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By looking back at the long history of bounding the ratio I'(x + a) /T'(x + b) for x > —min{a, b} and
a,b € R, various origins of this topic are clarified, several developed courses are followed, different

results are compared, useful methods are summarized, new advances are presented, some related
problems are pointed out, and related references are collected.

1. Basic Definitions and Notations

In order to fluently and smoothly understand what follows in this paper, some basic concepts
and notations need to be stated at first in this section.

1.1. The Gamma Function and Related Formulas
1.1.1. The Gamma Function

It is well known that the classical Euler gamma function can be defined for x > 0 by

I'(x) = f e tdt, (1.1)

the logarithmic derivative of I'(x) is called the psi or digamma function and denoted by ¢s(x),
and ¢® (x) for k € N are called the polygamma functions.
It is general knowledge that

I(x+1)=xI'(x), x>0. (1.2)
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Taking the logarithm and differentiating on both sides of (1.2) give

q;(x+1):<p(x)+%, x> 0.

1.1.2. Stirling’s Formula

For x > 0, there exists 0 < 0 < 1 such that

0
_ x+1/2 _
T(x+1)=VvV2r x exp( x + 12x>'

See [1, page 257, 6.1.38].

1.1.3. Wallis Cosine Formula

Wallis cosine or sine formula reads [2] that

/2 ar /2
I cos"xdx = f sinxdx
0 0

a (n-1!

—.——7 forneven,
 VET((n+1)/2) ] 2 n!!
B nF(n/Z) B _ 1"

(nnul).. for n odd,

where n!! denotes a double factorial. Therefore,

@Kz T(k+1)
Gk-DI - Tk+i/2) <N

1.1.4. Duplication Formula

For x > 0,

2X*1r<;)r<x;’1) - /7 T(x).

1.1.5. Binet’s First Formula

Binet’s first formula for InT'(x) is given by

InT(x) = <x— %) Inx —x+Inv2r +0(x)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)
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for x > 0, where

*® 1 1 1\e™

for x > 0 is called the remainder of Binet’s first formula for the logarithm of the gamma
function. See [3, page 11].

1.1.6. Wendel's Limit

For real numbers a and b,

xb_uM

Taen)| " (1.10)

lim [

X — 00

See [1, page 257, 6.1.46].
Ifz# -a,-a-1,...andz# -b,-b—-1,..., then

palz+a) | (a-b)(a+b-1) +(“‘b)(a—b—1)[3(a+b—1)2—a+b—1] -

I'(z+b) 2z 2422
(1.11)
as z — oo along any curve joining z = 0 and z = co. See [4, pages 118-119].
1.1.7. Legendre’s Formula
For x > 0,
Pl
p(x)=-y+ f dt. (1.12)
1.1.8. Gauss” Theorem
For Re(c—a-b) >0,
- (@), (b), I(c)(c—a-b)
= -F o) = A
HZ:O o), = h@bial) = g ime (1.13)

See [5, page 66, Theorem 2.2].
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1.2. The q-Gamma Function and Related Formulas

It is well known (see [5, pages 493-496] and [6]) that the g-gamma function, the g-analogue
of the gamma function I'(x), is defined for x > 0 by

tex ® 1 _ qi+1
Fa() = (=) "= (1.14)
i=0

for0 <g<1and

x> © 1 _q—(i+1)

1-x
Fq(x) = (q - 1) q<2 |i=0| m (115)
for g > 1. It has the following basic properties
()
lim [y(z) = lim Ty(2) =T'(2), Tq(x) =q° 2 /T1/q(x). (1.16)
q-1r q—1

The g-psi function ¢, (x), the g-analogue of the psi function ¢ (x), for 0 < g <1and x > 0 may
be defined by

k+x kx

T ) 0
pq(x) = =-In(1-gq)+Ing>, 1 —=-In(1-¢g) + lnqzq—k, (1.17)
q\X ol-q ml-q

and qf[(,k)(x), the g-analogues of the polygamma functions ¢¥)(x), for k € N are called the
g-polygamma functions. The following Stieltjes integral representation for ¢s;(x) is given in

[7]:

xt

') e
@e(x) =-In(1-¢q) - J‘ ———dy,(t) (1.18)
0 1-e
for 0 < g <1and x >0, where

Yq(t) = —lnqi6(t+klnq). (1.19)
k=1

1.3. Logarithmically Convex Functions

Definition 1.1 (see [8, 9]). For k € N, a positive and k-time differentiable function f(x) is said
to be k-log-convex on an interval I if

[In f(x)]® >0 (1.20)

on I. If the inequality (1.20) is reversed, then f is said to be k-log-concave on I.
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Remark 1.2. 1t is clear that a 1-log-convex function (or 1-log-concave function, resp.) is
equivalent to a positive and increasing (or decreasing, resp.) function and that a 2-log-convex
function is positive and convex. Conversely, a convex function may not be 2-log-convex. See
[8, page 7, Remark 1.16].

1.4. Completely Monotonic Functions

Definition 1.3 ([10, Chapter XIII] and [11, Chapter IV]). A function f is said to be completely
monotonic on an interval I if f has derivatives of all orders on I and

1" f"(x) >0 (1.21)

forxeIandn >0.

Remark 1.4. The famous Bernstein-Widder’s Theorem [11, page 161] states that a function f
is completely monotonic on (0, o0) if and only if

[*e]

Fe = [ e, (1.22)

0

where p is a nonnegative measure on [0, 0) such that the integral (1.22) converges for all
x > 0. This means that a completely monotonic function f on (0, o) is a Laplace transform of
the measure p.

Remark 1.5. A result of [12, page 98] asserts that for a completely monotonic function f on
(a, 00), inequalities in (1.21) strictly hold unless f(x) is constant. This assertion can also be
found in [13].

Definition 1.6 (see [14]). If %) (x) for some nonnegative integer k is completely monotonic on
an interval I, but f*~(x) is not completely monotonic on I, then f(x) is called a completely
monotonic function of the kth order on an interval I.

1.5. Logarithmically Completely Monotonic Functions

Definition 1.7 (see [14, 15]). A positive function f is said to be logarithmically completely
monotonic on an interval I C R if it has derivatives of all orders on I and its logarithm In f
satisfies

D)*[In fx)]® >0 (1.23)

fork e NonI.
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Remark 1.8. In [15-19], it was recovered that any logarithmically completely monotonic
function f on I must be completely monotonic on I, but not conversely. However, it
was discovered in [20, Section 5] that every completely monotonic function on (0, ) is
logarithmically convex.

Remark 1.9. The following conclusions may be useful: A logarithmically convex function is
also convex. If f is nonnegative and concave, then it is logarithmically concave. The sum of
finite logarithmically convex functions is also a logarithmically convex function. But, the sum
of two logarithmically concave functions may not be logarithmically concave. See [20, Section
3].

Remark 1.10. In [16, Theorem 1.1] and [13, 21] it is pointed out that the logarithmically
completely monotonic functions on (0,o0) can be characterized as the infinitely divisible
completely monotonic functions studied by Horn in [22, Theorem 4.4] and that the set of all
Stieltjes transforms is a subset of the set of logarithmically completely monotonic functions
on (0, o).

Remark 1.11. For more information on characterizations, applications and history of the
class of logarithmically completely monotonic functions, please refer to [13-17] and related
references therein.

Definition 1.12 (see [23, 24]). Let f be a positive function which has derivatives of all orders
on an interval I. If [In f(x)]® for some nonnegative integer k is completely monotonic on
I, but [In f(x)]*™ is not completely monotonic on I, then f is said to be a logarithmically
completely monotonic function of the kth order on I.

Definition 1.13 (see [11, 25]). A function f is said to be absolutely monotonic on an interval I
if it has derivatives of all orders and

fED#) >0 (1.24)

fort € I and k € N.

Definition 1.14 (see [23, 24]). Let f be a positive function which has derivatives of all orders
on an interval I. If [In f (x)]%® for some nonnegative integer k is absolutely monotonic on
I, but [In f(x)]*7Y is not absolutely monotonic on I, then f is said to be a logarithmically
absolutely monotonic function of the kth order on I.

Definition 1.15 (see [23, 24]). A positive function f which has derivatives of all orders on an
interval I is said to be logarithmically absolutely convex on I if

[In £ ()] >0 (1.25)

onl fork € N.
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1.6. Some Useful Formulas and Inequalities
1.6.1. Jensen’s Inequality

If ¢ is a convex function on [a, b], then

‘i)(ipkxk) < Zn:]ﬂk(l’(xk), (1.26)
P k=1

where n € N, xi € [a,b], and px > 0 for 1 < k < n satisfying >/, px = 1.

1.6.2. Holder’s Inequality for Integrals

Let p and gq be positive numbers satisfying 1/p +1/g = 1. If f and g are absolutely integrable
on (0, 00), then

wlf(t)g(t)ldts i |f(t)|"dt Tl |g(t)|"dt w, (1.27)
0 0 0

with equality when |g(x)| = c|f (x)[P~".

1.6.3. Convolution Theorem of Laplace Transform (See [26])

Let fi(t) for i = 1,2 be piecewise continuous in arbitrary finite intervals included on (0, c0). If
there exist some constants M; > 0 and ¢; > 0 such that |f;(t)| < M;e! fori = 1,2, then

Jm [It fi1(uw) fo(t - u)du] e sldt = Jm fi(w)e"du Jm f2(v)e*?do. (1.28)
o [Jo 0 0

1.6.4. Mean Values

The generalized logarithmic mean L,(a,b) of order p € R for positive numbers a and b with
a#bis defined in [27, page 385] by

( 1/p
bp+1 _ ap+1
[ ) i

p+1)(b-a)

b_
L(ab) =14 — p=-1, (1.29)
P Inb-Ina

1/(b-a)
1/ bb
e a
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Note that

a+b

Li(a,b) = = A(a,b), L_i(a,b)=L(ab), Lo(a,b)=1I(ab) (1.30)

are called, respectively, the arithmetic mean, the logarithmic mean, and the identric or
exponential mean in the literature. Since the generalized logarithmic mean L,(a,b) is
increasing in p for a # b, see [27, pages 386-387, Theorem 3], inequalities

L(a,b) < I(a,b) < A(a,b) (1.31)

are valid for a > 0 and b > 0 with a #b. See also [25, 28, 29] and related references therein.

1.6.5. Bernoulli Numbers

Bernoulli numbers B,, for n > 0 can be defined as

x < B,
i nZ:O . + 232] (2 )' x| < 2. (1.32)

The first six Bernoulli numbers are

1 1 1 1 1
By=1, B ok B, <’ B, 30’ Bg 1 Bg 30 (1.33)

1.6.6. A Completely Monotonic Function

For any real number a, let
Ox(x) = x*[Inx —¢(x)], x€(0,00). (1.34)

The function ©;(x) was proved in [30, Theorem 3.1] to be decreasing and convex on
(0, 00).

By using Binet'’s first formula (1.9) and complicated calculating techniques for proper
integrals, a general result was presented in [31, pages 374-375, Theorem 1]. For real number
a, the function ©,(x) is completely monotonic on (0, o0) if and only if a < 1.

Recently the completely monotonic property of ©,(x) was also proved by different
approaches in [32-34].
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1.7. Properties of A Function Involving the Exponential Function

For t € R and real numbers a and f satisfying a # f and (a, ) £ {(0,1), (1,0)}, let

eat _ o Pt
Qup(t) =4 1-e* (1.35)
p-a, t=0.

In [9, 35-40], sufficient and necessary conditions that the function g,4(x) is monotonic,
logarithmically convex, and logarithmically concave on (0, o) were discovered step by step.

1.7.1. Monotonic Properties of qa,p(x)

The earliest complete conclusions on monotonic properties of g,,5(x) were discussed in the
paper [36] little by little but thoroughly.

Theorem 1.16 (see [35, 36]). Let a and p satisfying a#p and (a, )& {(0,1),(1,0)} be real
numbers and t € R.

(1) The function qqp(t) is increasing on (0, 0o) if and only if
(B-a)(1-a=-p)20, (f-a)(|la—p]-a-p)>0. (1.36)
(2) The function qqp(t) is decreasing on (0, o) if and only if
(B-a)(1-a-p)<0,  (p-a)(la-p|-a-p)<0. (1.37)
(3) The function qqp(t) is increasing on (~o0,0) if and only if
(p-a)(1-a-p)>0, (p-a)2-|a-p|-a-p)>0. (1.38)
(4) The function qqp(t) is decreasing on (=oo,0) if and only if
(p-a)(1-a-p)<0,  (p-a)(2-|a-p|-a-p)<0. (1.39)
(5) The function qqp(t) is increasing on (~oo, 00) if and only if
B-a)(la=p|-a=-p)20,  (f-a)2-|a-p[-a-p)>0. (1.40)
(6) The function qqp(t) is decreasing on (~oo, 00) if and only if

(B-a)(|la—pl-a-p)<0,  (F-0)@-|a-pl-a-p)<0.  (141)
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a

p=a+1 =

p-a foa-1

Mo

Figure 1: (a, f)-domain where g, 4(t) increases on (-0, c0).

f=a-1

p=a HH

Figure 2: (a, f)-domain where g, 4(t) decreases on (-0, o).

Remark 1.17. The (a, p)-domains from (1.36) to (1.41) can be described, respectively, by

Figures 1, 2, 3,4, 5, and 6.

Remark 1.18. Theorem 1.16 and Figure 1 to Figure 4 correct several minor errors in [9, 36].
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f=a+1
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Figure 3: (a, f)-domain where g, 4(t) is increasing on (0, o).

p=a-1

Figure 4: (a, f)-domain where g, 4(t) is decreasing on (0, o).

1.7.2. Logarithmically Convex Properties of qa,p(t)

These results were founded at first in [39, Lemma 1] and [40, Lemma 1] earlier than
monotonic properties of g, 4(t).

Theorem 1.19 (see [35-40]). The function q,p(t) on (oo, oo) is logarithmically convex if p—a > 1
and logarithmically concave if 0 < p—a < 1.
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P

f=a+1

f=a ﬂ:;—l

20

Figure 5: (a, f)-domain where g, 4(t) is increasing on (-oo,0).

P

.a
f=a-1

Q 1 a
p=1-a

Figure 6: (a, f)-domain where g, 4(t) is decreasing on (~co,0).

Remark 1.20. This theorem tells us that the logarithmic convexity and logarithmic concavity
of qa(t) on the interval (-co,0), showed in [39, Lemma 1] and [40, Lemma 1] , are wrong.
However, this does not affect the correctness of any other results established in [39, 40], since
the wrong conclusions about g,4(t) on the interval (-co,0) are idle there luckily.
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1.7.3. Three-Log-Convex Properties of qap(t)

Theorem 1.21 (see [9]). If 1 > f—a > 0, then g, p(t) is 3-log-convex on (0, co) and 3-log-concave
on (—o0,0); if p— a > 1, then gu p(t) is 3-log-concave on (0, o) and 3-log-convex on (-0, 0).

Remark 1.22. So far no application of 3-log-convex properties of g, 4(t) is disclosed, unlike
monotonic and logarithmically convex properties of g,4(t) already having applications in
[35, 37-41], respectively.

Remark 1.23. One of the key steps proving Theorems 1.16 to 1.21 is to rewrite the function
Gap(t) as

sinh(f - a)t/2 (1-a-p)t

Gap(t) = Sinh(1/2) exp 5 (1.42)

Remark 1.24. The monotonic and convex properties of g, 4(t) have important applications to
investigations of the gamma and g-gamma functions.

