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In the previous paper by the first and the third authors, we present six algorithms for determining
whether a given symmetric matrix is strictly copositive, copositive (but not strictly), or not
copositive. The algorithms for matrices of order n ≥ 8 are not guaranteed to produce an answer. It
also shows that for 1000 symmetric random matrices of order 8, 9, and 10 with unit diagonal and
with positive entries all being less than or equal to 1 and negative entries all being greater than
or equal to −1, there are 8, 6, and 2 matrices remaing undetermined, respectively. In this paper we
give two more algorithms for n = 8, 9 and our experiment shows that no such matrix of order 8
or 9 remains undetermined; and almost always no such matrix of order 10 remains undetermined.
We also do some discussion based on our experimental results.

1. Introduction

Reference [1] gives six algorithms for determining whether a given symmetric matrix is
strictly copositive, copositive (but not strictly), or not copositive. The algorithms for matrices
of order 3, 4, 5, 6 or 7 are efficient. But for matrices of order n ≥ 8, it cannot guarantee
to produce an answer. Table 1 of [1] shows that for 1000 symmetric random matrices of
order n with unit diagonal and with positive entries all being less than or equal to 1 and
negative entries all being greater than or equal to −1, there are 8, 6, and 2 matrices remaining
undetermined when n = 8, 9, and 10, respectively. In this paper we continue our study as in
[1] and give two algorithms for n = 8, 9, and our experiment shows that no such matrix of
order 8 or 9 remains undetermined; and almost always no such matrix of order 10 remains
undetermined. We also do some discussion based on our experimental results.

In this paper we use all the concepts and notations of [1, 2] without explanation. Our
main theorems will give the necessary and sufficient conditions for symmetric matrices of
order 8 or 9 to be (strictly) copositive.
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Let A ∈ Rn×n be symmetric and be partitioned into

A =

(
a11 αT

α A2

)
, (1.1)

with a11 ≥ 0, B = a11A2 − ααT . As in [2], let

U =

{
u ∈ Rn : u = (u1, u2, . . . , un)T ≥ 0,

n∑
1

ui = 1

}
(1.2)

be the simplex of order n − 1; and let

T =

{
u ∈ Rn−1 : u = (u2, u3, . . . , un)T ≥ 0,

n∑
2

ui = 1

}
(1.3)

be the standard simplex of order n − 1 whose vertices are all vertices of U. It is proved in [2]
that an n × n symmetric matrix A is copositive if and only if uTAu ≥ 0 for all u ∈ U. Consider
the polyhedron in Rn−1 : T− = {u ∈ T : αTu ≤ 0} (α is the given vector of dimension n − 1
in (1.1)) which has some vertices being vertices of T , and all the other vertices being in the
hyperplane Π = {u ∈ Rn−1 : αTu = 0}. It is known (see [2, Section 2 and Lemma 3.1]) that
the polyhedron T− can be subdivided into l simplices Si in Rn−1 such that T− =

⋃
i=1,...,l S

i,
Si

⋂
Sj /= ∅ is a subsimplex of Si and Sj if i /= j, and the vertices of Si are all vertices of T−. We

mention this fact since that T− is subdivided into simplices S1, . . . , Sl.
Denote the vertices of Si by V i

1 , . . . , V
i
n−1, then V i

j is a vertex of T , or a common point
of the line connecting two vertices of T and the hyperplane Π and should be presented in
the barycenter coordinates of T . If V i

j is the kth vertex of T , then it is represented by the
coordinate vector ek ∈ Rn−1 with a 1 in the kth position and all 0’s elsewhere; otherwise write
V i
j = V km to denote that it is the common point of line ek − em and the hyperplane Π. Each Si

determines a matrix Wi ∈ R(n−1)×(n−1) (see [2, Lemma 3.1]), to simplify the notation we still
writeWi = (V i

1 , . . . , V
i
n−1)with V i

j = ek or V km. For example, if Si share only one vertex V i
1 = ek

with T and the other vertices are {V i
1 , . . . , V

i
1} = {V k,u1 , . . . , V k,un−2}, then

W =
(
ek, V

k,u1 , . . . , V k,un−2
)
, {u1, . . . , un−2} = {1, 2, . . . , n − 1} \ {k},

(
V k,u

)
m
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1,u+1, m = k,

a1,k+1, m = u,

0, else.

