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Some reverses of the Jensen inequality for functions of self-adjoint operators in Hilbert spaces
under suitable assumptions for the involved operators are given. Applications for particular cases
of interest are also provided.

1. Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈·, ·〉). The Gelfand
map establishes a ∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous
functions defined on the spectrum of A, denoted Sp(A), and the C∗-algebra C∗(A) generated
by A and the identity operator 1H on H as follows (see e.g., [1, page 3]):

For any f, g ∈ C(Sp(A)) and any α, β ∈ Cwe have

(i) Φ(αf + βg) = αΦ(f) + βΦ(g);

(ii) Φ(fg) = Φ(f)Φ(g) and Φ(f) = Φ(f)∗;

(iii) ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A)|f(t)|;
(iv) Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A).

With this notation we define

f(A) := Φ
(
f
) ∀f ∈ C

(
Sp(A)

)
(1.1)

and we call it the continuous functional calculus for a selfadjoint operatorA.
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IfA is a selfadjoint operator and f is a real valued continuous function on Sp(A), then
f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, that is, f(A) is a positive operator on H.
Moreover, if both f and g are real valued functions on Sp(A) then the following important
property holds:

f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A) (P)

in the operator order of B(H).
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [1] and the references therein. For other results, see [2–4].
The following result that provides an operator version for the Jensen inequality is due

to [5] (see also [1, page 5]).

Theorem 1.1 (Mond and Pečarić, 1993, [5]). Let A be a selfadjoint operator on the Hilbert space
H and assume that Sp(A) ⊆ [m,M] for some scalars m,M with m < M. If f is a convex function
on [m,M], then

f(〈Ax, x〉) ≤ 〈
f(A)x, x

〉
(MP)

for each x ∈ H with ‖x‖ = 1.

As a special case of Theorem 1.1 we have the following Hölder-McCarthy inequality.

Theorem 1.2 (Hölder-McCarthy, 1967, [6]). Let A be a selfadjoint positive operator on a Hilbert
spaceH. Then

(i) 〈Arx, x〉 ≥ 〈Ax, x〉r for all r > 1 and x ∈ H with ‖x‖ = 1;

(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for all 0 < r < 1 and x ∈ H with ‖x‖ = 1;

(iii) if A is invertible, then 〈Arx, x〉 ≥ 〈Ax, x〉r for all r < 0 and x ∈ H with ‖x‖ = 1.

The following theorem is a multiple operator version of Theorem 1.1 (see e.g., [1, page
5]).

Theorem 1.3. LetAj be selfadjoint operators with Sp(Aj) ⊆ [m,M], j ∈ {1, . . . , n} for some scalars
m < M and xj ∈ H, j ∈ {1, . . . , n} with ∑n

j=1 ‖xj‖2 = 1. If f is a convex function on [m,M], then

f

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠ ≤
n∑

j=1

〈
f
(
Aj

)
xj , xj

〉
. (1.2)

The following particular case is of interest. Apparently it has not been stated before
either in the monograph [1] or in the research papers cited therein.
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Corollary 1.4. Let Aj be selfadjoint operators with Sp(Aj) ⊆ [m,M], j ∈ {1, . . . , n} for some
scalarsm < M. If pj ≥ 0, j ∈ {1, . . . , n} with ∑n

j=1 pj = 1, then

f

⎛

⎝
〈

n∑

j=1

pjAjx, x

〉⎞

⎠ ≤
〈

n∑

j=1

pjf
(
Aj

)
x, x

〉

, (1.3)

for any x ∈ H with ‖x‖ = 1.

Proof. It follows from Theorem 1.3 by choosing xj =
√
pj · x, j ∈ {1, . . . , n} where x ∈ H with

‖x‖ = 1.

Remark 1.5. The above inequality can be used to produce some norm inequalities for the sum
of positive operators in the case when the convex function f is nonnegative and monotonic
nondecreasing on [0,M]. Namely, we have

f

⎛

⎝

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

⎞

⎠ ≤
∥∥∥∥∥∥

n∑

j=1

pjf
(
Aj

)
∥∥∥∥∥∥
. (1.4)

The inequality (1.4) reverses if the function is concave on [0,M].
As particular cases we can state the following inequalities:

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

p

≤
∥∥∥∥∥∥

n∑

j=1

pjA
p

j

∥∥∥∥∥∥
, (1.5)

for p ≥ 1 and

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

p

≥
∥∥∥∥∥∥

n∑

j=1

pjA
p

j

∥∥∥∥∥∥
(1.6)

for 0 < p < 1.
If Aj are positive definite for each j ∈ {1, . . . , n}, then (1.5) also holds for p < 0.
If one uses the inequality (1.4) for the exponential function, then one obtains the

inequality

exp

⎛

⎝

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

⎞

⎠ ≤
∥∥∥∥∥∥

n∑

j=1

pj exp
(
Aj

)
∥∥∥∥∥∥
, (1.7)

where Aj are positive operators for each j ∈ {1, . . . , n}.