2. The History and Origins

In the history of this topic, there are several independent origins and different motivations of
bounding the ratio of two gamma functions, no matter their appearances were early or late.

2.1. Wendel’s Double Inequality and Proof
As early as in 1948, in order to establish the classical asymptotic relation

[(x+s) 1
x—o x5T(x)

(2.1)

for real s and x, using Holder’s inequality (1.27), Wendel proved in [42] the double inequality

1-s
< x ) S1"(x+s)51 2.2)
X+s x5T(x)
for0<s<land x> 0.
Wendel’s Proof for (2.1) and (2.2). Let
1 p 1
0 <s< 1, = -y = — = ,
P=5 1 p-1 1-s (2.3)

f(t) _ e—sttsx’ g(t) — e—(l—s)tt(l—s)x+s—1’
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and apply Holder’s inequality (1.27) and the recurrent formula (1.2) to obtain

I(x+s)= J‘OO e 'rrsTlde < <J‘Oo e_ttxdt>s (J‘Oo e_ttx_ldt> - =[x+ D] [C(x)]7° = x°T(x).

0 0 0

(2.4)
Replacing s by 1 - s in (2.4), we get
F'(x+1-s)<x™T(x), (2.5)
from which we obtain
T(x+1) < (x+5)T(x+5), (2.6)
by substituting x + s for x.
Combining (2.4) and (2.6), we get
(x+—xs)1_SF(X) <T'(x+s) <xT'(x). (2.7)

Therefore, the inequality (2.2) follows.
Letting x tend to infinity in (2.2) yields (2.1) for 0 < s < 1. The extension to all real s is
immediate on repeated application of (1.2). O

Remark 2.1. The inequality (2.2) can be rewritten for 0 < s <1and x > 0 as

-5 F(x+ 1) 1-s
1 Sl"(x+s) <(x+s) 7" (2.8)

Remark 2.2. The limits (1.10) and (2.1) are equivalent to each other, since

xt_SF(x +s5) T(x+s) _ x'T(x)

F(x+t) xT(x) T(x+t) 29)

Hence, the limit (1.10) is called Wendel’s limit in the literature of this paper.

Remark 2.3. The double inequality (2.2) or (2.8) is more meaningful than the limit (2.1), since
the former implies the latter, but not conversely.

Remark 2.4. Due to unknown reasons, Wendel’s paper [42] and inequalities (2.2) or (2.8) were
possibly neglected by nearly all mathematicians for about more than fifty years, until 1999 in
[43] and later in [20, 44-49], to the best of my knowledge.
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2.2, Gurland’s Upper Bound

In 1956, by a basic theorem in mathematical statistics concerning unbiased estimators with
minimum variance, Gurland in [50, page 645] established a closer approximation to o

(24: : 13)2 [(2(1<21i)i!)!!] 2 ki1 [(2(1<21i)i!)!!] L ken (210
through presenting
[r((n+1)/2) L ew 2.11)
I'(n/2) 2n+1
Remark 2.5. The double inequality (2.10) may be rearranged as
Vik +3 2k -1)!! 2 2.12)

< < ’

Vv 2k +1) Q! \/r(k +1)

Remark 2.6. The inequality (2.11) is better than the right-hand side inequality in (2.8) for
x=(m-1)/2and s =1/2.

Remark 2.7. Taking, respectively, n = 2k and n = 2k — 1 for k € Nin (2.11) leads to

/ 1 I'(k+1) 2k 213
k+4 <F(k+1/2)< T k eN. ( )

This is better than (2.8) for x = k and s = 1/2. We will see that it is also better than (2.23) for
s =1/2 and it is the same as (2.31).

Remark 2.8. 1t is astonishing that inequalities in (2.11) or (2.12) were recovered in [51] by a
different but elementary approach. In other words, the inequality (2.11) and the right-hand
side inequality in (2.30) are the same. See Section 2.5.

Remark 2.9. Just like the paper [42], Gurland’s paper [50] was also neglected until 1966 in
[52] and 1985 in [53]. The famous monograph [54] recorded neither of the papers [42, 50].
It is a pity, since inequalities in (2.10) and (2.11) are very sharp, as discussed in Remark 2.12
below.

Remark 2.10. For more information on new developments of bounding Wallis” formula (1.5),
please refer to Section 7.4.
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2.3. Kazarinoff’s Bounds for Wallis” Formula

In 1956, starting from one form of the celebrated formula of John Wallis,

1 Qn-1I 1

Jrmri | @mt

neN, (2.14)

which had been quoted for more than a century before 1950s by writers of textbooks, it was
proved in [55] that the sequence 6(n) defined by

n-1! 1 (2.15)
@n)!t x(n+0(n)) '
satisfies 1/4 < 08(n) < 1/2 for n € N. This implies
1 2n—1)!! 1
@n-1) neN. (2.16)

\/Jr(n+1/2)< emyr © T(n+1/4)

It was said in [55] that it is unquestionable that inequalities similar to (2.16) can be
improved indefinitely but at a sacrifice of simplicity, which is why they have survived so
long.

The proof of (2.16) is based upon the property

[ngt)]" - { [ln¢(t)]'}2 >0 (2.17)
of the function
(7 _VET((t+1)/2)
Pt = fo sin‘xdx = 2 T((+2)/2) (2.18)

for -1 < t < co. The inequality (2.17) was proved by making use of (1.12) and estimating the
integrals

1 t 1t
j Y dx, f xInx (2.19)
o I+x o 1+x

Since (2.17) is equivalent to the statement that the reciprocal of ¢(t) has an everywhere
negative second derivative, therefore, for any positive ¢, ¢(t) is less than the harmonic mean
of ¢(t — 1) and ¢(t + 1); simplifying this leads to the fact that

[((t+1)/2) 2
L((t+2)/2)  V2t+1

t>0. (2.20)

As a subcase of this result, the right-hand side inequality in (2.16) is established.
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Remark 2.11. Replacing t by 2t for t > 0 in (2.20) leads to

T(t+1/2) 1

T(t+1)  Nirl/a

(2.21)

for t > 0, which is better than the left-hand side inequality in (2.8) for s = 1/2 and extends the
left-hand side inequality in (2.13).

Remark 2.12. The right-hand side inequality in (2.12) is the same as the corresponding one
in (2.16), and the left-hand side inequality in (2.12) is better than the corresponding one in
(2.16) and (3.6) for n > 2. Therefore, Gurland’s inequality (2.11) is much sharp.

Remark 2.13. A double inequality bounding the quantity (2k — 1)!!/(2k)!! can be reduced to
an upper or a lower bound for the ratio I'((n + 1) /2) /I'(n/2). Conversely, either the upper or
the lower bound for the ratio I'((n + 1) /2) /I'(n/2) can be used to derive a double inequality
bounding the quotient (2k — 1)!!/(2k)!!.

Remark 2.14. The idea and spirit of Kazarinoff in [55] would be developed by Watson in [56].
See Section 3.1.

2.4. Gautschi’s Double Inequalities

In 1959, among other things, by a different motivation from Wendel in [42], Gautschi
established independently in [57] two double inequalities forn € Nand 0 < s < 1:

r 1

I-s < FEZ i s; <exp((1-s)g(n+1)), (2.22)
s _T'(n+1) s
s < Frvs) <(m+1), (2.23)

Remark 2.15. 1t is clear that the upper bound and the domain in the inequality (2.23) are not
better and more extensive than the corresponding ones in (2.8).

Remark 2.16. The upper bounds in (2.8), (2.22), and (2.23) have the following relationships:
exp((1-s)g(n+1)) < (n+1)"* (2.24)
for0<s<landneN,

(n+s)"° <exp((1-s)p(n+1)) (2.25)

for 0 < s < 1/2and n € N, and the inequality (2.25) reverses for s > e!™ -1 = 0.52620- - -,
since the function

Q(x) =™ —x (2.26)
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was proved in [58, Theorem 2] to be strictly decreasing on (-1, o), with
. 1
lim Q(x) = 7 (2.27)

This means that Wendel’s double inequality (2.8) and Gautschi’s first double inequality (2.22)
are not included in each other but they all contain Gautschi’s second double inequality (2.23).

Remark 2.17. By the convex property of InT'(x), Merkle recovered in [20, 59-63] inequalities
in (2.22) and (2.23) once again. See Section 4.

Remark 2.18. The monotonic and convex properties of the function (2.27) are also derived in
[64]. See Section 3.20.1 and Remark 3.56 to Remark 3.58.

Remark 2.19. The Mathematical Reviews” comments MR0103289 on the paper [57] are cited
as follows. The author gives lower and upper bounds of the form c[(x” + (1/ )P - x] for
e™ [Ze"dt in the range p > 1 and 0 < x < oo; the respective values of ¢ are 2 and [T'(1 +

(1/p))]P’#™. As it stands, the proof is only valid if p is an integer, but, in a correction, the
author has indicated a modification which validates it for all p > 1.

Remark 2.20. There is no word commenting on inequalities in (2.22) and (2.23) by the
Mathematical Reviews’ reviewer of the paper [57]. However, these two double inequalities
later became a major source of a series of research on bounding the ratio of two gamma
functions.

Remark 2.21. The function e™ [*e™dt was further investigated in [65-72] and related
references therein.
2.5. Chu’s Double Inequality

In 1962, by discussing that b,,.1(c) % b, (c) if and only if (1 -4c)n+1-3c % 0, where

2n-1N
b,(c) = W\/n +c, (2.28)

it was demonstrated in [51, Theorem 1] that

1 J@n-Du 1
Vrn+ (n+1)/(4n +3)] em)!t N\ rm+1/4)

(2.29)

As an application of (2.29), by using I'(1/2) = +/or and (1.2), the following double inequality

m-3 [(n/2) _,[(n-1) (2.30)
1 “Tm/2-1/2) S\ 2n-1

for positive integers n > 2 was given in [51, Theorem 2].
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Remark 2.22. After letting x = (n — 1) /2 the inequality (2.30) becomes

px-t [(x+1/2) x 231
TSI S Vare 230

which is the same as (2.13).
Remark 2.23. When n is large enough, the lower bound in (2.29) is better than the one in (3.6).

Remark 2.24. Any one of the bounds in (2.31) may be derived from the other one by Boyd’s
method in [73] (see Section 3.4), by Shanbhag’s technique in [74] (see Section 3.5), by Raja
Rao’s technique in [75] (see Section 3.10), by Slavi¢’s method in [76] (see Section 3.10), or by
the p-transform in Section 4.1. This implies that the double inequality (2.30) is equivalent to
the inequality (2.11).

Remark 2.25. The double inequality (2.29) and the right-hand side inequality in (2.30) are a
recovery of (2.12) and (2.11), respectively. Notice that the reasoning directions in the two
papers [50, 51] are opposite:

n - 1! = I'(n/2)

2n)ll — Tm/2-1/2)
[50]

(2.32)

This confirms again what is said in Remark 2.13.

Remark 2.26. The idea of Chu’s proof in [51, Theorem 1] has the same spirit as Kershaw’s in
[77]. See Section 3.12.

2.6. Zimering’s Inequality

In 1962, Zimering obtained in [78, page 88] that

T(n+r) < n-(m-1)"

(2.33)
n! r

forO<r<landn e N.

Remark 2.27. From (1.2) it is easy to see that n! = I'(n + 1). Hence, the inequality (2.33) can be
rearranged as

Fn+1) r
ITn+r) " n-(n-1)

(2.34)

for 0 < r < 1 and n € N. Although the inequality (2.33) or (2.34) is not better than the left-
hand side inequality in (2.22) or (2.23), since its motivation is particular, it is believed that it
was obtained independently, and so the paper [78] can also be regarded as an origin of this
topic.
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2.7. Further Remarks

Remark 2.28. To the best of our knowledge and understanding, two evidences that there was
no cross-citation between them and that their motivations are different convince us to believe
that the above origins are independent. Actually, the very real origin(s) may not be found out
forever.

Remark 2.29. Except Wendel’s result, all inequalities above take values on N, the set of positive
integers. In other words, only Wendel’s double inequality (2.8), the earliest result on this
topic, takes values on (0, o), the set of real numbers.

Remark 2.30. As one will see, in the history of this topic, the works by Wendel, Gurland, and
Zimering did not become a source of bounding the ratio of two gamma functions.

Remark 2.31. In [53], some of the extensive previous background of the papers [55, 56] was
outlined.

Remark 2.32. Currently, we may conclude that the very origins of bounding the ratio of two
gamma functions are asymptotic analysis, estimation of Wallis’ cosine formula, estimation of
ar, and mathematical statistics.

Remark 2.33. The good bounds for the ratio of two gamma functions should satisfy one or
several of the following criteria.

(1) The bounds should be easily computed by hand or by computers.
(2) Sharper the bounds are, better the bounds are.

(3) The bounds should be simple in form.

(4) The bounds should be beautiful in form.

(5) The bounds should be expressed by elementary functions or any other easily
calculated functions.

(6) The bounds are of some recurrent or symmetric properties.
(7) The bounds should have origin(s) and background(s).

(8) The bounds should have application(s) in mathematics or mathematical sciences.

Maybe these standards are also suitable for judging any other inequalities and estimates in
mathematics.

3. Refinements and Extensions

In this section, the refinements and extensions of bounds for the ratio of two gamma functions
from 1959 will be collected, to the best of our ability.
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3.1. Watson’s Monotonicity Result

In 1959, motivated by the result in [55], mentioned in Section 2.3, and basing on Gauss’
Theorem (1.13), Watson observed in [56] that

2
DR ()

x[T(x+1/2) 20
1 1 (121D G- (r-32F
— . . . ’r‘ —
:1+E+32x(x+1)+§3 rix(x+1)---(x+r-1)
for x > -1/2, which implies that the much general function
0(x) = [M o (3.2)
I(x+1/2) ! '

ever discussed in [55] or Section 2.3 as a special case 6(n) for n € N, for x > —1/2 is decreasing
and with

. 1 . 1
xlgr;)@(x) =T x_)l(l_r{'l/z)ﬂ(x) =3 (3.3)
This apparently implies the sharp inequalities
1 1
Z = 3.4
4<m@<2 (3.4)
forx>-1/2,
[ 1 T(x+1) 1 [I(3/4)]?
Zoe— ) < z =/ . (3.5)
X+ <F(x+1/2)_\/x+4+[F(1/4)] x +0.36423
for x > -1/4, and, by (1.5),
1 < (2n -1 1

(3.6)

Vrn+4/r-1) - (m)! <\/7r(n+1/4)/

In [56], an alternative proof of the double inequality (3.4) was provided as follows. Let

texp(-t2/2) a4t

2 ar/2 ) 2 oo )
= — X d = — —_ _—
f(x) N fo cos™tdt N fo exp< xt p——— (3.7)
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for x > 1/2. By using the fairly obvious inequalities

\/1-exp(-t2) <t

texp(-t2/4) t <1 (3.8)
\/1_exp(_t2) \/2sinh(2/2) ~

we have, for x > -1/4,

) TR R O DI

that is to say

1

1
— < f(X) < —. 3.10
Vx+1/2 f@) Vx+1/4 ( )
Remark 3.1. In [56, page 8], the following interesting relation was provided:
2
x+6(x) = (3.11)

x-1/2+0(x-1/2)

for appropriate ranges of values of x.
Remark 3.2. The formula (3.1) would be used in [73] to obtain the inequality (3.23).

Remark 3.3. The function 6(x) defined by (3.2) was extended and studied in [37-40, 64, 79-84]
later.