for any u ∈ {1, 2, . . . , n − 1} \ {k},
(1.4)

Lemma 1.1 (see [2]). Let A ∈ Rn×n be symmetric and partitioned as in (1.1) with a11 ≥ 0, B =
a11A2 −ααT being copositive and T− is subdivided into simplices S1, . . . , Sl which determine matrices
W1,W2, . . . ,Wl. Then A is copositive if and only if (Wi)TBWi, i = 1, . . . , l are all copositive (see [2,
Lemma 3.1]); A is strictly copositive if and only if (Wi)TBWi, i = 1, . . . , l are all strictly copositive
and a11 > 0 and A2 is strictly copositive (see [1]).
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It is noticed from [2] that if the polyhedron T− ⊆ Rn−1 contains f(≤ n − 1) vertices
(coordinate vectors of the standard simplex T) not in the hyperplane Π = {u ∈ Rn−1 : αTu =
0}, then T− contains exact g = f(n − 1 − f) vertices in the hyperplane Π, and that T− can be
subdivided into l = f +g−n+2 simplices {S1, S2, . . . , Sl} of dimension n−2 such that Si

⋂
Si+1

is a simplex of dimension n − 3 for i = 1, 2, . . . , l − 1, and Si
⋂
Sj is a simplex of dimension

< n − 3 when j /∈ {i − 1, i, i + 1}.

Lemma 1.2 (see [1]). Let n ≥ 3. If there are l = f(n − f) − n + 2(n − 1)-triples of pairwise different
vertices of T− : {S1, S2, . . . , Sl} satisfying the following two conditions:

(i) each Si contains at least one coordinate vector vertex;

(ii) Si
⋂
Si+1 has exactly n − 2 vertices for i = 1, . . . , l − 1, and Si

⋂
Sj has less than n − 2

vertices when j /∈ {i − 1, i, i + 1},

then T− can be subdivided into l simplices {S1, S2, . . . , Sl}, where Si is the simplex whose vertices are
the elements of Si.

These two lemmas are basic for proving Theorems 2.5, 2.6, 2.7, and 2.8 in [1]; they are
also basic for proving Theorems 2.1 and 2.2 of this paper.

2. Main Theorems and Algorithms

The following two theorems give two algorithms for determining the copositivity of a given
symmetric matrix of order 8 or 9. These two theorems can be proved by Lemma 1.1 and
Lemma 1.2 following the same pattern as in [1].

Theorem 2.1. Let A ∈ R8×8 be symmetric and be partitioned as in (1.1) and B = a11A2 − ααT , then
at least one of the following cases must happen:

(a) If one 7 × 7 principal submatrix of A is not copositive, then A is not copositive. Otherwise
it holds that a11 ≥ 0 and A2 is copositive.

(b) If α ≥ 0 then A is copositive; if α ≥ 0 with a11 > 0 and A2 is strictly copositive, then A is
strictly copositive.

(c) If α ≤ 0, then A is copositive if and only if B is copositive; A is strictly copositive if and
only if B is strictly copositive and a11 > 0 and A2 is strictly copositive.

(d) If α has exactly one negative entry: a1,k+1, then A is copositive if and only if WTBW is
copositive; A is strictly copositive if and only if WTBW is strictly copositive, and a11 > 0 and A2 is
strictly copositive, where

W =
(
ek, V

k,u1 , . . . , V k,u6
)
, {u1, . . . , u6} = {1, 2, . . . , 7} \ {k},

(
V k,u

)
m
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1,u+1, m = k,

a1,k+1, m = u,

0 else.

for any u ∈ {1, 2, . . . , 7} \ {k},
(2.1)

(e) If α has exactly two negative entries:a1,i+1, a1,j+1, and {r, s, t, u, v} = {1, 2, 3, 4, 5, 6, 7} \
{i, j}, then A is copositive if and only if WT