In Section 2.4 of the monograph [1] there are numerous and interesting converses of
the Jensen type inequality from which we would like to mention one of the simplest (see [4]
and [1, page 61]).
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Theorem 1.6. Let Aj be selfadjoint operators with Sp(Aj) ⊆ [m,M], j ∈ {1, . . . , n}, for some
scalars m < M and xj ∈ H, j ∈ {1, . . . , n} with

∑n
j=1 ‖xj‖2 = 1. If f is a strictly convex function

twice differentiable on [m,M], then for any positive real number α one has

n∑

j=1

〈
f
(
Aj

)
xj , xj

〉 ≤ αf

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠ + β, (1.8)

where

β = μft0 + νf − αf(t0),

μf =
f(M) − f(m)

M −m
, νf =

Mf(m) −mf(M)
M −m

,

t0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
′−1

(
μf

α

)
if m < f

′−1
(
μf

α

)
< M,

M if M ≤ f
′−1

(
μf

α

)
,

m if f
′−1

(
μf

α

)
≤ m.

(1.9)

The case of equality was also analyzed but will be not stated in here.
The main aim of the present paper is to provide different reverses of the Jensen

inequality where some upper bounds for the nonnegative difference

〈
f(A)x, x

〉 − f(〈Ax, x〉), x ∈ H with ‖x‖ = 1 (1.10)

will be provided. Applications for some particular convex functions of interest are also given.

2. Reverses of the Jensen Inequality

The following result holds.

Theorem 2.1. Let I be an interval and f : I → R a convex and differentiable function on
◦
I (the

interior of I) whose derivative f ′ is continuous on
◦
I. If A is a selfadjoint operator on the Hilbert space

H with Sp(A) ⊆ [m,M] ⊂
◦
I, then

0 ≤ 〈
f(A)x, x

〉 − f(〈Ax, x〉) ≤ 〈
f ′(A)Ax, x

〉 − 〈Ax, x〉 · 〈f ′(A)x, x
〉

(2.1)

for any x ∈ H with ‖x‖ = 1.

Proof. Since f is convex and differentiable, we have that

f(t) − f(s) ≤ f ′(t) · (t − s) (2.2)

for any t, s ∈ [m,M].
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Now, if we chose in this inequality s = 〈Ax, x〉 ∈ [m,M] for any x ∈ H with ‖x‖ = 1
since Sp(A) ⊆ [m,M], then we have

f(t) − f(〈Ax, x〉) ≤ f ′(t) · (t − 〈Ax, x〉) (2.3)

for any t ∈ [m,M] any x ∈ H with ‖x‖ = 1.
If we fix x ∈ H with ‖x‖ = 1 in (2.3) and apply property (P), then we get

〈[
f(A) − f(〈Ax, x〉)1H

]
x, x

〉 ≤ 〈
f ′(A) · (A − 〈Ax, x〉1H)x, x

〉
(2.4)

for each x ∈ H with ‖x‖ = 1, which is clearly equivalent to the desired inequality (2.1).

Corollary 2.2. Assume that f is as in Theorem 2.1. If Aj are selfadjoint operators with Sp(Aj) ⊆
[m,M] ⊂

◦
I, j ∈ {1, . . . , n} and xj ∈ H, j ∈ {1, . . . , n} with ∑n

j=1 ‖xj‖2 = 1, then

0 ≤
n∑

j=1

〈
f
(
Aj

)
xj , xj

〉 − f

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠

≤
n∑

j=1

〈
f ′(Aj

)
Ajxj , xj

〉 −
n∑

j=1

〈
Ajxj , xj

〉 ·
n∑

j=1

〈
f ′(Aj

)
xj , xj

〉
.

(2.5)

Proof. As in [1, page 6], if we put

Ã :=

⎛

⎜⎜⎜
⎝

A1 · · · 0

. . .