Remark 3.4. 1t is easy to see that the inequality (3.5) extends and improves (2.8) if s = 1/2, say
nothing of (2.22) and (2.23) if s =1/2.

Remark 3.5. The left-hand side inequality in (3.6) is better than the corresponding one in (2.16)
but worse than the corresponding one in (2.12) for n > 2.

Remark 3.6. The double inequality (3.6) for bounding Wallis” formula (1.5) was recovered,
refined, or generalized recently in [70, 85-94] and related references therein. For more
information on bounds for Wallis” formula (1.5), please refer to Sections 2.2, 2.3, and 7.4 of
this paper.

Remark 3.7. 1t is easy to see that

@ 1= T)(x+1)

x [T(x+1/2)] (312
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which is a special case of Gurland’s ratio

T'(x)I(y)

YA

(3.13)

defined first in [95] for positive numbers x and y.

The formula (3.12) reveals that bounds for Gurland’s ratio T(x, y) can be reduced to
bounds for I'(x) /T'(x + 1/2).

For more information on bounding Gurland’s ratio, please refer to [20, 44, 96, 97] and
related references therein. However, there does not exist a general identity similar to (3.12)
between Gurland’s ratio and the ratio of two gamma functions. As a result, considering the
limitation of length of this paper, new developments on Gurland’s ratio (3.13) will not be
involved in detail.

3.2. Erber’s Inequality

Gurland proved in [95] that

TG+ _ 6
T(6)T(6+2a) ~ 6+a?’

(3.14)

where a #0, a + 26 > 0, and 6 > 0. In [97], the following results were derived from the right-
hand side inequality in (2.23) and (3.14).

(1) Takingin (3.14) 6 =neNand a = (s +1)/2 for s € (0, 1) and rearranging lead to

[(n+1) __4n+s) T(n+1) 2
I(n+s) 4n+(s+1)21T(n+(1+s5)/2)] "

0<s<1 neN. (3.15)

Since 0 < (1+5)/2 < 1, applying the right-hand side inequality in (2.23) to the ratio
in the bracket yields a strengthened upper bound of (2.23)

1"(n+1)< 4(n+s)
F(n+s) 4dn+(s+1)>

n+1"%, 0<s<1, neN. (3.16)

(2) Letting 6 =nand 0 < s = a < 1in (3.14) and using the right-hand side inequality in
(2.23), then

[(n+s) _(n+ 1)t

T(n+2s) P 0<s<1, neN. (3.17)
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(3) After k + 1 iterations of the above process, it was obtained that

I'(n+s) < (n+1)"°
[(n+2s) (n+s?)R(n,sk)’ (3.18)
F(n+1) 3 (n+ 1)1—5 .
I'(n+s) R(ns, k)’
where
R(n,s,k) = E(n+ [(s+201-1)/2]° ’ (3.19)
(n,s, )_I;)I n+(s+2-1)/2 |

forn, ke Nand0<s < 1.

In the final of [97], it was pointed out that it is ready to verify that the limit limy _, ,R(, s, k)
exists and that it would be interesting to know the value of this infinite product in closed
form.

Remark 3.8. 1t is easy to observe that bounds for Gurland’s ratio provide a method to refine
bounds for ratio of two gamma functions. Conversely, it is also done.

3.3. Uppuluri’s Bounds

If X is a random variable defined on a probability space and E denotes the expectation
operator, then {E|X|" }1/ " is a nondecreasing function of r > 0. See [98, page 156]. Using this
conclusion, the double inequality (2.8) was recovered in [99] for x > 0 and 0 < s < 1, which
sharpens the inequality (2.23) given in [57].

Following the same lines as in [97] or Section 3.2, after k + 1 iterations, Rao Uppuluri
further obtained in [99] that

F(x+1) [x+(s-1 +2"+1)/2"+1]1_s
T(x+s) R(x, s, k) ’

(3.20)

T(x+s) [x+(s—1+2k1)/2k1]"
I'(x+2s) < (x + s2)R(x, s, k)

for x > 0,0 < s <1,and k € N, which improve inequalities (3.18).

Remark 3.9. In [74, page 48], Shanbhag pointed out that the discussion concerning (3.20) and
(3.21) in [99] is misleading.
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3.4. Uppuluri-Boyd’s Double Inequality

Motivated by (2.14) and the results in [50] (see Section 2.2), the following double inequality
for m € N was obtained in [52]:

1 9 \"*_ I(m+1) (m+1/2)? 12
<m+71+ 48m+32> STm+1/2) ° [m+3/4+9/(48m+56) : (3.21)

In [73], the left-hand side inequality in (3.21) was pointed out to be false and it was
further demonstrated by using the formula (3.1) that the inequality

I(m+1) 1 1 \V?
Tm+1/2) <m+1+am+b> (-22)

is impossible to be true for all positive integers m if a < 32. Moreover, the following double
inequality for m € N was listed in [73]:

\/m+1+ 1 L Lm+D) m+1/2 (3.23)
4 32(m+1) "T(m+1/2) ~ \/m+3/4+1/(32m + 43)

by considering

(m+1) m+1/2
T(m+1/2) T(m+3/2)/T(m+1)’ (3.24)

Reminded by [73], the author of [52] went through the computations in finding the
Bhattacharya bounds in [52] and made corrections in [100]. The double inequality (3.23) was
recovered in [100].

Remark 3.10. The technique used in (3.24) was employed once again in [76], see also
Section 3.10, and summarized in [20] as the so-called p-transform and Jr,-transform, see also
Section 4.

Remark 3.11. It is obvious that the lower bound in (3.23) is better than the corresponding ones
in (2.8), (2.11) and (2.13), (2.22) and (2.23), (2.30) and (2.31), (2.33) and (2.34), and (3.5).

3.5. Shanbhag’s Inequalities

Motivated by [99], it was first pointed out in [74] that the right-hand side inequality in (2.8)
may be deduced from the left-hand side inequality in (2.8) by observing

1-(1-s) (x+3s)'(x+5)
I(x+1)

I((x+s)+1) > (x +5)

T((x+s)+(1-5s)) ~ > (x+5)°. (3.25)
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Then, by (2.8) and the technique stated in (3.25), a more general double inequality was

established:

FarD i s) < folx, ), (3.26)

ap(x,s) <ai(x,s) <---< T(x+s)

where

1-s (k)
ak(x,s):(x+k) (x+s:k 1)
(x+Kk)®

7

(3.27)

C(x+k+s) F(x+s+k-1)®
ﬂk(x,S) = (x+k)(k)

for k >0, and

1, m=0,
y™m = (3.28)
y(y-1)-(y-m=+1), m>1

From the inequality (3.26), the following corollaries were deduced in [74]

(1) If x ¢ N, then

Bo(x) <O1(x) <+ <y(x) <--- <&1(x) < &o(x), (3.29)

where
(x + k)" ([x] + k)!
(x+k)ED 7
(3.30)

([x] + k + 1) B ([x] + k)!
Sic(x) = e D

Ok (x) =

for all nonnegative integer k and with [x] being the largest integer less than x.

(2) If 0 < s <1, then

1
s+1—1 <I'(s) < -. (3.31)
s s
(3) If x > 0,0 < s <1, and k is a nonnegative integer, then
I'(x+s
( ) <p1(xls) <P0(x/5)/ (332)

T’ZO(x,S) < Tll(x,s) <0 < m
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where

(x+s+k) " (x+2s+k-1)®

X,s) = ,
(%, 9) (x+5+K)&D .
3.33
(x+2s+ k)P (x+25+k—1)®
Pk(x/ S) = k .
(x + 5+ k)<
It was also proved in [74] that
ﬂo(xrs) < To(xls) < Tl(xls) <y,
(3.34)
po(x,s) < Py(x,s) < Pi(x,s) <---,
where
— 1 4 2k+1Y /ok+1 1-s
Tix,9) = EHET L2020
R(x,s, k) (3.35)
Ti(x,s)
P =—"=
k(x/ S) x + 52

for x > 0,0 < s <1, and k is a nonnegative integer, hence Shanbhag pointed out in [74, page
48] that the discussion concerning (3.20) and (3.21) in [99] is misleading.

Remark 3.12. The method used in [74] is the same as the technique utilized in (3.24) which
has been summarized as the s,-transform II (x, , n) in Section 4.2.

3.6. Raja Rao’s Results

Based on [57, 74, 99] and by using Liapounoff’s inequality and probability distribution
functions, the double inequalities (2.23) and (3.26) were recovered in [75].
It was also showed in [75] that

X+s
Pr(x,s) = mr (3.36)
so the inequality (3.26) can be written as
i (x, 8) < I(x+1) X+s (3.37)

I'(x+s) = ar(x+s,1-5)"
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Moreover, the following double inequalities on the hypergeometric functions were also
obtained in [75]:

?Eﬁ:g (x+s+Kk) 1< oFi(-k,1-s;x+1;1) < I;g:g (x+k),
(3.38)
x+k 2Fi(=k=1,1-s;x +1;1)]1/ 1) x+s+k
x+k+17 | 2Fi(-k,1-s,x+1;1) T x+s+k+17

where x > 0,0 <5 <1,k =0,1,2,..., and 2F(a,b;c;1) is the hypergeometric function
defined by (1.13).

In [101-104], Raja Rao established some generalized inequalities and analogues for
incomplete gamma functions, beta functions and hypergeometric functions, similar to the
double inequality (2.8).

3.7. Keckic¢-Vasi¢’s Double Inequality

In 1971, by considering monotonic properties of

x+InT(x) —xInx+alnx (3.39)

on (1,00) for &« = 1/2 or 1, respectively, among other things, Ketki¢ and Vasi¢ gave in [105,
Theorem 1] the following double inequality for b > a > 1:

bb—l b g F(b) bb—1/2 b

a%1 [(a) a+1/2 (3.40)

Remark 3.13. Taking b = x +1 and b = x + s in Kec¢ki¢ and Vasi¢’s double inequality (3.40)
gives

X+ g T+ D™

A1
(x+ s)x+s—1 T'(x+s) (x + S)x+s—1/2 (3.41)

forO<s<1land x> 0.

Remark 3.14. In [105], inequalities in (3.40) were compared with those in (2.23), (2.30), and
(2.33). For example, if taking b = n/2 and a = (n — 1)/2 and letting n be large enough, then
the double inequality (3.40) is not sharper than (2.30), say nothing of the inequality (3.23).

Remark 3.15. For more information on extensions and refinements of the inequality (3.40),
please refer to Remark 3.43 and Section 5.
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3.8. Amos’ Sharp Upper Bound

In 1973, in an appendix of the paper [106], starting with the asymptotic expansion

lnI’(z):<z—%>lnz—z+%lr\n(2yz')+L !

1 R e
12z 36023 (342)

for z > 0 and estimate R by the next term |R| < 1/1260z°, see [1, page 257, 6.1.42], the
following inequality was established in [106, pages 425-427]:

[F(x+1)) <x<1+ 1,11 6) (3.43)

—_— _— 4 —
[T(x+1/2)]? 4x  32x2  128x3  5xt

for x > 2. This expression is asymptotically correct in all terms except the last.

Remark 3.16. In virtue of the techniques used in [73-75], a lower bound for (3.43) can be
procured from its upper bound.

3.9. Lazarevi¢-Lupas’s Convexity

In 1974, among other things, the function

I(x+1)
I'(x+a)

1/(1-a) (3 44)

0utx) - |

on (0,00) for a € (0,1) was claimed in [80, Theorem 2] to be decreasing and convex, and so

1/(1-a)
—x < [[(a)]¥ 0, (3.45)

a I(x+1)
§< [F(x+0c)

Remark 3.17. Although Lazarevi¢-Lupas’s proof given in [80] on monotonic and convex
properties of 0,(x) is wrong, as commented in [64, page 240], these properties are correct,
as we know now.

Remark 3.18. Taking a = 1/2 in (3.44) leads to Watson’s monotonicity result in Section 3.1, but
the range of x here is slightly smaller. Note that Watson did not discuss in [56] the convex
property of the function 6(x) defined by (3.2).

Remark 3.19. The function 6,(x) would be extended and the same properties would be
verified in [37—40, 64, 79]. See Sections 3.20.1 and 6.1.

Remark 3.20. It seems that the problem discussed in [80, Theorem 1] on characterization of
the gamma function was further carried out by Merkle in [20, 59] and Lorch in [107] and
related references therein.
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3.10. Slavi¢’s Double Inequalities

In 1975, by virtue of (1.2), the following implications were pointed out in [76, page 19]:

flx) < r(rix++1})2) r(r:c:l ;)2) : f(xx++1l//22)’ (3.46)
e 175 <60 = 517 ST 1/ G4
In particular, adopting
g(x) =[x+ 31 + 3le+ 2 (3.48)
in (3.47) leads to
\/x " 411 T x+8+ ;6/(4x 1 < FI(;Ex:l})Z) TR 411 * 32x1+ 8" (3.49)

On basis of Duplication formula (1.7) and Binet’s first formula (1.9), the following
integral representation was also given in [76]:

I(x+1)
T(x+1/2)
(3.50)
B Lo(1-22)By  (®[tanht  &2%%(2% - 1)Bo 5 5| ain
-V exp{ék(Zk—l)x%l XL TP Y ey LR

from which, a more accurate double inequality was procured:

2m (1-272K) By T(x+1) 2! (1-272%)By
VX exp <k§; k(2k - 1)x2k—1> <STarijg VX OP <k§; k(2k — 1)x2k1 (3:51)

for x > 0, where m and ¢ are natural numbers and B, for k € N are Bernoulli numbers.

Remark 3.21. Why can the function g(x) in (3.47) be taken as (3.48)? There was not any clue
to it in [76], but the double inequality (3.49) is surely sound.

Remark 3.22. What are the ranges of x in the double inequalities (3.46), (3.47) and (3.49)?
These were not provided explicitly in [76]. As we know now, the double inequality (3.49) is
valid for x > -1/4.

Remark 3.23. It was claimed in [76] that inequalities in (3.49) are sharper than those in (3.23)
and many other inequalities mentioned above. In fact, it is true.
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Remark 3.24. 1t was also claimed in [76] that inequalities in (3.51) are sharper than those in
(3.49), but there was no proof supplied in it.

Remark 3.25. We conjecture that the constants 32 and 8 in the upper bound of (3.49) are the
best possible.

Remark 3.26. The lower bound in (3.49) would be refined by the corresponding one in (7.24)
obtained in [108, Theorem 1].

Remark 3.27. The method showed by (3.46) and (3.47) had been used in [73-75] when proving
the double inequality (3.23) and it was summarized in [20] as the p-transform in Section 4.1.
3.11. Imoru’s Refinements of Inequalities by Uppuluri-Boyd and Slavi¢

In [109], it was obtained that

m+60(m) < Tm+1) mt1/2 3.52
Fm+1/2)  \/m+1/2+0(m+1/2) (352
for
1 1
i< 0(m) < 5 (3:53)
In particular,
(1) taking in (3.52)
1 1
0(m) = : + m (3.54)

for m € N leads to

\/m+1+ 1 L Lm+1) m+1/2 (3.55)
4 32(m+1) T(m+1/2)  \/m+3/4+1/32(m+1)

an improved version of (3.23).
(2) Putting in (3.52)

1 1
O0m) = 1+ om+8+36/@m-1) (3.56)
for m € N yields (3.49).
(3) Letting in (3.52)
O(m) = 1 ! (3.57)

1" 32m+8+36/@m+5)
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for m € N gives

1. 1 _ Tm+1)
M T 32m+8+36/(Am+5)  T(m+1/2)
(3.58)

m+1/2

- \m+3/4+1/4[4m +6+9/(4m+7)]

3.12. Kershaw’s Double Inequalities and Proofs

In 1983, motivated by the inequality (2.22) in [57], Kershaw presented in [77] the following
two double inequalities for 0 < s <1 and x > 0:

s\l-s  T(x+1) 1 1\
(x+2) <r(x+s)<[x_§+<s+1) ] , (3.59)
exp[(1-s)g(x++/s)] < ?Ei i 1; < exp [(1 - s)qr(x + s;_l)] (3.60)

They are called in the literature Kershaw’s first and second double inequalities, respectively,
although the order of these two inequalities (3.59) and (3.60) reverses the original order in
[77].