1 BW1,W
T
2 BW2,W

T
3 BW3,W

T
4 BW4,W

T
5 BW5 and
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WT
6 BW6 are all copositive;A is strictly copositive if and only ifWT

1 BW1, . . . ,W
T
6 BW6 are all strictly

copositive and a11 > 0 and A2 is strictly copositive, where

W1 =
(
ei, ej , V

i,r , V i,s, V i,t, V i,u, V i,v
)
, W2 =

(
ej , V

i,r , V i,s, V i,t, V i,u, V i,v, V j,r
)
,

W3 =
(
ej , V

i,s, V i,t, V i,u, V i,v, V j,r , V j,s
)
, W4 =

(
ej , V

i,t, V i,u, V i,v, V j,r , V j,s, V j,t
)
,

W5 =
(
ej , V

i,u, V i,v, V j,r , V j,s, V j,t, V j,u
)
, W6 =

(
ej , V

i,v, V j,r , V j,s, V j,t, V j,u, V j,v
)
.

(2.2)

(f) If α has exactly three negative entries: a1,i+1, a1,j+1, a1,k+1 and {r, s, t, u} =
{1, 2, 3, 4, 5, 6, 7}\{i, j, k}, thenA is copositive if and only ifWT

1 BW1, . . . ,W
T
9 BW9 are all copositive;

A is strictly copositive if and only ifWT
1 BW1, . . . ,W

T
9 BW9 are all strictly copositive and a11 > 0 and

A2 is strictly copositive, where

W1 =
(
ei, ej , ek, V

i,r , V i,s, V i,t, V i,u
)
, W2 =

(
ej , ek, V

i,r , V i,s, V i,t, V i,u, V j,r
)
,

W3 =
(
ek, V

i,r , V i,s, V i,t, V i,u, V j,r , V j,s
)
, W4 =

(
ek, V

i,s, V i,t, V i,u, V j,r , V j,s, V j,t
)
,

W5 =
(
ek, V

i,t, V i,u, V j,r , V j,s, V j,t, V j,u
)
, W6 =

(
ek, V

i,u, V j,r , V j,s, V j,t, V j,u, V k,r
)
,

W7 =
(
ek, V

j,r , V j,s, V j,t, V j,u, V k,r , V k,s
)
, W8 =

(
ek, V

j,s, V j,t, V j,u, V k,r , V k,s, V k,t
)
,

W9 =
(
ek, V

j,t, V j,u, V k,r , V k,s, V k,t, V k,u
)
.

(2.3)

(g) If α has exactly four negative entries: a1,i+1, a1,j+1, a1,k+1, a1,h+1 and {r, s, t} =
{1, 2, 3, 4, 5, 6, 7} \ {i, j, k, h}, then A is copositive if and only if WT

1 BW1, . . . ,W
T
10BW10 are all

copositive; A is strictly copositive if and only if WT
1 BW1, . . . ,W

T
10BW10 are all strictly copositive

and a11 > 0 and A2 is strictly copositive, where

W1 =
(
ei, ej , ek, eh, V

i,r , V i,s, V i,t
)
, W2 =

(
ej , ek, eh, V

i,r , V i,s, V i,t, V j,r
)
,

W3 =
(
ek, eh, V

i,r , V i,s, V i,t, V j,r , V j,s
)
, W4 =

(
eh, V

i,r , V i,s, V i,t, V j,r , V j,s, V j,t
)
,

W5 =
(
eh, V

i,s, V i,t, V j,r , V j,s, V j,t, V k,r
)
, W6 =

(
eh, V

i,t, V j,r , V j,s, V j,t, V k,r , V k,s
)
,

W7 =
(
eh, V

j,r , V j,s, V j,t, V k,r , V k,s, V k,t
)
, W8 =

(
eh, V

j,s, V j,t, V k,r , V k,s, V k,t, V h,r
)
,

W9 =
(
eh, V

j,t, V k,r , V k,s, V k,t, V h,r , V h,s
)
, W10 =

(
eh, V

k,r , V k,s, V k,t, V h,r , V h,s, V h,t
)
.