0 · · · An

⎞

⎟⎟⎟
⎠

, x̃ =

⎛

⎜⎜⎜
⎝

x1

...

xn

⎞

⎟⎟⎟
⎠

, (2.6)

then we have Sp(Ã) ⊆ [m,M], ‖x̃‖ = 1,

〈
f
(
Ã

)
x̃, x̃

〉
=

n∑

j=1

〈
f
(
Aj

)
xj , xj

〉
,

〈
Ãx̃, x̃

〉
=

n∑

j=1

〈
Ajxj , xj

〉
, (2.7)

and so on. The details are omitted.
Applying Theorem 2.1 for Ã and x̃, we deduce the desired result (2.5).
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Corollary 2.3. Assume that f is as in Theorem 2.1. If Aj are selfadjoint operators with Sp(Aj) ⊆
[m,M] ⊂

◦
I, j ∈ {1, . . . , n} and pj ≥ 0, j ∈ {1, . . . , n} with ∑n

j=1 pj = 1, then

0 ≤
〈

n∑

j=1

pjf
(
Aj

)
x, x

〉

− f

⎛

⎝
〈

n∑

j=1

pjAjx, x

〉⎞

⎠

≤
〈

n∑

j=1

pjf
′(Aj

)
Ajx, x

〉

−
〈

n∑

j=1

pjAjx, x

〉

·
〈

n∑

j=1

pjf
′(Aj

)
x, x

〉

,

(2.8)

for each x ∈ H with ‖x‖ = 1.

Remark 2.4. Inequality (2.8), in the scalar case, namely

0 ≤
n∑

j=1

pjf
(
xj

) − f

⎛

⎝
n∑

j=1

pjxj

⎞

⎠ ≤
n∑

j=1

pjf
′(xj

)
xj −

n∑

j=1

pjxj ·
n∑

j=1

pjf
′(xj

)
, (2.9)

where xj ∈
◦
I, j ∈ {1, . . . , n}, has been obtained for the first time in 1994 by Dragomir and

Ionescu, see [7].

The following particular cases are of interest.

Example 2.5. (a) Let A be a positive definite operator on the Hilbert space H. Then we have
the following inequality:

0 ≤ ln(〈Ax, x〉) − 〈ln(A)x, x〉 ≤ 〈Ax, x〉 ·
〈
A−1x, x

〉
− 1, (2.10)

for each x ∈ H with ‖x‖ = 1.
(b) If A is a selfadjoint operator on H, then we have the inequality

0 ≤ 〈
exp(A)x, x

〉 − exp(〈Ax, x〉) ≤ 〈
A exp(A)x, x

〉 − 〈Ax, x〉 · 〈exp(A)x, x
〉
, (2.11)

for each x ∈ H with ‖x‖ = 1.
(c) If p ≥ 1 and A is a positive operator on H, then

0 ≤ 〈Apx, x〉 − 〈Ax, x〉p ≤ p
[
〈Apx, x〉 − 〈Ax, x〉 ·

〈
Ap−1x, x

〉]
, (2.12)

for each x ∈ H with ‖x‖ = 1. If A is positive definite, then inequality (2.12) also holds for
p < 0.
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If 0 < p < 1 and A is a positive definite operator then the reverse inequality also holds

〈Apx, x〉 − 〈Ax, x〉p ≥ p
[
〈Apx, x〉 − 〈Ax, x〉 ·

〈
Ap−1x, x

〉]
≥ 0, (2.13)

for each x ∈ H with ‖x‖ = 1.

Similar results can be stated for sequences of operators; however the details are
omitted.

3. Further Reverses

In applications would be perhaps more useful to find upper bounds for the quantity

〈
f(A)x, x

〉 − f(〈Ax, x〉), x ∈ H with ‖x‖ = 1, (3.1)

that are in terms of the spectrum margins m,M and of the function f .
The following result may be stated.