Kershaw’s Proof for (3.59) and (3.60). Define the functions f, and gz by

T(x+1) 3
fol®) = Fas) (6~ Dyl + ),
L+ 1) (3.61)
_ L (x+ s-1
gﬂ(x) - r(x+ S) (x +:6)
for x > 0 and 0 < s < 1, where the parameters a and f are to be determined.
It is not difficult to show, with the aid of Stirling’s formula (1.4), that
Jim fo(x) = lim gp(x) = 1. (3.62)
Now let
B fa(x) _x+s 1-s
F(x)_fu(x+1) Tx 1Py (363)
Then
! 2 - 2a—-s-1
PO gl r@umsx (3.64)
F(x) (x+1)(x+5)(x +a)
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It is easy to show that

(1) if & = s'/2, then F'(x) < 0 for x > 0,
(2)ifa=(s+1)/2,then F'(x) >0 for x > 0.

Consequently if a = s!/2 then F strictly decreases, and since F(x) — 1as x — oo it follows
that F(x) > 1 for x > 0. But, from (3.62), this implies that f,(x) > fs(x + 1) for x > 0 and so
fa(x) > fa(x + n). Take the limit as n — oo to give the result that f,(x) > 1, which can be
rewritten as the left-hand side inequality in (3.60). The corresponding upper bound can be
verified by a similar argument when a = (s + 1)/2, the only difference is that in this case f,
strictly increases to unity.

To prove the double inequality (3.59) define

_ gﬁ(x) _x+s x+ﬂ+1 1-s
G(X)_gﬂ(x+1)_x+1< x+p ) ’ (3.65)

from which it follows that

G(x) (A-s)[(F+p-5)+(28-5)x]
G(x) (x+1)(x+s)(x+p)(x+p+1)

(3.66)

This will leads to

(1) if p=s/2,then G'(x) <0 for x > 0,
(2)if p=-1/2+ (s +1/4)"/?, then G'(x) > 0 for x > 0.

The same arguments which were used on F can now be used on G to give the double
inequality (3.59). O

Remark 3.28. The limits in (3.62) can also be derived by using (1.10).

Remark 3.29. Since the limits in (3.62) hold, the left-hand side inequality in (3.59) and the
right-hand side inequality in (3.60) are immediate consequences of the fact that f(s.1)/» and
gs/2 are decreasing on (0, o).

Remark 3.30. The spirit of Kershaw’s proof is similar to Chu’s in [51, Theorem 1]. See also
Section 2.5.

Remark 3.31. The method used by Kershaw in [77] to prove (3.59) and (3.60) was utilized to
construct many similar inequalities in several papers such as [107, 110, 111]. See Remark 3.39.

Remark 3.32. 1t is easy to see that the inequality (3.59) refines and extends the inequality (2.8),
say nothing of (2.23).

Remark 3.33. Since the function Q(x) defined by (2.26) was proved in [58, Theorem 2] to be
strictly decreasing on (-1, o), the functions

hy;s(x) = e¥HVs) <x + ;) = e¥HVs) (x ++/s — 1) - ; ++/s -1 (3.67)
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for x > —/s and

1 1 1/2
hos(x) = e? /D 1y - 5+ (s - Z)

+1 1\ /2
= g +(5+D/2) _ <x+ ST - 1) - <s+ ZL) +§

for x > —(s +1)/2, where 0 < s < 1, are both strictly deceasing. From (2.27), it follows that

(3.68)

1/2
lim Fry6(x) = V5 — % <0, lim hys(x) = % - <s + }L) <0 (3.69)

for 0 < s < 1. It is apparent that

S
hy,5(0) = e¥V5) - 5 2 Ry (s),

1 IN1/2 (3.70)
hy,(0) = e¥5*1/2) ¢ 5" <s + Z) £ hy(s)
for 0 < s < 1. Direct computation gives
1
lim 1 (s) = el - 5>0,  limn(s) = e?1/2) 5 0. (3.71)

These calculations show that neither (3.59) nor (3.60) is the outright winner. When x is large
enough, the lower bound in (3.60) is not better than the one in (3.59), but the upper bound in
(3.60) is better than the one in (3.59).

Remark 3.34. Kershaw proved in [77] that if 2x + s > 1 and 0 < s < 1 then the lower bound in
Kershaw’s first double inequality (3.59) is an improvement over the lower bound in (3.41).

Remark 3.35. In [77], Kershaw compared his upper bounds with Erber’s inequality (3.16), but
it is sure that there may be something wrong with his arguments.

3.13. Lorch’s Double Inequality

In 1984, by initially unaware utilization of Kershaw’s method in [77], see also Section 3.12,
Lorch gave in [107] the following results. For nonnegative integers k > 0, the upper bound in
the inequality

s\s1 T(k+5s) o
<k+§> <r(k+1)<(k+s) ! (3.72)

is valid for all s > 1, the lower bound in (3.72) is valid for 1 < s < 2, the left-hand side
inequality in (3.72) reverses for s > 2, and the double inequality (3.72) reverses for 0 < s < 1.
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Remark 3.36. For 0 < s < 1, the double inequality (3.72) is not better than (3.59) for 0 < s <1,
but the range of the parameter s was extended.

Remark 3.37. In the special case in which s = 1/2, the inequalities in (3.72) had been
established first by Kazarinoff in [55] and then by Watson in [56]. From Watson’s
monotonicity result in Section 3.1, the upper bounds in (3.59) for s = 1/2 and (3.72) may
be derived.

Remark 3.38. The motivation of Lorch in [107] was to refine an inequality for ultraspherical

polynomials. Inequalities in (3.72) were used in [107] to obtain a very interesting sharpened
inequality for ultraspherical polynomials:

(n + 0V (3.73)

r()»)
where 0 € [0,r] and

(/2] T(n-k+4)

(L) n—2k
P (x) = Z( D Ty DTG 2k ) &) (3.74)

for n > 0 being an integer and A > 0 being a real number. The inequality (3.73) refines the
Bernstein inequality

21- A

(cos 9)| < mn* ! (3.75)

forn>0,0< 1 <1,and 0 <0 < . Earlier in 1975, Durand generalized in [112] the Bernstein
inequality (3.75) and, as a consequence of (23) in [112], the following inequality may be
derived:

T(n/2+1)
TN (/2 +1)

(cos )| < (3.76)

forn >0,0 < A <1and 0 € 6 < . For more information on further refinements of the
Bernstein inequality (3.75), please refer to [113, pages 388-389] and the related references
therein.

3.14. Laforgia’s Inequalities

In 1984, starting from [56, 57, 77, 107] and employing more carefully Kershaw’s and Lorch’s
methods in [77, 107], by discussing the monotonicity of the function G(x) defined by (3.65)
more delicately, Laforgia constructed in [111] a number of inequalities of the type

< (x+p)”" (3.77)

for s > 0 and real number x > 0.
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Remark 3.39. As in [111], thorough analyses of Kershaw’s and Lorch’s methods had been
carried out continuously in [110, 114, 115] and [113, pages 389-390], respectively.

Remark 3.40. By discussing (3.63) subtly, the double inequality (3.60) was extended on s in
[110, Section 5].

3.15. Dutka’s Double Inequalities

In 1985, some of the extensive previous background of the papers [55, 56] associated with
bounding Wallis’s cosine formula or Wallis” product formula was outlined in [53].

On the other hand, by using continued fraction expansions for the quotient of beta
functions, several bounds for the sequence 6(n) defined by (2.15), or the function 6(x) defined
by (3.2), or the function 6,(x) defined by (3.44) were established in [53]. For n € N,

(1 + %)1/2 < @ +1< (1 - %)_m, (3.78)
2(487111—1?;) <0(n) < 8112—7—11’ (3.79)
% <8(n) < %, (3.80)

i <6(n) < 47;—113, (3.81)

and inequalities in (2.10) and (2.29) were recovered.

Remark 3.41. The left-hand side inequalities in (3.4) and (3.79) are better than the one in (3.78),
the right-hand side inequalities in (3.78) and (3.79) are better than the corresponding one in
(3.4), and the right-hand side inequality in (3.79) is better than the corresponding one in
(3.78).

3.16. Ismail-Lorch-Muldoon’s Monotonicity Results

In 1986, the logarithmically complete monotonicity of three functions related to the gamma
function or its ratio were obtained in [116, Theorems 2.1, 2.4, and 2.6].

(1) The function

XT(x) <§>x (3.82)

is logarithmically completely monotonic on (0, o) if and only if & < 1/2, so is the
reciprocal of the function (3.82) if and only if a > 1.
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(2) The function

T(x+a)
b-a
I'(x+Db) (3.83)
for a > b > 0 is logarithmically completely monotonic on (0, ) if and only if
a+b>1.

(3) Let

)

£ ~h(x)
_ 3.84
r(xd+1) (3.84)

forO<t<e™.

(a) For 0 < & < 1/2, the function h(x) is positive and h'(x) is completely
monotonic on (0, o).

(b) For 6 = 1, the functions h(x) and h'(x) are both positive and h”"(x) is
completely monotonic on (0, o).

It was conjectured in [116, page 8] that h"(x) remains completely monotonic for at least some
values of 6 > 1.

Remark 3.42. The logarithmically complete monotonicity of the function (3.82) was also
proved in [117, Theorem 2.1] early in 1978. See also [7, Theorem 2.1].

Remark 3.43. 1t is clear that the logarithm of the function (3.82) for &« = 1/2 or 1 equals the
function (3.39). Therefore, the monotonic properties of the function (3.82) may be used to
derive the double inequality (3.40) for b > a > 0 and to show the best possibilities of the
constants 1/2 and 1 in (3.40).

Remark 3.44. Since the limit (1.10) is valid, from the decreasingly monotonic property of the
function (3.83), it follows that

wp  Tlx+a) xv° T(x0 +a)
[(x+b) xi* I(xo+b)

(3.85)

fora>b>0and a+b >1holds on [xp, o) for any xy > 0. It is obvious that this extends the
left-hand side inequalities in (2.8), (2.22), and (2.23).

Remark 3.45. The conclusions in [116], mentioned above, were not stated using the
terminology “logarithmically completely monotonic function”, since the authors were not
aware of the paper [14] and related papers such as [13, 15-19, 118] have not been published
then.

3.17. Bustoz-Ismail’s Monotonicity Results

In 1986, it was revealed in [96] that
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(1) the function

1 I'x+1) 1
f(x) = o c)1/2 . T r1/2)’ x > max{—i,—c} (3.86)

is logarithmically completely monotonic on (—c, o) if ¢ < 1/4, so is the reciprocal
of (3.86) on [-1/2,00) if ¢ > 1/2;

(2) the function

apL(x+Db)

(x+c) Tx+a) (3.87)

for 1 > b—-a > 0 is logarithmically completely monotonic on the interval
(max{-a,—c}, o) if ¢ < (a+b)—1/2, so is the reciprocal of (3.87) on (max{-b, —c}, o)
ifc>a;

(3) the functions

T'(x+5s) s+1

Tt D) exp (1—s)(p<x+ T)]' (3.88)
I(x+1) s5\s!
Ticrs) (x+ §> (3.89)

for 0 < s < 1 are logarithmically completely monotonic on (0, o0);
(4) the functions

%exp((s—l)qx(x+\/§ ), (3.90)
1-s
1 1 I(x+s)
<x"§+ S+Z> T(x+1) (39D

for 0 < s < 1 are strictly decreasing on (0, o).

Remark 3.46. The monotonic properties of the function (3.86) implies inequalities (3.4) and
(3.79).

Remark 3.47. These monotonicity results generalize, extend, and refine inequalities (2.8),

(2.22), (2.23), (3.59), (3.60), monotonic properties of the function (3.83), and so on.

3.18. Alzer’s Monotonicity Result

In 1993, it was obtained in [119, Theorem 1] that

T(x+s) (x+1)*1/?2 exp<s_1+(p’(x+1+a)—qf’(x+s+a)>

92
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fora > 0 and s € (0,1) is logarithmically completely monotonic on (0, o) if and only if
a >1/2, so is the reciprocal of (3.92) for « > 0 and s € (0,1) if and only if & = 0.
In [120, Theorem 3], a slight extension of [119, Theorem 1] was presented. The function

T(x+s) (x+t)*1/2 exp(s . ¢ x+t+a)—¢(x+s+ a)) (3.93)

F(x+1) (x +g)*1/2 12

for 0 < s < tand x € (0, o0) is logarithmically completely monotonic if and only if & > 1/2, so
is the reciprocal of (3.93) if and only if & = 0.
The decreasingly monotonic properties of (3.93) and its reciprocal imply that

¢ (x+s+p)—¢'(x+t+p) [(x+s) (x+t)*12
eXp<t—s+ 5 < T(x+b) (x+s)x+5_1/2

5exp<t—s+ qf’(x+s+a)1—2qf’(x+t+a)>
(3.94)

fora > p > 0arevalid for0 <s <tand x € (0,00) ifand onlyif f=0and a > 1/2.

Remark 3.48. The inequality (3.94) is a slight extension of the double inequality (2.6) in [119,
Corollary 2].

Remark 3.49. In [119, Theorem 4], Ketki¢-Vasi¢’s double inequality (3.40) for b > a > 1 was
refined and sharpened. For detailed information, see Section 5.2.

3.19. Ismail-Muldoon’s Monotonicity Result

In 1994, it was obtained in [7, Corollary 2.4] that, for a > 0, the function

X (x)
(x+a)"T(x + a)

(3.95)

is logarithmically completely monotonic on (0, o) if and only if &« < 1/2, so is the reciprocal
of (3.95) if and only if a > 1.

3.20. Elezovi¢-Giordano-Pecaric’s Results
3.20.1. The First Result

A standard argument shows that inequality (3.59) can be rearranged as

s [T(x+1)1Y0) 1 1 (3.96)
§<[m s \et: Ty
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Therefore, monotonic and convex properties of the general function

[r(x+t) 1/(t*S)
-Xx, S#t,
zer(x) = § LT(x+9) (3.97)
e¥x+s) _ x, s=t

for x € (—a, o), where s and t are two real numbers and @ = min{s, t} was considered in [64,
Theorem 1] and obtained by the following theorem.

Theorem 3.50. The function z,,(x) is either convex and decreasing for |t — s| < 1 or concave and
increasing for |t — s| > 1.

As consequences of Theorem 3.50, the following useful conclusions are derived.