(2.4)

(h) If α has exactly five negative entries: a1,i+1, a1,j+1, a1,k+1, a1,h+1, a1,f+1 and {r, s} =
{1, 2, 3, 4, 5, 6, 7} \ {i, j, k, h, f}, then A is copositive if and only if WT

1 BW1, . . . ,W
T
9 BW9 are all
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copositive; A is strictly copositive if and only if WT
1 BW1, . . . ,W

T
9 BW9 are all strictly copositive and

a11 > 0 and A2 is strictly copositive, where

W1 =
(
ei, ej , ek, eh, ef , V

i,r , V i,s
)
, W2 =

(
ej , ek, eh, ef , V

i,r , V i,s, V j,r
)
,

W3 =
(
ek, eh, ef , V

i,r , V i,s, V j,r , V j,s
)
, W4 =

(
ek, ef , V

i,r , V i,s, V j,r , V j,s, V k,r
)
,

W5 =
(
ef , V

i,r , V i,s, V j,r , V j,s, V k,r , V k,s
)
, W6 =

(
ef , V

i,s, V j,r , V j,s, V k,r , V k,s, V h,r
)
,

W7 =
(
ef , V

j,r , V j,s, V k,r , V k,s, V h,r , V h,s
)
, W8 =

(
ef , V

j,s, V k,r , V k,s, V h,r , V h,s, V f,r
)
,

W9 =
(
ef , V

k,r , V k,s, V h,r , V h,s, V f,r , V f,s
)
.

(2.5)

(i) If α has exactly six negative entries: a1,i+1, a1,j+1, a1,k+1, a1,h+1, a1,f+1, a1,g+1 and {r} =
{1, 2, 3, 4, 5, 6, 7} \ {i, j, k, h, f, g}, then A is copositive if and only if WT

1 BW1, . . . ,W
T
6 BW6 are all

copositive; A is strictly copositive if and only if WT
1 BW1, . . . ,W

T
6 BW6 are all strictly copositive and

a11 > 0 and A2 is strictly copositive, where

W1 =
(
ei, ej , ek, eh, ef , eg, V

i,r
)
, W2 =

(
ej , ek, eh, ef , eg, V

i,r , V j,r
)
,

W3 =
(
ek, eh, ef , eg, V

i,r , V j,r , V k,r
)
, W4 =

(
ek, ef , eg, V

i,r , V j,r , V k,r , V h,r
)
,

W5 =
(
ef , eg, V

i,r , V j,r , V k,r , V h,r , V f,r
)
, W6 =

(
eg, V

i,r , V j,r , V k,r , V h,r , V f,r , V g,r
)
.

(2.6)

It is clear (see [1, Remark 2.1]) that if n is odd, then a copositive matrixA ∈ Rn×n must
have a row with an even number of negative entries. In other words, if a symmetric matrix
of odd order has row with an even number of negative entries, then some (n − 1) × (n − 1)
principal submatrices of it are not copositive. This fact will be used in Theorem 2.2.

Theorem 2.2. If A ∈ R9×9 is symmetric, then at least one of the following cases must happen:
(a) If one 7 × 7 principal submatrix of A is not copositive, then A is not copositive.
Otherwise (A must have a row with an even number of negative entries and a11 ≥ 0, A2 is

copositive) find a row of A which has exactly m (m ∈ {0, 2, 4, 6, 8}) negative entries. If the ith row
does, then interchange the ith row and column with the first row and column, and partition A into
(1.1) as in Theorem 2.1.

(b) Ifm = 0, then α ≥ 0 andA is copositive; ifm = 0with a11 > 0 andA2 is strictly copositive,
then A is strictly copositive.

(c) If m = 8, then α ≤ 0, then A is copositive if and only if B is copositive; A is strictly
copositive if and only if B is strictly copositive and a11 > 0 and A2 is strictly copositive.

