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This paper studies initial boundary value problem of fourth-order nonlinear marine riser equation.
By using multiplier method, it is proven that the zero solution of the problem is globally
asymptotically stable.

1. Introduction

The straight-line vertical position of marine risers has been investigated with respect to
dynamic stability [1]. It studies the following initial boundary value problem describing the
dynamics of marine riser:

muy + Eltyrxx — (Negflly), + atty + byl =0, x € (0,1), >0, (1.1)

u(O, t) = Uy (0,1) = u(l, t) = uxx(lr t)y=0, t>0, (12)

where EI is the flexural rigidity of the riser, Neg is the “effective tension”, a is the coefficient
of the Coriolis force, b is the coefficient of the nonlinear drag force, and m is the mass line
density. u represents the riser deflection.

By using the Lyapunov function technique, Kohl has shown that the zero solution of
the problem is stable.

In [2], Kalantarov and Kurt have studied the initial boundary value problem for the
equation

Mgy + Kty — [a(X) U], + Yltr + bugluy|P = 0 (1.3)



2 Journal of Inequalities and Applications

under boundary conditions (1.2). Here p,m, k, and b are given positive numbers, y is given
real number, a(x) is a C'[0,[] function, and a(x) > —co > Ofor all x € [0,1]. It is shown that
the zero solution of the problem (1.3)-(1.2) is globally asymptotically stable, that is, the zero
solution is stable and all solutions of this problem are tending to zero whent — co. Moreover
the polynomial decay rate for solutions is established.

There are many articles devoted to the investigation of the asymptotic behavior of
solutions of nonlinear wave equations with nonlinear dissipative terms (see, e.g. [3, 4]),
where theorems on asymptotic stability of the zero solution and estimates of the zero solution
and the estimates of the rate of decay of solutions to second order wave equations are
obtained.

Similar results for the higher-order nonlinear wave equations are obtained in [5].

In this study, we consider the following initial boundary value problem for the
multidimensional version of (1.1):

n

uy + kA% — alAu + ZYi”txi +blufu; =0, xe€eQ,t>0, (1.4)
i=1

u(xlo) = uO(x)/ ut(xlo) = ul(x)/ X € Q/ (15)

u=Au=0, xe€o0Q,t>0, (1.6)

where Q C R" is a bounded domain with sufficiently smooth boundary 0Q. k, b, and p are
given positive numbers, and a,y;,i = 1, ..., n are given real numbers.

Following [2, 5], we prove that all solutions of the problem (1.4)—(1.6) are tending to
zero with a polynomial rate as t — +oo. In this work, || - || stands for the norm in L*(<2).

2. Decay Estimate

Theorem 2.1. Suppose that k,b, and p are arbitrary positive numbers, and number a satisfies

a+ k.)Ll =my >0, (21)

where \y is the first eigenvalue of the operator — A with the homogeneous Dirichlet boundary condition.
p is an arbitrary positive number when n < 2 and

pE <O, %] when n > 3. (2.2)

Then the following estimate holds:

AP/ e (0,1),
%Hutuz + S VulP < ' -
At—2/(P+2), p=>21l,te [1,0),

where A depends only on the initial data and the numbers a, b, p, y;, (i =1,...,n), and A;.
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Proof. We multiply (1.4) by u; and integrate over Q:

% [%”utllz * §||Au||2 * g||Vu||2 + g” J; Upe, UpdX + be |ut|p+2dx =0. (2.4)
Since
N d o /1,
;Yi L} Upy Urdx = ;Yi L} a <§ut >dx =0, (2.5)
we obtain

dJl 2k 2 a 2 P2 3. _
T [2||ut|| *3 A" + 2||Vu|| ] + bfg [t dx = 0. (2.6)
Let 6 > 0. Multiplying (1.4) by 6u, integrating over € and adding to (2.6), we obtain

dJ1 )k 2 4 2 2 2
T [leutll +2||Au|| +2||Vu|| +0(u,up) [ — Ofluel|” + ko[ Aul|

n (2.7)
+ ab||Vul|* + 6Z}q J‘ Upy, udx + b6 J‘ |ug|Pusudx + bf [us|P2dx = 0.
i1 JQ Q Q
Using the method integrating by parts, we get
62)@-’[ Uy, udx = —62)@-[ Uy, UrdX. (2.8)
=1 YQ i=1 YQ
Hence we obtain
d[l 2k 2 a 2 2 2 2
& |l + 518w+ S0l + 500, | - Sl + kS ul + a6
(2.9)

n

- 62}@ f Uy, Updx + bSI s |Pusudx + bf [P dx = 0.
Q Q Q

i=1
Let

1 k a
Ev() = Sllall + S 18ulP + SIVul + 6, ). (2:10)
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Then we have from (2.9)

d
prlORS 6llueI” ~ kol Aul* ~ a6 || Vul

+6|Y|j |Vu||ut|dx+b6J |”t|putudx—bf lug [P dx,
Q o o

(2.11)

where |y| = \/y? + Y7 + -+ + y2. Using Cauchy-Schwarz and Young’s inequalities, we can get

the following estimate:

52 1
ol [ Vulhadex < 5 Il + 5l
Q

It is not difficult to see that

IVl < A7) A

Using inequalities (2.12) and (2.13) in (2.11), we obtain

Let

then

d 1 2 62 2 2
_ < _ — -
Bt < (6+ 2)llutn <6k o >||Au||

- ab||Vul|? + b6 f lug|Pupudx — bf |lue|P*dx.
Q Q

0<6<%

ly|?

8 2
L_6k_2__/\1|)’| > 0.