(1) The function

e _ (3.98)

for all t > 0 is decreasing and convex from (0, o) onto (e¥®, t — (1/2)).
(2) Forall x >0,

o' (x)e?™ < 1. (3.99)
(3) Forallx >0and t >0,
1 ®
In x+t—§ <(,u(x+t)<lr1<x+e"I > (3.100)
(4) For x > —a, the inequality
1/(t-s) _
[F(x+t)] - t-s (3.101)
I'(x +5) gx+1t)—g(x+s)

holds if |t — s| < 1 and reverses if |t — s| > 1.
Remark 3.51. Direct computation yields

z's',t(x) gl +t) —g(x+s) 2+ ¢ (x+t)—¢'(x+5)

- (3.102)
Zst(x) +x t—s t—s

To prove the positivity of the function (3.102), the following formula and inequality are used
as basic tools in the proof of the following [64, Theorem 1].
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(1) For x > -1,

/1 1
g(x+1) =—Y+k§:;<E— x+k>. (3.103)

(2) Ifa<b<c<d,then

1 1 1 1
S O 3.104
ab ' cd ac ' bd ( )
Remark 3.52. In [39, 40], a new proof for [64, Theorem 1] was supplied by making use of
(1.28) and Theorem 1.19 on the logarithmically convex properties of g, 4(t).

Note that a similar proof to [39, 40] for [64, Theorem 1] in the case of |t — s| < 1 was
also given in [79].

Remark 3.53. Actually, the function (3.102) is completely monotonic under some conditions
about s and t. This was verified in [81-84], and so several new proofs for [64, Theorem 1]
were supplied again; see Section 6.2.

Remark 3.54. Inequality (3.99) was recovered in [121, Lemma 1.2].

Remark 3.55. It is easy to see that Elezovi¢-Giordano-Petari¢’s first main result generalizes
Watson’s monotonicity result in [56] and Lazarevi¢-Lupas’s convexity result in [80]; see
Sections 3.1 and 3.9.

Remark 3.56. In fact, function (3.98) is deceasing and convex on (—t, o) for all t € R; see [58,
Theorem 2].

Remark 3.57. 1t is clear that the double inequality (3.100) can be deduced directly from the
decreasingly monotonic property of (3.98). Furthermore, from the decreasingly monotonic
and convex properties of (3.98) on (~t, ), inequality (3.99) and

¢ (x) + [¢' (0)]* >0 (3.105)

on (0, 00) can be derived straightforwardly.

Remark 3.58. Inequalities (3.99) and (3.105) were recovered [122, page 208] and [121, Lemma
1.1]. Inequality (3.105) has been generalized to the g-analogues in [123, Lemma 4.6] and to the
complete monotonicity of divided differences of ¢(x) and ¢'(x) in [81-84]; see Section 6.2.

3.20.2. The Second Result

It is easy to see that inequality (3.60) can be rewritten for s € (0,1) and x > 1 as

[(x+1)]Y0 s+1
<exp[qx<x+ 5 >

T(x+s)

exp[y(x++/s)] < [ (3.106)
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Now it is natural to ask: What are the best constants 61 (s, t) and 6,(s, t) such that

1/(t-s)

[x+?) <exp[y(x +62(s,1))] (3.107)

I'(x+5s)

expys(x + 61 (s, )] < [

holds for x > —min{s, t,61(s,t), 62(s,t)}? where s and t are two real numbers.
Elezovi¢-Giordano-Pecari¢’s answer is the following [64, Theorem 4]. If the integral
g-mean of s and f is denoted by

t
Iy =I,(s,t) = ¢~ <% f qf(u)du>, (3.108)
- s
then the inequality
1 s+t
p(x+1I,(s,1)) < P qr(x+u)du<qf<x+ - (3.109)

is valid for every x > 0 and positive numbers s and t.

Remark 3.59. 1t is clear that Elezovi¢-Giordano-Pecari¢’s second main result [64, Theorem 4]
is not the outright winner surely, since the ranges of s and t in (3.109) are restricted to be
positive and the lower bound in (3.109) cannot be calculated easily.

Remark 3.60. The question (3.107) was also investigated in [124-127] and has been
generalized in [128-133]; see Section 6.4.1 and Section 6.4.2.

3.20.3. The Third Result

The function (3.88) and its monotonicity were generalized in [64, Theorem 5] and [39,
Proposition 5] and [40, Proposition 5] as follows. The function

1/(s—t)
exp <(p (x + STHE)> (3.110)

is logarithmically completely monotonic for x € (—a, o), where s and ¢ are two real numbers
and a = min{s, t}.

[(x+t)
[F(x +5)

Remark 3.61. In [39, Proposition 5] and [40, Proposition 5], as a consequence of the
logarithmically complete property of the function (3.110), the right-hand side inequality in

(3.106) was extended as
s+t 1/(t-s)
exp [(p <x + >

(3.111)

T'(x+t)
[m




Journal of Inequalities and Applications 43

3.21. Some Results from the Viewpoint of Means

It may be worthwhile mentioning the paper [134, 135] in which some monotonicity and
inequalities for the gamma and incomplete gamma functions were constructed by using
properties of extended mean values E(r,s;x,y) or generalized weighted mean values
M (1, s;x,y). For example, the inequality

e <T(x+1) <D (3.112)
is valid for x > 0 and the functions

y(s,x)

3.113
’ [Y(r,x) (G119

[F(s, x)]l/(s—r)

1/(s-r)
I(r, x) ]

are increasing in r > 0, s > 0 and x > 0, where I'(s,x) and y(s, x) denote the incomplete
gamma functions with usual notation.

Remark 3.62. The right-hand side inequality in (3.112) is valid for x > —1 and takes an equality
at x = 0. Moreover, it can be rearranged by (1.2) and (1.3) as

xl(x) <@ x> 1. (3.114)

But this inequality is not better than those in [136] for bounding the gamma function I'(x).

3.22. Batir’s Double Inequality

It is clear that the double inequality (3.60) can be rearranged as

w(x+ﬁ)<1nr(x+1i:1snr(x+s) <¢<x+%> (3.115)

for 0 < s < 1and x > 1. The middle term in (3.115) can be regarded as a divided difference
of the function InT'(f) on the interval (x + s, x + 1). Motivated by this, Batir generalized and
extended in [137, Theorem 2.7] the double inequality (3.115) as

| g™l - l¢™ )] .
~|o DLy (. 9)) | < <y <=|gtD (A, y))| (3.116)
which bounds the divided differences of the polygamma functions, where x and y are
positive numbers, n a positive integer, A(x, y) and L,(a, b) are defined by (1.29).

Remark 3.63. In [138, Theorem 2.4], the following incorrect double inequality was obtained:

e iey-n ¢ L) pwppacy) (3.117)

" I(y)
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where x and y are positive real numbers, and L(x, y) and A(x, y) are mean values defined in
Section 1.6.4.

Remark 3.64. Inequalities in (3.116) and (3.117) have been corrected and refined in [128-133],
respectively. See Section 6.4.2.

3.23. Further Remarks

Remark 3.65. In [139, 140], by using a method of the geometric convexity for functions,
the authors presented some known and new results on the ratio of two gamma functions,
including a refinement of (3.6).

Remark 3.66. In [141], the authors investigated some general cases seemingly related with the
ratio of two gamma functions but essentially similar to the f-means in [142] and some results
appeared in [121, 137, 138].

4. Merkle’s Methods and Inequalities

It is known that Merkle did many researches on bounding the ratio of two gamma functions
and has his own particular methods, approaches, and notations; therefore, this section is
devoted to summarize his results and to present his methods on this topic.

Merkle himself said in [20] that his method is founded on certain general convexity
results, as well as on integral representations of error terms in some classical and related
inequalities.

4.1. The p-Transform

This transform has been known since [73-76]; see inequality (3.23) in Section 3.4 and
inequalities (3.46) and (3.47) in Section 3.10.

The inequality
A(x, B) < % (4.1)
implies, replacing x by x + fand fby 1 -,
A(x+p,1-p) < 11:8—:;; (4.2)
and therefore
a+h) ol (43)

T(x) ~A(x+p1-p)

so, only the lower bound (4.1) is enough, or vice versa. It is said that inequality (4.3) is derived
from (4.1) by a p-transform.
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4.2, The r,-Transform

This transform was firstly applied in [74, 75], see also Sections 3.5 and 3.6. It works for
inequalities of both the ratio of two gamma functions and Gurland’s ratio.
Forn e N, let

x(x+1)---(x+n-1)

Uehm) = e pr) (e prn-D) (#4)
Start from the inequality
% < B(x,p), (4.5)
write it for x + n and f and then apply the recurrence (1.2), to obtain
M<B(x+n B)(x,p,n) (4.6)
I'(x) ~ ’ A '
Similarly, for an inequality
TOry) g
—— 5 < , 4.7
(s )/ (x,v) (47)
one obtains
O Bty o), (43)
[F(Ge+/2))°
where
(x+y)(x+y+2)° - (x+y+2n-2)°
p(x,y,n) = (4.9)

22x(x+ 1) (x+n-Dy(y+1)-(y+n-1)

Remark 4.1. The p-transform and the ir,-transform are connected closely. The techniques
among these transforms are essentially the same, that is, using formula (1.2) iteratively.

4.3. Convexities Used by Merkle

The following texts are the main conclusions that Merkle used in his papers bounding the
ratio of two gamma functions.
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4.3.1. Convexities of a Divided Difference

Let f : I CR — Rhave a continuous derivative f’ and let

f(y) - f(x)

Floy) == =

(4.10)

on I? for x#y, and F(x,x) = f'(x). Then it was obtained in [59, pages 273-274] that the
following conclusions are equivalent to each other:

(1) f'is convex on I,
(2) f'((x+y)/2) < F(x,y) forall x,y of I,
(3) F(x,y) < (f'(x)+ f'(y))/2forall x,y of I,
(4) F is convex on I?,
)

(5) F is Schur-convex on I2.

4.3.2. Convexity of the Error Term for Asymptotic Expansion of the Gamma Function

The function

InT(x) - (x - %) Inx+x- %11‘1(2.72') i (4.11)

2 2k(2k 1)x2k I

is convex on (0, o0) if 7 is even and it is concave if n is odd. See [62, Theorem 1].

Remark 4.2. The complete monotonicity of the function (4.11) was proved in [31, page 383,
Theorem 8] and [143].

4.3.3. Convexity of a Function Involving the Gamma and Tri-Gamma Functions

The following convexity were proved by [61, Theorem 1]. If

F,(x) =InT(x) - (x—%)lnx— qu (x+a), (4.12)

then the function Fy(x) is strictly concave and the function F,(x) for a > 1/2 is strictly convex
on (0, o0).

4.4. Discrete Inequalities Produced by Convexities

By utilizing the above convexity or their corresponding concavity, the following discrete
inequalities for bounding the ratio of two gamma functions were demonstrated in term of
Merkle’s own expressions, notations, and style.
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4.4.1. The First Kind Bounds for the Ratio of Two Gamma Functions

In 1996, the following recurrent conclusions were obtained by using the convexity of the
function (4.11) in [62, Theorem 2]. Let By be Bernoulli numbers, Ly(x) =0,

2n
L(x) = Lon(x) = —; W, neN, (4.13)
R(x) = Rops1(x) = —Mf%, neNuU {0}, (4.14)
“ 2k (2k - 1)x
U(x,p,S) =S(x) = pS(x—1+p) = (1-B)S(s + p), (4.15)

V(x,B,S)=-U(x+p,1-p,S) = (1-p)S(x) +pS(x+1) - S(x+p), (4.16)

x-1 P(x b
A(x, p) = (S x(x_;f) ] , x>1-p, (4.17)

x=1/2+p

(x+ )

x
B(x,B) = = , 0. 4.18
(F) Alx+p,1-p)  x0-AGE-1/2) (5 4 1)PE+1/2) x> (4.18)
Then for € [0,1] and x > 1 — , we have
U (x,B,L(x)) I'(x+p) V(x,pL(x))
e w A(x,ﬂ)gwfe w B(x,ﬁ),
(4.19)

eV(x,ﬂ,R(x))B(x,ﬁ) < w < eU(x,ﬂ,R(x))A(x,ﬁ).
X

With equalities if and only if f = 0 and = 1. As x — oo, the absolute and relative error in all
four inequalities tends to zero.
In [62, Theorem 3], it was obtained that, for x > (1 - f)/2and p € [0,1],

r(x+p) 1-p 1-p\
Tx) > <x T2 T axs 12> ’ (4.20)

with equality if and only if = 0 and f = 1.

4.4.2. The Second Kind Bounds for the Ratio of Two Gamma Functions

In 1998, by the convexity of InI'(x) and convex properties mentioned in Section 4.3.1, the
following inequalities were obtained in [59].
(1) For positive numbers x and v,

gx)+¢(y) InT(y)-InT(x) 1 (¥ x+y
> < y—x = y—x L ¢(u)du < (p(T> (4.21)
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If letting v = x + f for § > 0 in (4.21), then

exp<'ﬁ[(p(x) +2(p(x +P)] > < F(;c(;)ﬁ) < exp(ﬁqx(x + g)) (4.22)

(2) Forx>0and 0< <1,

L(x+p) | xPCP2(x 1)P+)/2

> (4.23)
I'(x) x+p
The equalities in (4.23) hold for f =0 and g = 1.
(3) Forx>0and 0<p <1,
TG P) o ep-pace, (4.24)
F(x
(4) Forx>0and f<1/2,
T 2
(If‘(; ﬂ) £ P10-2P) o <ﬁ1( 2§ ) g (x+ ﬁ)). (4.25)
(5) For x >0and >0,
T'(x+3p) <<F(x+2ﬁ)>2 (4.26)
I'(x) T(x+p) /)~ '
(6) For x > 0,
1n<x—%> S(pglnx—%. (4.27)

Remark 4.3. The lower bound in (4.24) is closer than the one in (4.22). The upper bound in
(4.22) was also obtained in [57]. The lower bound in (4.22) is closer than a lower bound in
[57].

4.4.3. The Third Kind Bounds for the Ratio of Two Gamma Functions

The inequality in the right-hand side of (2.22), the double inequalities (3.60) and (3.94) for
t =1 are rewritten in [61] as

1"(;c(+)[3) <exp(Py(x+p)), 0<p<1, x>0, (4.28)

exp<ﬁ¢<x+ﬂ—1+ﬂ>> <%<exp<ﬂ(ﬁ<x+g>> (4.29)
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forO0<p<landx-1+p>0;

(x+p)* 12 ¢'(x+B) -¢'(0)\ _T(x+p)
iz PP 12 ST
(4.30)

xx-1/2

- (x+ )" exp<—[3+ (P'(x+ﬂ+c;)2—(l"(x+a)>

forpe(0,1),x-1+p>0,anda>1/2.

By using the convex properties of F,(x) defined by (4.12) and the mean value theorem
for derivative, the double inequality (4.30) was extended in [61, Corollary 1] to x > 0, > 0
and a >1/2.

By making use of the convex properties of F,(x) defined by (4.12) and Jensen’s
inequality for convex functions, the following double inequalities were presented in [61,
Corollary 2].

(1) Iff € (0,1) and s > 1/2, then

Alx, p) exp<ﬁ(p’(x+a—1 +p) + (1 —fz)(p'(x+a+,[5) —(p’(x+a)>

(4.31)

<

[(x+p) py'(x-1+p)+ (1 -Py'(x+P) ~¢'(x)
) < A(x,p) exp< B >

holds for x > 1 — 3, where A(x, p) is defined by (4.17).