Theorem 3.1. Let I be an interval and f : I → R a convex and differentiable function on
◦
I (the

interior of I) whose derivative f ′ is continuous on
◦
I. If A is a selfadjoint operator on the Hilbert space

H with Sp(A) ⊆ [m,M] ⊂
◦
I, then

0 ≤ 〈
f(A)x, x

〉 − f(〈Ax, x〉)

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2
· (M −m)

[∥∥f ′(A)x
∥∥2 − 〈

f ′(A)x, x
〉2]1/2

1
2
· (f ′(M) − f ′(m)

)[‖Ax‖2 − 〈Ax, x〉2
]1/2

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.2)

for any x ∈ H with ‖x‖ = 1.
One also has the inequality

0 ≤ 〈
f(A)x, x

〉 − f(〈Ax, x〉) ≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)

−

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[〈Mx −Ax,Ax −mx〉〈f ′(M)x − f ′(A)x, f ′(A)x − f ′(m)x
〉]1/2

,

∣∣∣∣〈Ax, x〉 − M +m

2

∣∣∣∣

∣∣∣∣
〈
f ′(A)x, x

〉 − f ′(M) + f ′(m)
2

∣∣∣∣

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.3)

for any x ∈ H with ‖x‖ = 1.
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Moreover, ifm > 0 and f ′(m) > 0, then one also has

0 ≤ 〈
f(A)x, x

〉 − f(〈Ax, x〉)

≤

⎧
⎪⎪⎨

⎪⎪⎩

1
4
· (M −m)

(
f ′(M) − f ′(m)

)

√
Mmf ′(M)f ′(m)

〈Ax, x〉〈f ′(A)x, x
〉
,

(√
M − √

m
)(√

f ′(M) − √
f ′(m)

)[〈Ax, x〉〈f ′(A)x, x
〉]1/2

,

(3.4)

for any x ∈ H with ‖x‖ = 1.

Proof. We use the following Grüss type result we obtained in [8].
LetA be a selfadjoint operator on the Hilbert space (H; 〈·, ·〉) and assume that Sp(A) ⊆

[m,M] for some scalars m < M. If h and g are continuous on [m,M] and γ := mint∈[m,M]h(t)
and Γ := maxt∈[m,M]h(t), then

∣∣〈h(A)g(A)x, x
〉 − 〈h(A)x, x〉 · 〈g(A)x, x

〉∣∣

≤ 1
2
· (Γ − γ

)[∥∥g(A)x
∥∥2 − 〈

g(A)x, x
〉2]1/2

(
≤ 1

4
(
Γ − γ

)
(Δ − δ)

) (3.5)

for each x ∈ H with ‖x‖ = 1, where δ := mint∈[m,M]g(t) and Δ := maxt∈[m,M]g(t).
Therefore, we can state that

〈
Af ′(A)x, x

〉 − 〈Ax, x〉 · 〈f ′(A)x, x
〉

≤ 1
2
· (M −m)

[∥∥f ′(A)x
∥∥2 − 〈

f ′(A)x, x
〉2]1/2 ≤ 1

4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.6)

〈
Af ′(A)x, x

〉 − 〈Ax, x〉 · 〈f ′(A)x, x
〉

≤ 1
2
· (f ′(M) − f ′(m)

)[‖Ax‖2 − 〈Ax, x〉2
]1/2 ≤ 1

4
(M −m)

(
f ′(M) − f ′(m)

) (3.7)

for each x ∈ H with ‖x‖ = 1, which together with (2.1) provide the desired result (3.2).
On making use of the inequality obtained in [9]:

∣∣〈h(A)g(A)x, x
〉 − 〈h(A)x, x〉〈g(A)x, x

〉∣∣ ≤ 1
4
· (Γ − γ

)
(Δ − δ)

−

⎧
⎪⎪⎨

⎪⎪⎩

[〈
Γx − h(A)x, f(A)x − γx

〉〈
Δx − g(A)x, g(A)x − δx

〉]1/2
,

∣∣∣∣〈h(A)x, x〉 − Γ + γ

2

∣∣∣∣

∣∣∣∣
〈
g(A)x, x

〉 − Δ + δ

2

∣∣∣∣,

(3.8)
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for each x ∈ H with ‖x‖ = 1, we can state that

〈
Af ′(A)x, x

〉 − 〈Ax, x〉 · 〈f ′(A)x, x
〉 ≤ 1

4
(M −m)

(
f ′(M) − f ′(m)

)

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[〈Mx −Ax,Ax −mx〉〈f ′(M)x − f ′(A)x, f ′(A)x − f ′(m)x
〉]1/2

,

∣
∣
∣
∣〈Ax, x〉 − M +m

2

∣
∣
∣
∣

∣
∣
∣
∣
〈
f ′(A)x, x

〉 − f ′(M) + f ′(m)
2

∣
∣
∣
∣.