From (2.14), we get

dt

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

ia(t)<<6+1>||ut||2+b6f P~ b f |ut|*’+2dx—(%nutn%aénwnz+L||Au||2).
Q Q

(2.17)
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Let
1 k a
E(®) = 5lul? + S 1 8ul® + 2| Vul?,
1 2 kM 2, a 2 1 2, My 2
> = - — > = —
E(®) 2 5l + =1Vl + S1Vul 2 5wl + S| Val

M
> mm{ S5 } (el + 172
From (2.6), we have
d +2
—E({#)=-b| |w/f"dx<0.
dt o
Therefore E(t) is a Lyapunov functional. From (2.20), we find that
t
E(t) - E(0) = —bJ‘ f |us|Pdx ds.
0Ja
Since E(t) > 0, we obtain
[ R
If a is nonnegative, then we have
I 2 2y 2L
§||ut|| + ad||Vu||” + L||Aul|” > min 1,26,? E(t) > D1E(t),

where Dy = min{1,26,2L/k}.
If a is negative, then, using (2.13), we have

1 1 ab
gl + a8 Tul + LIAulE > S hualP + (4 +L ) Au]?

ab 1 , k 5
> Z i >
mm{l % < 1 L> } [2||ut|| +3 [Au||“[ > DoE(t),

where D, = min{1, (2/k)(ad/A1 + L)}.
Therefore if a either nonnegative or negative then it is clear that

1
§||ut||2 +ab||Vul* + Li|Aul* > DE(),

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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where D = min{1,26,2L/k, (2/k)(a6/A1 + L)} and 0 < 6 < 2my/|y[*. Using (2.25), we obtain
from (2.17)

%El(t) < (6 +1)|lwl|* - DE(t) + b6 f g [P | dox — bf lug|P 2 dx. (2.26)
Q Q
Integrating (2.26) with respect to ¢, we can get

Ei(t) —E1(0) < (6+1) j; fg |u|*dx ds — D JZ E(s)ds

t t
+b6f J |ut|p+1|u|dxds—bj f [u, [P dx ds,
0/Q 0/JQ

t t (2.27)
DtE(t) < DJ E(s)ds < [E1(0) - E1(t)] + (6+1)f f lug|*dx ds
0 0/Q
t t
+b6ff |ut|p+1|u|dxds—bff lu|P**dx ds,
0/Q 0/Q
t t
DtE(t) < [E1(0) — E1 ()] + (5+1)f f |ut|2dxds+b5f f 1P u|dx ds. (2.28)
0/Q 0/Q

Using Poincare’s and Cauchy-Schwarz inequalities, we can estimate E; (t) from below:
Ex(6) = 2l + 5 0l + 219l + 60,0
> Sl + 5 18ulP + 31Vl - 5/, )
> Sl + 2Tl = Sl - Sl 2.29)
> Sl + Ol - o1l - Sl
> 5=l + 5 (mo- T )Ivul?
thus for

(2.30)

the following estimate holds:

Er(t) > dy (Ilwal> + | Vull), (231)
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where
1 . o
dq _Emm{l_&mo_):}' (2.32)
Therefore,
Eq(0) - Ex(t) < E1(0), (2.33)
t t
DtE(t) < E1(0) + (6 + 1) f f lug*dx ds + béf f g7 |u|dx ds. (2.34)
0Ja /o

Now we can estimate the right-hand side of (2.34) from below. Due to Holder inequality and
(2.22), we obtain

t t 2/(p+2) s 4
(5+1)ff |ut|2dxds<(6+1)<ff |ut|P+2dde> <ff dxds>
0/Q 0/Q 0/Q

p/(p+2)

2/(p+2) t
<(6+1) <@> (I L dxds> < CytP/ P2,
0

where C; is a positive constant depending on the initial data and the parameters of (1.4).
Using the Holder inequality and the Sobolev imbedding H' C LP*?, we obtain

t ¢ (p+1)/ (p+2) t
baf J g+ Ju|dx ds <b6<f f Iut|p+2dxds> < f f |u|’”+2dxds>
0/Q 0/Q 0/Q
¢ (p+1)/ (p+2) ¢ 1/(p+2)
<b5<f f |ut|p+2dxd5> <f ||u||Z:§dS>
0/Q 0
! (p+1)/(p+2) ! 1/(p+2)
< C2b6<f J |ut|”+2dxds> (I ||Vu||”+2ds> ,
0/Q 0

p/(p+2)

(2.35)

1/(p+2)

(2.36)
where C; is a positive constant depending on Q. Due to (2.22) and
2E(0)
Vul? < , 2.37
IVl < =5 237)

we obtain

t
b5f J [P u|dx ds < C3t/ P*2), (2.38)
0/Q
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where

1/2 (p+1)/ (p+2)
Cs = b6C2< 2E(0) ) <E (O)> . (2.39)
a+k\ b

Therefore

DtE(t) < E1(0) + CytP/P+2) 4 CytV/ P2,

(2.40)
E(t) < DY E(0)F! + Gt/ ¥ 4 Gy~ #+D)/ <P+2>].

It follows then that for large values of t, t > 1, the following estimate is valid:

At—(p+l)/(P+2), pe (0, 1),
E(t) < (2.41)
At—Z/(FHZ)/ p>1,

where A = (D)™ [E1(0) + C; + C3]. Hence we have from (2.19)

AP/ (p+2) €(0,1),
Ll + T v < pen (2.42)
. 2 AFYPD . p>1te[l,0).

From this inequality it follows that the zero solution (1.4)-(1.6) is globally asymptotically
stable. O
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