(2) Ifpe (0,1) and s > 1/2, then

(x —(1-P)g'(x) - py'(x +1 I'(x
B(x,p)exp<‘1’( +p) - ( ﬁl)zqf( ) = Py’ (x + )> < (F(;_)ﬂ)
(4.32)

<B(x,p) exP<‘/"(x+a+ﬁ) -1 —ﬂ)if’z(x+a) —ﬁ‘lf'(x+a+1)>

holds for x > 0, where B(x, p) is defined by (4.18).

(3) If p > 1, then the reversed inequalities of (4.31) and (4.32) hold for x > 0.

In [61, Theorem 1], it was proved that the double inequality (4.32) for g € (0,1) and
x > 0 is sharper than (4.30).

It is pointed out that an advantage of inequalities based on convexity is that they can be
infinitely sharpened. As an example, the following inequality was shown in [61, Theorem 3].
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For any x > 0 and f € (0,1), the inequality

F(x+ﬁ) x(x+1)---(x+n-1)A(x+mn,p)
['(x) (x+ﬁ)(x+ﬂ+1) (x+p+n-1)

Xexp<ﬁ(p’(x+n—1+ﬂ)+(1—ﬂ)qr’(x+n+ﬁ)—qr’(x+n)>

(4.33)

12

holds for n € N.

By proving the fact that the function (4.10) applied to f(x) = InI'(x) is Schur-convex
for x > 0 and y > 0, inequality (4.22) was recovered in [61, Corollary 3] and was proved in
[61, Theorem 5] to be sharper than (4.29).

4.4.4. The Fourth Kind Bounds for the Ratio of Two Gamma Functions

In 1999, Merkle used in [43, Section 4] only the convex property of InT(x) to discover the
left-hand side of Wendel’s double inequality (2.8) and

I'(x+p)

e < (x+n)l(x,p,n), x>0, pe[0,1], (4.34)
F(x ﬁ)>( -1+ﬁ)” x>0, pe0,1], (4.35)
I'(x+p) > (x+n-1+p)T(x,p,n), x>0, pe0,1], (4.36)
I'(x)

Lx+p) > [x(x-1+p)]"?, x>0, pe[0,1], (4.37)

I'(x)

'w) x)/2

Too) 2 > [(x-1)y] W2 0<x<y. (4.38)

It is easy to see that (4.37) is sharper than (4.35) and (4.38); however, (4.38) is not restricted
toy—-x<1.

4.4.5. The Fifth Kind Bounds For the Ratio of Two Gamma Functions

n [60], the author rediscovered by the same method as in [59, 61, 62] inequalities (4.27),
(4.22), (4.26) and gave by using the f-transform the following inequalities:

II(x,n,p) exp<ﬂ[qr(x +n) +2</r(x+n +P)] > < r(lic(;)ﬂ) <I(x,n,p) exp(ﬁq;<x+ n+ §>>’

n-1 1 n-1
l<x+n——> 2%k Sq;(x)gln(x+n) 2(x+n) 2.

k’

+ =

X
(4.39)
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4.5. Further Remarks

Remark 4.4. Actually, a wonderful survey of Merkle’s methods, tools, and techniques which
can be used to produce inequalities for the gamma function has been given in [20]. Therefore,
the readers should refer to [20] for the very real ideas and spirits of Professor Merkle.

5. Refinements and Extensions of Keckic¢-Vasi¢’s Inequality

Due to the importance of Kecki¢-Vasi¢’s double inequality (3.40) and the enrichment of
results on it, now we devote this special section to this topic.

5.1. An Extension and the Sharpness

In Section 3.7, Ketki¢-Vasi¢’s double inequality (3.40) obtained in [105] was introduced. An
extension and the sharpness of (3.40), followed by the decreasingly monotonic property of
the function (3.82) considered in [116], has been claimed in Remark 3.43.

5.2. Alzer’s Refinement and Sharpness

In 1993, Kecki¢-Vasi¢’s double inequality (3.40) was rearranged in [119, page 342] as

b\ 2T (b) ba b T(b)
<E> @) <[I(a,b)]" " < 2 T (5.1)
forb > a > 1, where
1/(b-a)
I(a,b) = %(;) (5.2)

for a > 0 and b > 0 with a#b is the so-called identric or exponential mean; see [25, 27-29].
This provides a relationship between the identric and the gamma function.
Alzer in [119, Theorem 4] sharpened the inequality (5.1) as

(Z)% < [I(a,b)]"™ < <g>ﬂ% (5.3)

forb>a>1ifandonlyifa<1/2and g >y.
If setting b = x + 1 and a = x + s, then inequality (5.3) witha =1/2 and f§ = y yields

(x+1)™ | T(x+1)  (x+1)"V2

(x +8)*" T'(x+s) (x + S)x+s—1/2 (54)

for all real numbers x and s satisfying s <1and x +s > 1.
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Remark 5.1. The lower bound in (5.4) improves the corresponding one in (3.41).

Remark 5.2. The double inequality (5.4) is not better than (3.94).

5.3. ABRVV’s Monotonic and Log-Convex Functions

In 1995, by using the monotonicity of ©;(x) defined by (1.34), it was proved with no
any application in [30, Theorem 3.2] that the function x!/2*e*T'(x) is decreasing and
logarithmically convex from (0,c0) onto (v2rr,00) and that the function x'™*e*I'(x) is
increasing and logarithmically concave from (0, c0) onto (1, o).

It is remarked in [30, page 1720] that a result similar to the above monotonic and log-
convex properties appears in [144, page 17].

Remark 5.3. These conclusions extend the corresponding results in [105], are particular cases
of properties of the function (3.79) in [116], and may be used to establish the double
inequality (3.40) for b > a > 0.

Remark 5.4. The convex properties of these two functions can be applied to obtain bounds for
Gurland’s ratio (3.13), as done in [145] and mentioned in Remark 5.7 below.

5.4. Alzer’s Necessary and Sufficient Conditions

In 1997, the monotonic and convex properties of the function (3.82) were slightly extended
in [31, page 376, Theorem 2]. For ¢ > 0, function (3.82) is decreasing on (c, oo) if and only if
a <1/2 and increasing on (c, o) if and only if

o>

{@1((:) if ¢ >0, 55

1 if c=0.

Remark 5.5. From these monotonic properties, Ke¢ki¢-Vasi¢’s double inequality (3.40) may be
generalized as follows. If b > a > ¢ > 0, then the double inequality (5.3) holds if and only if
a<1/2and f > O1(c).

5.5. Chen-Qi’s Necessary and Sufficient Conditions

In 2006, the following necessary and sufficient conditions were demonstrated in [146]. For
a € Rand f > 0, the function

eT(x+p)
fap(x) = i (5.6)
is logarithmically completely monotonic on (0,00) if 2a < 1 < f; the function f,1(x) is
logarithmically completely monotonic on (0, o) if and only if 2a < 1; so is the function
[fa1 (x)]7" on (0, o0) if and only if & > 1.
From monotonic properties of f1,21(x) and [fi, (x)]7!, Keeki¢-Vasi¢’s double inequal-
ity (3.40) obtained in [105] was extended in [146] from b >a>1tob > a > 0.
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Remark 5.6. The functions defined by (3.39) and (3.82) and discussed in [30, Theorem 3.2] are
particular cases of the function f, s(x) defined by (5.6).

Remark 5.7. From convex properties of f1,,1(x) and [f1.1 (x)]_1 and Jensen’s inequality (1.26),
bounds for Gurland’s ratio (3.13) were established in [145]. For positive numbers x and y,

xx—l/Zyy—l/Z xx—lyy—l

T(x,y) L —————.
< (x y) < [(x+y)/2]x+y—2

——————— = < 5.7
[(x+y) /2] 57

The left-hand side inequality in (5.7) is same as the corresponding one in [44, Theorem 1],
but their upper bounds do not include each other.

5.6. Guo-Qi-Srivastava’s Double Inequality

For p e R, let
(X)) = ———— (5.8)
X +

on the interval (max{0,-f}, o). In [147, 148], it was showed that the function gs(x) is
logarithmically completely monotonic if and only if f > 1 and that the function [ g,,,,ﬁ(x)]_1 is
logarithmically completely monotonic if and only if § < 1/2.

As consequences of the monotonicity results of the function gs(x), the following two-
sided inequality was derived in [148]

(x+1)x+1 -

T(x+1)  (x+1/2)/2
+1e < 1/2 Y
(y+1)" Fy+1)  (y+1/2)"

eV ™ (5.9)

or, equivalently,

11 T(x+1)]Y¥
- z 5.10
I<x+2,y+2> < [F(y+l)] <I(x+1ly+1) (5.10)

for y > x > 0, where the constants 1 and 1/2 in the very left and the very right sides of the
two-sided inequalities (5.9) and (5.10) cannot be replaced, respectively, by smaller and larger
ones.
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Remark 5.8. By convex properties of gs(x) and Jensen’s inequality (1.26), a new double
inequality for a generalization of Gurland’s ratio (3.13) may be deduced. For n € N, xx > 0
for 1 <k <n, and pi > 0 satisfying >,}_; px = 1, the inequality

(Shct i) Ty (e + P T [P

[y Pl + b)) T PO o T(Sg prock)

(5.11)
(Zzzl kak)szl (xk + a)Pk(Xk+a)

< n
[y i + @) 2 PO O

holds if and only if a < 1/2 and b > 1. In particular, Gurland’s ratio (3.13) can be bounded by

254y 202 (x4 y)z(x +b)¥*t (y+ b)y”’
x+y+2b < T(x’ ]/)

xy(x+1y+2b
y(x +y+2b) 512)
XY (x4 y)z(x +a)"" (y +a)’™

< x+y+2a

xy(x+y +2a)
if and only if a < 1/2 and b > 1, where x and y are positive numbers.

5.7. Some More Keckic-Vasi¢ Type Inequalities
5.7.1. Guo-Qi-Srivastava’s One-Sided Inequality
In 2008, some new conclusions of the function f, s(x) were procured in [149].

(1) If p € (0,0) and a < 0, then f, g is logarithmically completely monotonic on (0, o).

(2) If p € (0,00) and f, 4 is a logarithmically completely monotonic function on (0, o),
then a < min{p,1/2}.

(3) If p > 1, then f, 4 is logarithmically completely monotonic on (0, o) if and only if
a<1/2.

As direct consequences of monotonic properties above, a Ketki¢-Vasi¢ type inequality
is deduced immediately. If a and b are positive numbers with a # b, then

(1) the inequality

I(a,b) > [(%)ﬂ I;EZ—I[’;;] e (5.13)

holds true for g > 1 if and only if & < 1/2;
(2) inequality (5.13) holds true also for p € (0, 0) if & < 0.
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5.7.2. More Inequalities by Guo and Qi

Subsequently, a necessary and sufficient condition and a necessary condition for [ f,,,,;;(x)]’1
to be logarithmically completely monotonic on (0, c0) were established in [150] as follows.

Theorem 5.9 (see [150]). If the function [ f,,,,ﬂ(x)]_1 is logarithmically completely monotonic on
(0, 00), then either p > 0 and a > max{f,1/2} or p =0and a > 1.

Theorem 5.10 (see [150]). If B > 1/2, the necessary and sufficient condition for the function
[ f,,,,ﬁ(x)]_1 to be logarithmically completely monotonic on (0,00) is a > p.

As the first application of Theorem 5.10, the following inequalities are derived by
using logarithmically complete monotonicity of the functions [ f,,,,p(x)]il on (0, o).

Theorem 5.11 (see [150]). Let B be a positive number.

(1) For k € N, double inequalities

1 1
i -, 5.14
Inx p <g(x) <Inx ox (5.14)
k-1)! k! k-1)! k!
( - ) S (—1)F1gs® () < (k1! o (5.15)
hold on (0, 0).
(2) When p > 0, inequalities
¢(x+p) Slnx+§,
(5.16)
_ (k-2)! pk-1)!
(DD (e p) 2 -
hold on (0, oo) for k > 2.
(3) When p > 1/2, inequalities
— 7)1
g(x+p) >Inx, (-1)kgkD (x+p) < (kxT%) (5.17)
hold on (0, oo) for k > 2.
(4) When B > 1, inequalities
-1/2
¢(x+pP) Slnx+ﬂ x/ ,
(5.18)

k—-2)! -1/2)(k-1)!
(“1)5® D (x + ) > (xkj)' (P )(k—1)

xk

holds on (0, oo) for k > 2.
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As the second application of Theorem 5.10, the following inequalities are derived by
using logarithmically convex properties of the function [ f,,,,p(x)]il on (0, 0).

Theorem 5.12 (see [150]). Let n € N, xi > 0 for 1 < k < n, p > 0 satisfying >,;_, px = 1. If either
p>0anda <0orp>1and a <1/2, then

(xg+p—a)
1§ YNGR ) D | VT S

I = " . (5.19)
T'( Xk prxe + ) (Zzzl pkxk)Zk:1 PrXk+p-a

Ifa > p>1/2, then inequality (5.19) reverses.

As the final application of Theorem 5.10, the following inequality may be derived by
using the decreasingly monotonic property of the function [ ft,,,ﬂ(x)]_1 on (0, o).

Theorem 5.13 (see [150]). Ifa > > 1/2, then

apL 1/ (x-y)
o (5 5]
holds true for x,y € (0, 00) with x # y.

Remark 5.14. The double inequality (5.15) and its sharpness can also be deduced from [45,
Thorem 1.3] and [46, Thorem 3].

5.8. Guo-Zhang-Qi’s Inequality

In 2008, by using the monotonicity and convexity of the function ©;(x) defined by (1.34), it
was showed in [136] that the function

h(x) = o (5.21)
on (0, ) has a unique maximum e at x = 1, with the following two limits:
1irr01+h(x) =1, lim h(x) = V2. (5.22)

As consequences of the monotonicity of the function h(x), it was concluded in [136]
that the following inequality:

x©10T(x) ] 1/(x=y) 523)
yel (y)r(y)

I(x,y) < [

holds true for x > 1and y > 1 with x#y.If 0 < x <1 and 0 < y < 1 with x #y, the inequality
(5.23) is reversed.
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5.9. Further Remarks

Remark 5.15. The above discussins show that Ke¢ki¢-Vasi¢ type inequalities and bounds for
Gurland’s ratio (3.13) may be established, respectively, from the monotonic and convex
properties of the same functions. Kecki¢-Vasi¢ type inequalities follow from the monotonic
properties while bounds for Gurland’s ratio (3.13) do from the convex properties.

6. Qi and His Coauthors’ Results

Beginning from 2005, a large part of my academic attention was concentrated on bounding
the ratio of two gamma functions.

6.1. Proofs of Elezovi¢-Giordano-Pecari¢’s Monotonicity Result

In [39, 40], by making use of the convolution theorem (1.28) for Laplace transform and
Theorem 1.19 on logarithmically convex properties of the function g,4(x) defined by (1.35),
a new proof of [64, Theorem 1], that is, Theorem 3.50 in Section 3.20.1, was given.

By a similar approach to the one in [39, 40], a concise proof for [64, Theorem 1] was
presented in [37, 38] recently.

6.2. Complete Monotonicity of Divided Differences

After giving a new proof for [64, Theorem 1], complete monotonicity of the function (3.102),
which involves divided differences of the digamma and trigamma functions, was considered
in [81-84] by employing one of the main results in [151, 152].

Our main results can be stated as follows.

Theorem 6.1. Let s and t be two real numbers and a = min{s, t}. Define

px+t)—g(x+s) _ 2x+s+t+1
t—s 2(x+s)(x+1t)’
1 1
"(x+s) - - , s=1,
v ) xX+s 2(x+s)2

S#t,

s4(x) = (6.1)

on x € (—a,o0). Then the functions 64(x) for |t — s| < 1 and —64(x) for |t — s| > 1 are completely
monotonic on x € (—a, o).