(3.9)

for each x ∈ H with ‖x‖ = 1, which together with (2.1) provides the desired result (3.3).
Further, in order to prove the third inequality, we make use of the following result of

Grüss’ type we obtained in [9].
If γ and δ are positive, then

∣∣〈h(A)g(A)x, x
〉 − 〈h(A)x, x〉〈g(A)x, x

〉∣∣

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4
·
(
Γ − γ

)
(Δ − δ)

√
ΓγΔδ

〈h(A)x, x〉〈g(A)x, x
〉
,

(√
Γ − √

γ
)(√

Δ −
√
δ
)[〈h(A)x, x〉〈g(A)x, x

〉]1/2

(3.10)

for each x ∈ H with ‖x‖ = 1.
Now, on making use of (3.10) we can state that

〈
Af ′(A)x, x

〉 − 〈Ax, x〉 · 〈f ′(A)x, x
〉

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4
· (M −m)

(
f ′(M) − f ′(m)

)

√
Mmf ′(M)f ′(m)

〈Ax, x〉〈f ′(A)x, x
〉
,

(√
M − √

m
)(√

f ′(M) − √
f ′(m)

)[〈Ax, x〉〈f ′(A)x, x
〉]1/2

(3.11)

for each x ∈ H with ‖x‖ = 1, which together with (2.1) provides the desired result (3.4).

Corollary 3.2. Assume that f is as in Theorem 3.1. If Aj are selfadjoint operators with Sp(Aj) ⊆
[m,M] ⊂

◦
I, j ∈ {1, . . . , n}, then

0 ≤
n∑

j=1

〈
f
(
Aj

)
xj , xj

〉 − f

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠
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≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
· (M −m)

⎡

⎢
⎣

n∑

j=1

∥
∥f ′(Aj

)
xj

∥
∥2 −

⎛

⎝
n∑

j=1

〈
f ′(Aj

)
xj , xj

〉
⎞

⎠

2
⎤

⎥
⎦

1/2

,

1
2
· (f ′(M) − f ′(m)

)

⎡

⎢
⎣

n∑

j=1

∥
∥Ajxj

∥
∥2 −

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠

2
⎤

⎥
⎦

1/2

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.12)

for any xj ∈ H, j ∈ {1, . . . , n} with ∑n
j=1 ‖xj‖2 = 1.

One also has the inequality

0 ≤
n∑

j=1

〈
f
(
Aj

)
xj , xj

〉 − f

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
n∑

j=1

〈
Mxj −Ajx,Ajxj −mxj

〉
⎤

⎦

1/2

×
⎡

⎣
n∑

j=1

〈
f ′(M)xj − f ′(Aj

)
xj , f

′(Aj

)
xj − f ′(m)xj

〉
⎤

⎦

1/2

,

∣∣∣∣∣∣

n∑

j=1

〈
Ajxj, xj

〉 − M +m

2

∣∣∣∣∣∣

∣∣∣∣∣∣

n∑

j=1

〈
f ′(Aj

)
xj , xj

〉 − f ′(M) + f ′(m)
2

∣∣∣∣∣∣

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.13)

for any xj ∈ H, j ∈ {1, . . . , n} with ∑n
j=1 ‖xj‖2 = 1.

Moreover, ifm > 0 and f ′(m) > 0, then one also has

0 ≤
n∑

j=1

〈
f
(
Aj

)
xj , xj

〉 − f

⎛

⎝
n∑

j=1

〈
Ajxj , xj

〉
⎞

⎠

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
· (M −m)

(
f ′(M) − f ′(m)

)

√
Mmf ′(M)f ′(m)

n∑

j=1

〈
Ajxj , xj

〉 n∑

j=1

〈
f ′(Aj

)
xj , xj

〉
,

(√
M − √

m
)(√

f ′(M) − √
f ′(m)

)

×
⎡

⎣
n∑

j=1

〈
Ajxj , xj

〉 n∑

j=1

〈
f ′(Aj

)
xj , xj

〉
⎤

⎦

1/2

,

(3.14)

for any xj ∈ H, j ∈ {1, . . . , n} with ∑n
j=1 ‖xj‖2 = 1.



Journal of Inequalities and Applications 11

The following corollary also holds.