(d) If m = 2, then α has exactly two negative entries: a1,i+1, a1,j+1, and {r, s, t, u, v,w} =
{1, 2, . . . , 8} \ {i, j}, then A is copositive if and only if WT

1 BW1, . . . ,W
T
7 BW7 are all copositive; A is
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strictly copositive if and only if WT
1 BW1, . . . ,W

T
7 BW7 are all strictly copositive and a11 > 0 and A2

is strictly copositive, where

W1=
(
ei, ej , V

i,r , V i,s, V i,t, V i,u, V i,v, V i,w
)
, W2=

(
ej , V

i,r , V i,s, V i,t, V i,u, V i,v, V i,w, V j,r
)
,

W3=
(
ej , V

i,s, V i,t, V i,u, V i,v, V i,w, V j,r , V j,s
)
, W4=

(
ej , V

i,t, V i,u, V i,v, V i,w, V j,r , V j,s, V j,t
)
,

W5=
(
ej , V

i,u, V i,v, V i,w, V j,r , V j,s, V j,t, V j,u
)
, W6=

(
ej , V

i,v, V i,w, V j,r , V j,s, V j,t, V j,u, V j,v
)
,

W7 =
(
ej , V

i,w, V j,r , V j,s, V j,t, V j,u, V j,v, V j,w
)
.

(2.7)

(e) If m = 4, then α has exactly four negative entries: a1,i+1, a1,j+1, a1,k+1, a1,h+1 and
{r, s, t, u} = {1, 2, . . . , 8} \ {i, j, k, h}, then A is copositive if and only if WT

1 BW1, . . . ,W
T
13BW13 are

all copositive; A is strictly copositive if and only if WT
1 BW1, . . . ,W

T
13BW13 are all strictly copositive

and a11 > 0 and A2 is strictly copositive, where

W1 =
(
ei, ej , ek, eh, V

i,r , V i,s, V i,t, V i,u
)
,

W2 =
(
ej , ek, eh, V

i,r , V i,s, V i,t, V i,u, V j,r
)
,

W3 =
(
ek, eh, V

i,r , V i,s, V i,t, V i,u, V j,r , V j,s
)
,

W4 =
(
eh, V

i,r , V i,s, V i,t, V i,u, V j,r , V j,s, V j,t
)
,

W5 =
(
eh, V

i,s, V i,t, V i,u, V j,r , V j,s, V j,t, V j,u
)
,

W6 =
(
eh, V

i,t, V i,u, V j,r , V j,s, V j,t, V j,u, V k,r
)
,

W7 =
(
eh, V

i,u, V j,r , V j,s, V j,t, V j,u, V k,r , V k,s
)
,

W8 =
(
eh, V

j,r , V j,s, V j,t, V j,u, V k,r , V k,s, V k,t
)
,

W9 =
(
eh, V

j,s, V j,t, V j,u, V k,r , V k,s, V k,t, V k,u
)
,

W10 =
(
eh, V

j,t, V j,u, V k,r , V k,s, V k,t, V k,u, V h,r
)
,

W11 =
(
eh, V

j,u, V k,r , V k,s, V k,t, V k,u, V h,r , V h,s
)
,

W12 =
(
eh, V

k,r , V k,s, V k,t, V k,u, V h,r , V h,s, V h,t
)
,

W13 =
(
eh, V

k,s, V k,t, V k,u, V h,r , V h,s, V h,t, V h,u
)
.

(2.8)

(f) If m = 6, then α has exactly six negative entries: a1,i+1, a1,j+1, a1,k+1, a1,h+1, a1,f+1, a1,g+1

and {r, s} = {1, 2, . . . , 8} \ {i, j, k, h, f, g}, thenA is copositive if and only ifWT
1 BW1, . . . ,W

T
11BW11
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are all copositive; A is strictly copositive if and only if WT
1 BW1, . . . ,W