Theorem 6.2. Let s and t be two real numbers and a = min{s, t}. Define

q;(x+t1:zf(x+s) 2+qf’(x+t1:<:r’(x+s), st
Agp(x) = (6.2)

»
Il
-
N

[¢/(x+3)]* +¢"(x+9),

on x € (—a, o). Then the functions Ag(x) for |t — s| < 1 and —Ag;(x) for |t — s| > 1 are completely
monotonic on x € (—a, o).
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Theorem 6.3. Let k be a nonnegative integer and 6 > 0 a constant.
Ifa>0andb >0, then

k

k k
6.3
Z a + 6)1+1 b+ e)k —i+1 Z al+1bk i+1 ZO (El + 6)l+lbk itl ( )

i=0

holds for b — a > -0 and reveres for b — a < 0.
If a < -0 and b < -0, then inequalities

2k 1 ok 2Kk .
= (a + 6)i+1 (b + 9)2k—i+1 + % ai+1b2k_i+1 > 2% W, (64)
2k+1 k41 et
1 1
6.5)

. . - — <2y —
% (a +9)1+1(b+6)2k—l+2 + % a1+1b2k—l+2 Z (a +6)l+1b2k_i+2

i=0

hold for b — a > —0 and reverse for b—a < —0.

If -0 < a < 0and -0 < b < 0O, then inequality (6.4) holds and inequality (6.5) is valid for
a+b+0>0andis reversed for a+b + 6 < 0.

If a < -0 and b > O, then inequality (6.4) holds and inequality (6.5) is valid fora+b+6 >0
and is reversed for a+ b+ 0 < 0.

Ifa > 0and b < -0, then inequality (6.4) is reversed and inequality (6.5) holds for a+b+6 < 0
and reverses for a+b+ 6 > 0.

If b = a — 0, then inequalities (6.3), (6.4), and (6.5) become equalities.

Theorem 6.4. Inequality (6.3) for positive numbers a and b is equivalent to Theorem 6.1.

Remark 6.5. One of the key tools or ideas used in the proofs of Theorems 6.1 and 6.2 is that
if f(x) is a function defined on an infinite interval I and satisfies lim,_,o f(x) = 6 and
f(x) = f(x +¢) >0 for x € I and some fixed number ¢ > 0, then f(x) > 6. This lemma has
been validated in [81-83, 151, 152] and related references therein to be especially successful
in proving the monotonicity, the complete monotonicity, and the logarithmically complete
monotonicity of functions involving the gamma, psi, and polygamma functions.

Remark 6.6. It is clear that the complete monotonicity of the functions 6,(x) and Ags(x) in
Theorems 6.1 and 6.2 generalize the positivity and complete monotonicity of the function

Y -5 (66)

on (0,00), presented in [153, 154], [45, Thorem 1.3], and [46, Thorem 3], and the inequality
(3.105), obtained initially and, respectively, in [122, page 208] and [121, Lemma 1.1].

Remark 6.7. Along another direction, results on the convex and completely monotonic
properties for the generalization of the function (6.6) were procured in [31, page 383, Theorem
8] and [62, page 370, Theorem 1] by different approaches, respectively. Recently, a new proof
for it was published in [143].
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6.3. Necessary and Sufficient Conditions

For real numbers a, b, and ¢, denote p = min{a, b, c} and let

b-al (X +a)
T(x +b)

Hap,e(x) = (x +¢) (6.7)

for x € (—p, ).

Making use of monotonicity of q,(t) on (0, o), see Theorem 1.16 procured in [35, 36]
and Section 1.7 in this paper, sufficient and necessary conditions such that the function
Hgp(x) are logarithmically completely monotonic on (-p, o0), which extend or generalize
[116, Theorem 2.4], [155, Theorem 1], and [156, Theorem 1], and other known results
mentioned in Section 3.17 are presented as follows.

Theorem 6.8 (see [41]). Let a, b and c be real numbers, and p = min{a, b, c}. Then

(1) Hgp,c(x) is logarithmically completely monotonic on (—p, oo) if and only if

(a,b,c) € Di(a,b,c) = {(a,b,c): (b-a)(1-a-b+2c)>0)
N{(ab,c): (b-a)(la-bl—-a-b+2c) >0} (6.8)
\{(a,b,c):a=c+1=b+1}\{(ab,c):b=c+1=a+1},

(2) Hy,a,c(x) is logarithmically completely monotonic on (—p, oo) if and only if

(a,b,c) € Dy(a,b,c) = {(a,b,c): (b—a)(l1-a-b+2c)<0)
N{(a,b,c): (b-a)(la-bl-a-b+2c) <0} (6.9)
\{(a,b,c):b=c+1=a+1}\{(a,b,c):a=c+1=b+1}.

From Theorem 6.8, the following double inequality for divided differences of the psi
and polygamma functions can be deduced readily.

Theorem 6.9 (see [157]). Let b > a > 0 and k € N. Then the double inequality

(k-1! _ D p* N x+b) —g D+ a)] (k- 1)!

< < 6.10
(x +a) b-a (x+p)F (610
for x € (—=p, o) holds if « > max{a,(a+b—-1)/2} and 0 < p <minfa, (a+b-1)/2}.
Remark 6.10. It is unthought of that taking b — a = 1 in (6.10) leads to
— 1)
lp(k_l) (x +a+ 1) — (p(k_l)(x + a) = (—1)k_1 —(k 1) (611)

(x + a)k



60 Journal of Inequalities and Applications
for a >0, x > 0and k € N, which is equivalent to the recurrence formula

¢ (z+1) - ¢ (2) = (-1)"miz" (6.12)
for z > 0 and n > 0, listed in [1, pages 260, 6.4.6]. This has been showed in [158, 159] by a
different manner from here.

Remark 6.11. The logarithmically complete monotonicity of the function H,no(x) was
demonstrated in [48, Theorem 1.3].

6.4. Some Results on Gautschi-Kershaw’s Second Double Inequality

Up to now, results on refinements or generalizations of the right-hand side inequality in
(2.22) and the double inequality (3.60) are the logarithmically complete monotonicity of the
functions (3.88), (3.90), and (3.110) and inequalities in (3.109), (3.111), and (3.116).

6.4.1. Monotonicity Results on Gautschi-Kershaw’s Second Double Inequality

Motivated by problem (3.107), the following results on logarithmically complete monotonic-
ity of functions related to the double inequality (3.107) were demonstrated.

Theorem 6.12 (see [124, Theorem 1] and [125, Theorem 1]). Let a, b, ¢ be real numbers and
p =min{a,b,c}. Define

T(x+b)]"?
ex x+c)|, a#b,
Fape(x) = [F(x +a) plyte+al, a7 (6.13)
expp(x+c) - ¢(x+a), a=b#c
for x € (—p, o0). Furthermore, let O(t) be an implicit function defined by equation
el —t=2e%0 —9(t) (6.14)
on (—oo,00). Then O(t) is decreasing and tO(t) < 0 for O(t) #t, and
(1) Fap,c(x) is logarithmically completely monotonic on (—p, o) if
(a,b,c) e{c>a,c>blu{c>a,0>c-b>0(c—a)}
(6.15)
U{c<a,c-b>0(c-a)}\{a=b=c};
(2) [l—"a,b,c(x)]"1 is logarithmically completely monotonic on (—p, o) if
(a,b,c) e{c<a,c<bluf{c>a,c-b<O(c-a)}
(6.16)

U{c<a0<c-b<O(c-a)}\{a=b=c}.
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Theorem 6.13 (see [126, Theorem 1] and [127, Theorem 1]). For real numbers s and t with s #t
and 0(s,t) a constant depending on s and t, define

1/(t-s)
(6.17)

Yor(x) = 1 [F(x +1)

exp[g(x+0(s,1))] [T(x+5)

(1) If O(s,t) < min{s,t}, then vgi(x) is logarithmically completely monotonic on

(—0(s,t), o).

(2) The function [1)S,t(3c)]"1 is logarithmically completely monotonic on the interval
(-min{s, t}, o0) ifand only if O(s,t) > (s + ) /2.

6.4.2. Refinements of Gautschi-Kershaw'’s Second Double Inequality

Stimulated by the left-hand side inequality in (3.117), although it is not correct, several
refinements and generalizations related to Gautschi-Kershaw’s second double inequality
were established.

Theorem 6.14 (see [128, Theorem 1] and [129, Theorem 1]). For positive numbers a and b with
a#b, the inequality

(a-b)
o(Lah) H@] < g¥(A@b) (6.18)

I(b)

is valid, where L and A are, respectively, defined in (1.30).

Theorem 6.15 (see [128, Theorem 2] and [129, Theorem 2]). For s,t € R with s #t, the function

Tx+s)]VeP 1 (6.19)
T(x+1) et (L(s4x) .
is decreasing and
1/(t-s)
ﬁ?+2 swmwm> (6.20)
X+

is logarithmically completely monotonic in x > —min{s, t}, where

L(s,t;x) =L(x+s,x+t), A(s, t;x) = A(x +s,x +1). (6.21)
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Theorem 6.16 (see [131, 132]). The inequalities
1/(a-b)
[% < erlita) | (6.22)

(-1)"[¢" " (a) - "D (b)]

b < (-1)"¢™ (I(a,b)) (6.23)

hold true for a > 0 and b > 0, where I is defined in (1.30).

Theorem 6.17 (see [130, Theorem 1] and [133, Theorem 1]). For real numbers s > 0 and t > 0
with s #t and an integer i > 0, the inequality

(D¢ (Ly(s,1)) < % r oD (u)du < (-1)'gD (L (s, 1)) (6.24)

holdsifp < =i —1and q > —i.

Theorem 6.18 (see [130, Theorem 2] and [133, Theorem 2]). The double inequality

I'(a) 1/(a-b)

evpab) o |14a)
I'(b)

< o¥(Ly(ah) (6.25)

fora>0and b>0holdsifp <-1and g>0.

Theorem 6.19 (see [130, Theorem 3] and [133, Theorem 3]). For i > 0 being an integer and
s,t € Rwith s#tand x > —min{s, t}, the function

(-1)° [‘If(i) (Ly(s, t;x)) — % ft g (x+ ”)d”] (6.26)

is increasing in x if either p < —(i + 2) or p = —(i + 1) and decreasing in x if p > 1, where

Ly(s,t;x) = Ly(x +s,x +1). (6.27)

Remark 6.20. The proofs of Theorems 6.16 and 6.17 need to use the main results in [160-162]
on monotonic properties of some functions involving the psi and polygamma functions.

Remark 6.21. In [163], the authors recovered the left-hand side inequality in (6.18) and
obtained

I(a,b)

<¢(L(a,b))+In L(a.b)

InT(5) - InT(@) (6:28)
a

b-

for all a and b with a#b.
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Since

¢(I(a,b)) —¢(L(a,b))
Inl(a,b)—InL(a,b)

=&p'(¢) > 1, (6.29)

where ¢ € (L(a,b),I(a, b)), inequality (6.28) is better than (6.22).

Remark 6.22. In [164], the author generalized Theorem 6.15 as follows. The function (6.19) is
logarithmically convex with respect to x > —min{s, ¢}.

With the help of the main result obtained in [165, 166], it is claimed in [164] that the
function

e ¥ (L(stx) (6.30)

is completely monotonic with respect to x > —min{s,t} for real numbers s and t with s #t.
Actually, the proof is not correct.
Let s and t be two real numbers and a = min{s, t}. For x € (-a, o0), define

I(x+ t>]1/<f‘s> ot

q‘s,t(x) = |F(X+S)
ew(x+s)/ s=t,

px+t)—g(x+s) (6.31)

t—s !

ps,t(x) = IP’s,t(x)

t—s
gx+t)—g(x+s) -

Qs(x) = Wi (x).

The second open problem posed in [39] was denied in [164] as follows. Neither [, (x) nor
Qs,+(x) is completely monotonic on (—a, o).

6.5. Generalizations of Lew-Frauenthal-Keyfitz’s Double Inequality

In 2006, in order to improve

ar(n 2 r(2)ronen <2n(ane 1) o

for n > 1, see [167, page 213] and [168], it was proved in [49] by using (2.2) that

I(x+1) 1
\/;Cﬁmﬁ x+§. (6.33)

It is clear that the double inequality (6.33) is weaker than (3.59) for s = 1/2 and the right-hand
side inequality in (6.33) is also weaker than an inequality obtained in [111].
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Observe that inequality (6.32) can be rearranged for n > 1 as

1/(n-1)
> [F(1/2)F(n+ 1)

34
Tn+1/2) <2 (6:34)

The middle term in (6.34) hints us to define

[F(l/Z)F(x + 1)]1/0‘—”

M(x+1/2) o X7l
g(x) = (6.35)

ap Q)

for x € (-1/2,00), with y = 0.57721566... being the Euler-Mascheroni constant, and to
consider its logarithmically complete monotonicity.

I
—_

Theorem 6.23 (see [47, Theorem 1.1] and [48, Theorem 1.1]). The function g(x) €
L[(-1/2, 00)] with

lim X) = oo, lim ¢(x) =1,
x—>—(1/2)+g( ) *° x—>oog( ) (636)

where L[I] stands for the set of logarithmically completely monotonic functions on an interval I C R.
The left-hand side inequality in (2.2) reminds us to introduce

C(x+ a) " T(x + a) C(x+ a) " T(x + a)

hax) = XL (x) T T+l (6.37)

for x > 0 and a > 0 and to discuss its logarithmically complete monotonicity.

Theorem 6.24 (see [47, Theorem 1.2] and [48, Theorem 1.2]). The function h,(x) has the
following properties.

(1) ha(x) € £[(0,0)] f0<a<1.

() [ha(x)]" € £[(0,00)] if a> 1.

(3) Forany a >0,

%, lim ha(x) = 1. (6.38)

X—00

xlg‘r()1+ha (x) =

As a straightforward consequence of combining Theorem 6.8 for H,go(x) and
Theorem 6.24, the following refinement of the upper bound in inequality (2.2) is established.
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Theorem 6.25 (see [47, Theorem 1.4] and [48, Theorem 1.4]). Let x € (0, 00). If 0 < a <1, then

< x >1*a - I'(x+a)

x+a x4T (x)
1-a
M(L) <1, 0<x<- P9 (6.39)
- a® x+a 1-p(a)
ap(a)
1, <x< oo,
1-p(a)
where
XX 1/(1-x)

T/ 1\ ;X 1/
p(x) = [F(x +1) 7 (6.40)

e, x=1.

If a > 1, the reversed inequality of (6.39) holds.

Now rewrite inequality (6.32) or (6.34) forn > 1 as

[(1+1/2) Tm+1) VOV _ (6.41)
S|l Ta+1) T(n+1/2) T |

The definition (6.35) of g(x) and inequality (6.41) motivate us to introduce a new function
hs(x) as follows. Let s and t be two real numbers with s#t, « = min{s,t} and > —a. For
x € (—a, 00), define

T(B+t) T(x+s)]""P
hs(x) = 4 LT(B+s) T(x+1t) o XEP (6.42)

explp(B+s)-g(p+t)], x=p.

Theorem 6.26 (see [45, Theorem 1.1] and [46, Thorem 1]). The following two conclusions are
valid.