Corollary 3.3. Assume that f is as in Theorem 2.1. If Aj are selfadjoint operators with Sp(Aj) ⊆
[m,M] ⊂

◦
I, j ∈ {1, . . . , n} and pj ≥ 0, j ∈ {1, . . . , n} with ∑n

j=1 pj = 1, then

0 ≤
〈

n∑

j=1

pjf
(
Aj

)
x, x

〉

− f

⎛

⎝
〈

n∑

j=1

pjAjx, x

〉⎞

⎠

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
· (M −m)

⎡

⎣
n∑

j=1

pj
∥
∥f ′(Aj

)
x
∥
∥2 −

〈
n∑

j=1

pjf
′(Aj

)
x, x

〉2
⎤

⎦

1/2

,

1
2
· (f ′(M) − f ′(m)

)
⎡

⎣
n∑

j=1

pj
∥∥Ajx

∥∥2 −
〈

n∑

j=1

pjAjx, x

〉2
⎤

⎦

1/2

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.15)

for any x ∈ H with ‖x‖ = 1.
One also has the inequality

0 ≤
〈

n∑

j=1

pjf
(
Aj

)
x, x

〉

− f

⎛

⎝
〈

n∑

j=1

pjAjx, x

〉⎞

⎠

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
n∑

j=1

pj
〈
Mx −Ajx,Ajx −mx

〉
⎤

⎦

1/2

×
⎡

⎣
n∑

j=1

pj
〈
f ′(M)x − f ′(Aj

)
x, f ′(Aj

)
x − f ′(m)x

〉
⎤

⎦

1/2

,

∣∣∣∣∣∣

〈
n∑

j=1

pjAjx, x

〉

− M +m

2

∣∣∣∣∣∣

∣∣∣∣∣∣

〈
n∑

j=1

pjf
′(Aj

)
x, x

〉

− f ′(M) + f ′(m)
2

∣∣∣∣∣∣

≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
,

(3.16)

for any x ∈ H with ‖x‖ = 1.
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Moreover, ifm > 0 and f ′(m) > 0, then one also has

0 ≤
〈

n∑

j=1

pjf
(
Aj

)
x, x

〉

− f

⎛

⎝
〈

n∑

j=1

pjAjx, x

〉⎞

⎠

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
· (M −m)

(
f ′(M) − f ′(m)

)

√
Mmf ′(M)f ′(m)

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

pjf
′(Aj

)
x, x

〉

,

(√
M − √

m
)(√

f ′(M) − √
f ′(m)

)

×
⎡

⎣

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

pjf
′(Aj

)
x, x

〉⎤

⎦

1/2

,

(3.17)

for any x ∈ H with ‖x‖ = 1.

Remark 3.4. Some of the inequalities in Corollary 3.3 can be used to produce reverse norm
inequalities for the sum of positive operators in the case when the convex function f is
nonnegative and monotonic nondecreasing on [0,M].

For instance, if we use inequality (3.15), then one has

0 ≤
∥∥∥∥∥∥

n∑

j=1

pjf
(
Aj

)
∥∥∥∥∥∥
− f

⎛

⎝

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

⎞

⎠ ≤ 1
4
(M −m)

(
f ′(M) − f ′(m)

)
. (3.18)

Moreover, if we use inequality (3.17), then we obtain

0 ≤
∥∥∥∥∥∥

n∑

j=1

pjf
(
Aj

)
∥∥∥∥∥∥
− f

⎛

⎝

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

⎞

⎠

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
4
· (M −m)

(
f ′(M) − f ′(m)

)

√
Mmf ′(M)f ′(m)

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

∥∥∥∥∥∥

n∑

j=1

pjf
′(Aj

)
∥∥∥∥∥∥
,

(√
M − √

m
)(√

f ′(M) − √
f ′(m)

)
⎡

⎣

∥∥∥∥∥∥

n∑

j=1

pjAj

∥∥∥∥∥∥

∥∥∥∥∥∥

n∑

j=1

pjf
′(Aj

)
∥∥∥∥∥∥

⎤

⎦

1/2

.