T
11BW11 are all strictly

copositive and a11 > 0 and A2 is strictly copositive, where

W1 =
(
ei, ej , ek, eh, ef , eg, V

i,r , V i,s
)
,

W2 =
(
ej , ek, eh, ef , eg, V

i,r , V i,s, V j,r
)
,

W3 =
(
ek, eh, ef , eg, V

i,r , V i,s, V j,r , V j,s
)
,

W4 =
(
eh, ef , eg, V

i,r , V i,s, V j,r , V j,s, V k,r
)
,

W5 =
(
ef , eg, V

i,r , V i,s, V j,r , V j,s, V k,r , V k,s
)
,

W6 =
(
eg, V

i,r , V i,s, V j,r , V j,s, V k,r , V k,s, V h,r
)
,

W7 =
(
eg, V

i,s, V j,r , V j,s, V k,r , V k,s, V h,r , V h,s
)
,

W8 =
(
eg, V

j,r , V j,s, V k,r , V k,s, V h,r , V h,s, V f,r
)
,

W9 =
(
eg, V

j,s, V k,r , V k,s, V h,r , V h,s, V f,r , V f,s
)
,

W10 =
(
eg, V

k,r , V k,s, V h,r , V h,s, V f,r , V f,s, V g,r
)
,

W11 =
(
ef , V

k,s, V h,r , V h,s, V f,r , V f,s, V g,r , V h,s
)
.

(2.9)

As mentioned in [1], we have made six MATLAB functions: Cha3(A), Cha4(A),
Cha5(A), Cha6(A), Cha7(A) and Cha(n,A), for determining the copositivity of symmetric
matrices. Now we have made two more MATLAB functions of these type: Cha8(A) and
Cha9(A) based on the two algorithms given by Theorems 2.1 and 2.2. The input of the
functions is any 8 × 8 or 9 × 9 symmetric matrix A and there are four possible return values:
y = 0, 1, 2, 3 meaning “not copositive”, “copositive (not strictly)” and “strictly copositive”,
”cannot determined,” respectively.

Main steps of Function y = Cha8(A)

(1) Find out if A has any 7 × 7 principal submatrix which is not copositive. If so, then return
with ”y = 0” (Theorem 2.1(a)). Otherwise go to next step.

(2) Calculate the number m of the negative entries of the first row of A.

When m = 0 (α ≥ 0) use Theorem 2.1(b) to determine copositivity of A and return.

When m = 7 (α ≤ 0) use Theorem 2.1(c) to determine copositivity of A and return.

When m = 1 use Theorem 2.1(d) to determine copositivity of A and return.

When m = 2 use Theorem 2.1(e) to determine copositivity of A and return.

When m = 3 use Theorem 2.1(f) to determine copositivity of A and return.

When m = 4 use Theorem 2.1(g) to determine copositivity of A and return.
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Table 1

n #strico % #notstri % #noncopo % #undeter %
8 32 3.2 2 0.2 966 96.6 0 0
9 5 0.5 0 0 995 99.5 0 0
10 0 0 0 0 1000 100 0 0

When m = 5 use Theorem 2.1(h) to determine copositivity of A and return.

When m = 6 use Theorem 2.1(i) to determine copositivity of A and return.

Main steps of Function y = Cha9(A)

(1) Find out if A has any 8 × 8 principal submatrix which is not copositive. If so, then return
with ”y = 0” (Theorem 2.2(a)). Otherwise Amust have some row containing exactlym (m =
0, 2, 4, 6, 8) negative entries and go to the next step.

(2) Find out if A has any row which has exactly m(m = 0, 2, 4, 6, 8) negative entries. If
the ith row does, then interchange the ith row and column ofAwith the first row and column.

When m = 0 use Theorem 2.2(b) to determine copositivity of A and return.

When m = 8 use Theorem 2.2(c) to determine copositivity of A and return.

When m = 2 use Theorem 2.2(d) to determine copositivity of A and return.

When m = 4 use Theorem 2.2(e) to determine copositivity of A and return.

When m = 6 use Theorem 2.2(f) to determine copositivity of A and return.

