
s=n1

m2−2∑
t=n2

β+2 (s, t)

)1/α

. (3.18)

This completes the proof.

Remark 3.2. Let x(s, t), u(s, t), α1(s, t), and β1(s, t) change to x(t), u(t), α1(t), and β1(t) in
(3.2) and with suitable changes, (3.2) changes to the following result:

2 ≤
m−2∑
t=n

|α1(t)| +Mβ/α−1
(

m−1∑
t=n

β1(t)

)1/γ(m−2∑
t=n

β+2 (t)

)1/α

. (3.19)

This is just a new Lyapunov-type inequality which was given by Ünal et al. [2].

4. An application

Two-dimensional Emden-Fowler-type equation

∂

∂s∂t

(
r(s, t)

∣∣∣∣∂x(x, t)∂s∂t

∣∣∣∣
α−2 ∂x(x, t)

∂s∂t

)
+ q(s, t)|x(s, t)|β−2x(s, t) = 0, (4.1)

where α > 1 is a constant, r(s, t) and q(s, t) are real functions, and r(s, t) > 0 for all (s, t) ∈
R × R.

Consider the following special case of system (2.1), which is an equivalent system for
the two-dimensional Emden-Fowler-type equation (4.1)

∂x2(s, t)
∂s∂t

= β1(s, t)|u(s, t)|γ−2u(s, t),

∂u2(s, t)
∂s∂t

= −β2(s, t)|x(s, t)|β−2x(s, t),
(4.2)

where β1(s, t) = r(s, t)1−γ and β2(s, t) = q(s, t).
Obviously Theorem 2.1 for the two-dimensional nonlinear system (2.1)with α1(s, t) ≡

0 is satisfied for system (4.2). Therefore, we have

2 ≤ Mβ/α−1
(∫b

a

∫d

c

β1(s, t)dt ds

)1/γ(∫b

a

∫d

c

β+2 (s, t)dt ds

)1/α

. (4.3)
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A nontrivial solution (x(s, t), u(s, t)) of system (4.2) defined on [s0,∞) × [t0,∞) is said to be
proper if and only if

sup{|x(s, t)| + |u(s, t)| : a ≤ s < ∞, c ≤ t < ∞} > 0, (4.4)

for any a ≥ s0, c ≥ t0.A proper solution (x(s, t), u(s, t)) of system (4.2) is called weakly
oscillatory if and only if at least one component has a sequence of zeros tending to +∞.

Theorem 4.1. If |x(τ, σ)| = max{|x(s, t)| : a < s < b, c < t < d}, where a > s0, c > t0 and
s0, t0, a, b, c, d ∈ R, u(τ, t) is bounded on [t0,∞) and u(s, σ) is bounded on [s0,∞),

∫∞ ∫∞
β1(s, t)dt ds < ∞,

∫∞ ∫∞∣∣β2(s, t)∣∣dt ds < ∞, (4.5)

then every weakly oscillatory proper solution of (4.2) is bounded on I = [s0,∞) × [t0,∞).

Proof. Let (x(s, t), u(s, t)) be any nontrivial weakly oscillatory proper solution of nonlinear
system (4.2) on I = [s0,∞) × [t0,∞) such that x(s, t) has a sequence of zeros tending to +∞.
Suppose to the contrary that lim sup |x(s, t)| = ∞; then given any positive number M0, we
can find positive numbers S0 and T0 such that |x(s, t)| > M0 for all s > S0, t > T0. Since x(s, t)
is an oscillatory solution, there exist (a, b) × (c, d) ∈ R × R with a > S0, c > T0 such that
x(a, t) = x(b, t) = x(s, c) = x(s, d) = 0 and |x(s, t)| > 0 on (a, b) × (c, d). Choose (τ, σ) in
(a, b) × (c, d) such that M = |x(τ, σ)| = max{|x(s, t)| : a < s < b, c < t < d} > M0; in view of
(4.5), we can choose S0 and T0 large enough such that for every a ≥ S0, c ≥ T0,

∫∞

a

∫∞

c

β1(s, t)dt ds < M−(β−α)/(α−1),
∫∞

a

∫∞

c

∣∣β2(s, t)∣∣dt ds < 1. (4.6)

Taking αth power of both sides of (4.3) and combining (4.6), we obtain

2α ≤ Mβ−α
(∫b

a

∫d

c

β1(s, t)dt ds

)α−1(∫b

a

∫d

c

β+2 (s, t)dt ds

)

≤ Mβ−α
(∫∞

a

∫∞

c

β1(s, t)dt ds
)α−1(∫∞

a

∫∞

c

∣∣β2(s, t)∣∣dt ds
)

< Mβ−αM−β+α = 1,

(4.7)

where α > 1 and β+2 (s, t) ≤ |β2(s, t)|.
This contradiction shows that |x(s, t)| is bounded on I = [s0,∞) × [t0,∞). Therefore,

there exists a positive constant K such that |x(s, t)| ≤ K for all (s, t) ∈ I.
On the other hand, integrating the second equation of system (4.2) over t from σ to t

and over s from σ to s, respectively, we obtain

u(s, t) − u(τ, t) − u(s, σ) + u(τ, σ) =
∫s

σ

∫ t

τ

−β2(s, t)|x(s, t)|β−2x(s, t)dt ds. (4.8)
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Notice that u(τ, t) is bounded on [t0,∞), u(s, σ) is bounded on [s0,∞), and in view of
triangle inequality, we have

|u(s, t)| ≤ |u(τ, t) + u(s, σ) − C| +
∫ s

σ

∫ t

τ

∣∣β2(s, t)∣∣|x(s, t)|β−1dt ds

≤ |u(τ, t) + u(s, σ) − C| +Kβ−1
∫∞

σ

∫∞

τ

∣∣β2(s, t)∣∣dt ds,
(4.9)

where C = u(τ, σ) is a constant.
Equation (4.9) implies that |u(s, t)| is bounded on I = [s0,∞) × [t0,∞) since∫∞

τ

∫∞
σ |β2(s, t)|dt ds < ∞. It follows from

lim sup{|x(s, t)| + |u(s, t)|} ≤ lim sup|x(s, t)| + lim sup|u(s, t)| (4.10)

that lim sup{|x(s, t)| + |u(s, t)|} is bounden on I = [s0,∞) × [t0,∞).
This completes the proof.
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