(3.19)
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4. Some Particular Inequalities of Interest

(1) Consider the convex function f : (0,∞) → R, f(x) = − lnx. On utilising inequality (3.2),
then for any positive definite operator A on the Hilbert space H, we have the inequality

0 ≤ ln(〈Ax, x〉) − 〈ln(A)x, x〉

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
· (M −m)

[∥
∥A−1x

∥
∥2 − 〈

A−1x, x
〉2]1/2

1
2
· M −m

mM

[
‖Ax‖2 − 〈Ax, x〉2

]1/2

(

≤ 1
4
· (M −m)2

mM

) (4.1)

for any x ∈ H with ‖x‖ = 1.
However, if we use inequality (3.3), then we have the following result as well:

0 ≤ ln(〈Ax, x〉) − 〈ln(A)x, x〉 ≤ 1
4
· (M −m)2

mM

−

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[〈Mx −Ax,Ax −mx〉〈M−1x −A−1x,A−1x −m−1x
〉]1/2

,

∣∣∣∣〈Ax, x〉 − M +m

2

∣∣∣∣

∣∣∣∣
〈
A−1x, x

〉 − M +m

2mM

∣∣∣∣

(

≤ 1
4
· (M −m)2

mM

)

(4.2)

for any x ∈ H with ‖x‖ = 1.
(2) Finally, if we consider the convex function f : [0,∞) → [0,∞), f(x) = xp with

p ≥ 1, then on applying inequalities (3.2) and (3.3) for the positive operator A, we have the
inequalities

0 ≤ 〈Apx, x〉 − 〈Ax, x〉p

≤ p ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
· (M −m)

[∥∥Ap−1x
∥∥2 − 〈

Ap−1x, x
〉2]1/2

1
2
· (Mp−1 −mp−1)

[
‖Ax‖2 − 〈Ax, x〉2

]1/2

(
≤ 1

4
p(M −m)

(
Mp−1 −mp−1

))
,

0 ≤ 〈Apx, x〉 − 〈Ax, x〉p ≤ 1
4
p(M −m)

(
Mp−1 −mp−1

)

− p ×

⎧
⎪⎪⎨

⎪⎪⎩

[〈Mx −Ax,Ax −mx〉〈Mp−1x −Ap−1x,Ap−1x −mp−1x
〉]1/2

,
∣∣∣∣〈Ax, x〉 − M +m

2

∣∣∣∣

∣∣∣∣∣
〈
Ap−1x, x

〉 − Mp−1 +mp−1

2

∣∣∣∣∣

(
≤ 1

4
p(M −m)

(
Mp−1 −mp−1

))

(4.3)

for any x ∈ H with ‖x‖ = 1, respectively.
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If the operatorA is positive definite (m > 0) then, by utilising inequality (3.4), we have

0 ≤ 〈Apx, x〉 − 〈Ax, x〉p

≤ p ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4
· (M −m)

(
Mp−1 −mp−1)

Mp/2mp/2
〈Ax, x〉〈Ap−1x, x

〉
,

(√
M − √

m
)(

M(p−1)/2 −m(p−1)/2)[〈Ax, x〉〈Ap−1x, x
〉]1/2

,

(4.4)

for any x ∈ H with ‖x‖ = 1.
Now, if we consider the convex function f : [0,∞) → [0,∞), f(x) = −xp with p ∈

(0, 1), then from the inequalities (3.2) and (3.3) and for the positive definite operator A we
have the inequalities

0 ≤ 〈Ax, x〉p − 〈Apx, x〉

≤ p ×

⎧
⎪⎪⎨

⎪⎪⎩

1
2
· (M −m)

[∥∥Ap−1x
∥∥2 − 〈

Ap−1x, x
〉2]1/2

1
2
· (mp−1 −Mp−1)

[
‖Ax‖2 − 〈Ax, x〉2

]1/2

(
≤ 1

4
p(M −m)

(
mp−1 −Mp−1

))
,

0 ≤ 〈Ax, x〉p − 〈Apx, x〉 ≤ 1
4
p(M −m)

(
mp−1 −Mp−1

)

− p ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[〈Mx −Ax,Ax −mx〉〈Mp−1x −Ap−1x,Ap−1x −mp−1x
〉]1/2

,

∣∣
∣∣〈Ax, x〉 − M +m

2

∣∣∣∣

∣∣∣∣∣
〈
Ap−1x, x

〉 − Mp−1 +mp−1

2

∣∣∣∣∣

(
≤ 1

4
p(M −m)

(
mp−1 −Mp−1

))

(4.5)

for any x ∈ H with ‖x‖ = 1, respectively.
Similar results may be stated for the convex function f : (0,∞) → (0,∞), f(x) = xp

with p < 0. However the details are left to the interested reader.
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