3. Numerical Experiments and Discussion

Having all these eight functions: Cha3(A), Cha4(A), . . . , Cha8(A), Cha9(A), and Cha(n,A)
we have performed the following experiments. Firstly, we use these functions to determine
the copositivity of the n × n symmetric matrix M studied in [3], where M = (mij) satisfies
|mij | = 1; mij = −1 only if |i − j| = 1 and |i − j| = n − 1. When n = 9, the experimental
results obtained by old Cha(n,A) together with Cha3(A), Cha4(A), . . . , Cha7(A) are ”y =
3” meaning ”cannot be determined” and the experimental results by Cha9(A) are ”y = 1”
meaning ”copositive but not strictly”, which are the same results as obtained in [3]. Secondly
we generate 1000 symmetric random matrices of order n ∈ {8, 9, 10} with unit diagonal and
with positive entries all being less than or equal to 1 and negative entries all being greater than
or equal to −1, and then use our MATLAB functions to determine the copositivity of these
matrices. The main numerical result of the experiments is given in Table 1, where #strico,
#notstri, #noncopo, #undeter denote the number of strictly copositive matrices, the number of
copositive (but not strictly)matrices, the number of noncopositive matrices, and the number
of the remained matrices whose copositivity could not be determined by our algorithms,
respectively.

Kaplan [4, Theorem 3.1] proved that a symmetric matrix A is copositive if and only
if the minimum principal submatrix A1 of A which shares the maximum positive diagonal
entries with A is copositive and the matrix which is constructed from A by replacing each
entry of A1 by 0 is nonnegative. To answer the third open problem of [4, 5], we proved that
a symmetric matrix A with unit diagonal is copositive if and only if the matrix constructed
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fromA by replacing each off-diagonal entry aij by min{aij , 1} is copositive. These two results
make it reasonable that for determining copositivity we can restrict our attention only to
symmetric matrices with unit diagonal and with positive entries all being less than or equal
to 1, and our experimental matrices are all of this type. Furthermore, each of the test matrices
is required that every of its principal 2×2 submatrix is copositive (Note that for a matrix with
n > 9 the chance that every principal 2 × 2 submatrix is copositive is much less). In addition,
the last line of Table 1 also holds for n ≥ 10 because of the fact that a symmetric matrix is
not copositive if any of its principal submatrix is not copositive. Table 1 does give us some
noticeable information as follows.

Remark 3.1. For n ≥ 10 almost always no randommatrix is copositive, in other words, there is
almost always no matrix remaining undetermined by our algorithms including the new ones
developed in this paper. Therefore, the algorithms for n = 10, 11 and so forth. which might be
established by our method are not practically needed.

We surely believe that algorithm for n ≥ 10 will be tedious to describe and take more
time to run because of its recurrent property.

Since there is almost always no symmetric copositive matrix of order larger than 9,
the interest of researchers may concentrate on sufficient conditions for copositive matrices
of larger orders, or of general order n. For instance, [3] proved the matrix M mentioned at
the beginning of this section is copositive (but not strictly) for any n. Here we give another
interesting example as follows.

Proposition 3.2. LetA = (aij) be a symmetric matrix of any order, n; r(i) (i = 1, . . . , n) be the sum of
all the negative entries of the ith row ofA. ThenA is copositive if (a11, . . . , ann) ≥ (−r(1), . . . ,−r(n));
A is strictly copositive if (a11, . . . , ann) > (−r(1), . . . ,−r(n)); (A−) is irreducible and (a11, . . . , ann) ≥
(/= )(−r(1), . . . ,−r(n)).

Proof. Write A = diag(A) − A− + A+, where diag(A) = diag(a11, . . . , ann) and A+(A−) is
the n × n nonnegative matrix which shares all the negative (nonnegative) entries with A
and has the remained entries all being zero. Then diag(A) − A− = mI − P , where m =
max{a11, . . . , ann} and P is a nonnegative matrix whose spectral radius ρ(P) ≤ m(< m) if
(a11, . . . , ann) ≥ (>)(−r(1), . . . ,−r(n)). Therefore, diag(A)−A− is anM-matrix if (a11, . . . , ann) ≥
(−r(1), . . . ,−r(n)); a nonsingular M-matrix if (a11, . . . , ann) > (−r(1), . . . ,−r(n)) or (A−)
is irreducible and (a11, . . . , ann) ≥ (/= )(−r(1), . . . ,−r(n)), whence it is copositive, strictly
copositive, respectively by [1, Theorem 2.1]. FinallyA (as the sum of two copositive matrices)
is copositive.
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