(1) If s > t, then hy(x) € L[(~a, o0)] with

ling hp(x) = oo, lim hg(x) = 1. (6.43)

(2) If s <t, then [hp(x)] ™" € L[(~a, 0)] with

lim hg(x) =0, lim hg(x) = 1. (6.44)

X—-a
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In [47] and [48, Theorem 1.5], the logarithmically complete monotonicity of p(x) was
proved: p(x) € £[(0, )] with lim,_,o-p(x) = 1 and lim,_,,p(x) = 1/e. Motivated by
inequality (6.41) and the definition of hs(x) in (6.42), a more general function than p(x) can
be introduced. For x € (0, 00) and a > 0, let

T(ax+1) X 1/(a=x) vt
= T+l pXEE
Pa(x) = (6.45)
expgp(a+1) -1]
- , xX=a

Theorem 6.27 (see [45, Theorem 1.4] and [46, Thorem 4]). For any fixed a > 0, pa(x) €
2L[(0, 00)] with

lim pa(x) = —VF(Z”) lim pa(x) = % (6.46)

Remark 6.28. The functions h(x,y) = hy(x) and p(x,y) = py(x) satisty h(x,y) = h(y,x) and
p(x,y) = p(y,x) and so their Schur-convex properties can be considered.

Remark 6.29. Itis clear that the papers [45-48] take a different direction from [49] to generalize
and refine inequalities in (6.32).

Remark 6.30. The logarithmically complete monotonicity of the function </I'(x +1)/x and
several similar ones have been researched and applied in [15, 169, 170].

7. Related Problems
7.1. Monotonicity Results for the Ratio of Two q-Gamma Functions

The known results obtained by many mathematicians show that most of properties of the
ratio of two gamma functions may be replanted to cases of the ratio of two g-gamma
functions.

Let a, b, and ¢ be real numbers and p = min{a, b, c}, define

(7.1)

1- qx+c>“-b T,(x+b)

Hq;ﬂ,b}C(x) = < 1 _q rq(x+ a)

for x € (—=p, ), where I';(x) for 0 < q < 1is the g-gamma function defined by (1.14).

In [7, Theorem 2.5], the following logarithmically complete monotonicity of Hgg p;c(x)
was obtained: For a < b < a + 1, the function H,p,(x) is logarithmically completely
monotonic on (—c,o0) if 0 < ¢ < (a+ b —-1)/2, so is its reciprocal on (-a,o) if c > a > 0.
Note that the proof in [7, Theorem 2.5] for the conclusion “Neither is completely monotonic
for (a+b-1)/2 < c < a” is not convincible.

In virtue of monotonic properties of g,4(t) on (0, 0), it is not difficult to see that [7,
Theorem 2.5] can be extended to and [116, Theorem 2.5] and [7, Theorem 2.6] can be included
in the following Theorem 7.1 easily and thoroughly, which is an analogue of Theorem 6.8.
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Theorem 7.1 (see [35]). Let a, b and c be real numbers and p = min{a, b, c}.

(1) The function Hy,ap,(x) is logarithmically completely monotonic on (—p, o) if and only if

(a,b;c) € Di(a,b;c) 2 {(a,b;c): (a—b)(1—a—-b+2c) >0}
N{(a,b;c):(a-b)(la-b|—-a-b+2c) >0} (7.2)
\{(a,b;c):a=c+1=b+1lorb=c+1=a+1}.

(2) The function Hgyp,qa;c(x) is logarithmically completely monotonic on (—p, oo) if and only if

(a,b;c) € Dy(a,b;c) £ {(a,b;c) : (a-b)(1-a-b+2c) <0}
N{(a,b;c):(a-b)(la-bl-a-b+2c) <0} (7.3)
\{(a,b;c):b=c+1=a+1lora=c+1=b+1}.

Similar to Theorem 6.9, we have the following double inequality for divided
differences of the g-psi function ¢, (x) for 0 < g <1, which may be derived from Theorem 7.1.

Theorem 7.2 (see [35]). Letb>a>0,keNand0<g<1.1f0<c <min{a, (a+b-1)/2}, then

(_1)k—1 [(Pa(’k—l)(x +b) - (F;k—l)(x+ a)]
b-a

< (-1)* q“! ( q )m g (7.4)

dxk-1\ 1 - gx*e

holds for x € (0,00). If ¢ > max{a, (a+b-1)/2}, inequality (7.4) reverses on (0, o0). Consequently,
the identity

(k-1) (k-1) _ d“! q° 7.5
¥y (x+1)—gy (x)__dxk—l Ing 75)

holds for x € (0, 00) and k € N.

7.2. Monotonicity Results for the Ratio of Products of Gamma Functions
7.2.1. Bounds for Gurland’s Ratio

There have been a lot of literature on bounding Gurland’s ratio T(x,y) defined by (3.13).

Gurland’s ratio and the ratio of two gamma functions are nearly a couple of companion,

therefore, to find results on bounding Gurland’s ratio possibly as long as to find those

bounding the ratio of two gamma functions, see [20, 96, 97] and related references therein.
There are a lot of literature provided in [44] on bounding Gurland’s ratio.
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7.2.2. Monotonicity Results for the Ratio of Products of Gamma Functions

As a generalization of Gurland’s ratio, the function

I'(x)['(x+a+b)

I'(x+a)'(x+Db) (76)

for nonnegative numbers a and b, related with Gauss’s Theorem expressed by (1.13), was
proved in [96, Theorem 6] to be logarithmically completely monotonic on (0, o).
In [31], a more general result was obtained. The function

I'(x + ag)
H SYEE) (7.7)

is logarithmically completely monotonic on (0, o) provided that

OSalﬁazﬂ"‘San, OSbleZSSbn/

k k n n (78)
Zai < Zbi for1<k<n-1, and Za,- = Zb,-.
i=1 i=1 i=1 i=1
In [21, Theorem 1.2], it was presented that the functions
r(x) n/2 [HmeP,,Zkr<x + ZZkl am])]
Fa(x) = (7.9)

[( +1 /2] 2k-1
§ [HmeP,,Zk ) <x + Z, 1 am,)]

for any ax > 0 and k € N are logarithmically completely monotonic on (0, o) and that
any product of functions of the type (7.9) with different parameters aj is logarithmically
completely monotonic as well, where P, for 1 < k < n is the set of all vectors m =
(my,...,my) whose components are natural numbers such that 1 < m, < m, < n for
1<v < pu<kand P, is the empty set.

Let a; and b; for 1 < i < n be real numbers and p,, = mini<<,{a;, b;}. For x € (—p,, ),
define

r i
Hapin(x) = Hriiig) (7.10)

where a and b denote (aj, ay,...,a,) and (b1, by,...,b,), respectively. By recurring to
monotonic properties of g,4(t) on (0, ), the following new sufficient conditions for k. (x)
to be logarithmically completely monotonic on (0, o) are devised.

Theorem 7.3 (see [35]). If

(bi—ai)(1-a;-b;) >0, (bi — a;)(|la; - bi| —a; —b;)) >0 (7.11)
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hold for 1 <i < mnand

ibi > iai, (7.12)

then the function hap,(x) is logarithmically completely monotonic on (—p,, o). If inequalities in
(7.11) and (7.12) are reversed, then the function hy a,(x) is logarithmically completely monotonic on
(_Pnl OO)

Remark 7.4. The beta function B(p, q) is defined by

I'(p)I'(q)

B(p,q) = T(p+q)

(7.13)

It is a ratio among three gamma functions.
The ratios among four gamma functions have hypergeometric functions (1.13) and
Gurland’s ratio (3.13).

7.3. Monotonicity Results for the Ratio of Products of g-Gamma Functions

In [21, Theorems 3.2 and 3.3] and [7, Theorem 4.1], logarithmically complete monotonicity
for ratios of products of g-gamma functions was discussed.
The g-analogue of Theorem 7.3 is as follows.

Theorem 7.5 (see [35]). Let a; and b; for 1 < i < n be real numbers and p, = mini<i<,{a;, b;}. For
X € (—pn, ), define

[y(x +ay)

Ngabm(X) = Hr vy (7.14)

for 0 < g < 1, where a and b denote (ai, as,...,a,) and (by, b, ..., b,), respectively. If inequalities
in (7.11) and (7.12) hold, then the function hgayp,.(x) is logarithmically completely monotonic
on (—pn, ). If inequalities in (7.11) and (7.12) are reversed, then the function hgpan(x) is
logarithmically completely monotonic on (—py, o).

7.4. Bounds for Wallis” Formula

Bounding Wallis” formula (1.5) has a long history, as mentioned in Sections 2.2, 2.3, and 2.5.
For more information, please refer to related contents in [171], [54, pages 192-193 and page
287] and [90, 91].

In this section, we would like to review concisely recent developments on it.
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7.4.1. Recovery and Various Proofs

As mentioned in Remark 3.6, the double inequality (3.6) and its sharpness were recovered
and proved once and again in some papers such as [70, 86-92, 172-174] and [108, Theorem
2], because of either without being aware of and finding out the original version of the paper
[56], or making use of various approaches and subtle techniques, or repeating some existed
routines. Moreover, almost of them were not devoted to improve the bounds in (3.6).

7.4.2. Bounds for Wallis” Formula and the Probability Integral

The following theorem connects bounds for Wallis” formula with the probability integral.

Theorem 7.6 (see [85]). Forn € N,

2n)!!
VT P - L (7.15)
2Vn+9r/16-1 "~ @n+ D' 2y/n+3/4
The constants 9ar /16 — 1 and 3/4 in (7.15) are the best possible.
For all natural number n,
ﬁ
VT < f eFdx< — YT (7.16)
V1+Ox/16-1)/n " J -y V1-3/4n
In particular, taking n — oo in (7.16) leads to
J e dx = /7. (7.17)

7.4.3. Koumandos’ Generalization

Influenced by the iterative work in [90, 91], Koumandos established in [93] the following
general double inequality.

Theorem 7.7 (see [93]). Let0 <a <1, n € Nand

1 1, n=0,
dn(@) = — = =Y T(n+1-a) . (7.18)
nT(l-a)

For all natural numbers n,

1 1
I'l-a)(n+c)” < dn(a) < Frl-a)(n+c)*

(7.19)
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where the constants

1-a 1
= = — = = — 1
c1 =ci(a) > ¢ = ca(a) T m] e (7.20)
are the best possible.
Remark 7.8. The double inequality (7.19) for a = 1/2 coincides with (3.6).
7.4.4. Zhao's Refinement
In [175], the double inequality (3.6) was refined as follows. For n € N,
1 (2n-1! 1
. (7.21)

\/Jrn[1+l/(4n—1/2)]< @)t <\/Jrn[1+l/(4n—1/3)]

Remark 7.9. The double inequality (7.21) is better than (2.12), say nothing of (2.16) and (3.6).

Remark 7.10. By (1.6), inequality (7.21) may be rewritten as

k T(k+1) k -
Ko “tasin \Fraoiz e ke 7.22)

7.4.5. Zhang's Refinements

In [108, Theorem 1], the double inequality (7.21) was refined as

1 _n-Du 1
Vr{n+1/[4-4/8n+3)]} (2n)!! Vr{n+1/[4-1/2n+1)]}

: (7.23)

Remark 7.11. The right-hand side inequality in (7.23) is same as the corresponding one in
(3.49) for x = k, and the left-hand side inequality in (7.23) refines the lower bound of (3.49)
for x = k.

Remark 7.12. In virtue of (1.6), the double inequality (7.23) may be rearranged as

\/k+ 1 < [(k+1) <\/k+; k e N. (7.24)

4-1/2k+1) TA+1/2) 4-4/(8k+3) "

7.4.6. Zhao-Wu's Refinements and Generalizations

In [94, 176], the following refinements and generalizations of inequalities on Wallis” formula
were established.
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Theorem 7.13. ForO0<z <landn>1,

1 <(1—z)(2—z)---(n—z)
n#[l+(1-2z)/2(n-1)]*T(1-z) n!
(7.25)
- 1
n?[1+(1-2)/2n+1-2)]"T(1-z)’
ForO<z<landn>?22,
1-2)2-2)---(n—2) 1
< , 7.26
n! n#[1+ (1-2z)/2n]°T(1 - z) (7.26)
For n > 1, the left-hand side inequality in (7.21) is valid. Forn > 1and 0 < e <1/2,
2n-1)! - 1 (7.27)
2n)!! Vir[1+1/(@dn-1/2+e€)] '
holds for n > n* if n* is the maximal root of
32en® + 4e’n +32en - 17n + 4e* -1 = 0. (7.28)
Remark 7.14. Inequalities in (3.6) and (7.21) can be deduced from Theorem 7.13.
7.5. Inequalities for the Volume of Unit Ball in R"
Let
Jl.n/Z
= 7.29
2 T'(1+n/2) (7.29)

denote the volume of the unit ball in R”. In [177], among other things, it was demonstrated

for n > 1 that
11+1/2<Qn_1S n+m/2-1 (7.30)
20T Qn 2

by recovering the decreasing monotonicity of 6(x) defined by (3.2) on [0, o). The constants
both 1/2 and 7r/2 — 1 in (7.30) are the best possible.

It is easy to see that the ratio of the volumes of two unit balls in R*"! and R" for n € N
is related with the ratio of two gamma functions.

For more information on inequalities of volumes of unit balls in R”, please see [122,
177,178], [179, Theorem 1] and [44, Theorem 5], and related references therein.
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In [178], it was proved that the sequence Q:l/ @I for n > 2 is decreasing and
converges to e”'/>asn — oo. In [180, Theorem 2]. It was presented that the double inequality

TP\ nlnny? ) = QU el = TP Gy 730

holds for n > 2 if and only if

2
a<In2Inao - 2(In2) 1n(4n'/3)’ b> M (7.32)
3In3 2

Recently, the author obtained the following stronger results than the ones in [180,
Theorem 2] and [178].

Theorem 7.15. For n > 2, the sequence Q) "™ is logarithmically convex and the sequence
Ql/(n]nn)
_ (7.33)
1/[(n+1) In(n+1)]
Qn+1 + n+
is decreasing.
For more information on this topic, please see [181] and related references.
7.6. A New Ratio of Two Gamma Functions
By using a geometrical method, the following double inequality was proved in [182]:
1 [TA+x)]"
—<— <1 7.34
n!' = I'l+nx) ~ (734)
forx e [0,1] and n € N.
By analytical arguments in [183], it was presented that the function
[T(1+x)]Y
X,Y)= 7.35
fey) = Ty (7.35)
for all y > 1 is decreasing in x > 0. From this, it is deduced that
1 r(l+x)]”
< Id+x)] (7.36)

I(l+y) = I'(1+xy) ~

forall y > 1 and x € [0,1], which is a generalization of inequality (7.34).
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In [184], It was showed that if f is a differentiable and logarithmically convex function
on [0, o0), then the function [f(x)]?/f(ax) fora > 1 (or 0 < a < 1, resp.) is decreasing (or
increasing resp.) on [0, o). As one of applications to inequalities involving gamma function,
Riemann’s zeta function and the complete elliptic integrals of the first kind, inequalities (7.34)
and (7.36) were deduced.

In [185], an inequality involving a positive linear operator acting on the composition
of two continuous functions is presented and, as applications of this inequality, some new
inequalities involving the beta, gamma and Riemann’s zeta functions and a large family of
functions which are Mellin transforms are produced. In particular, for g > 6 > 0, ap > -1 and
ab > -1, if either « < 0 or a > 1, then the inequality

[ra+o)]"  [ra+pl”

I(1+ab) = T(1+ap) 737)

holds true; if 0 < a < 1, inequality (7.37) is reversed. It is not difficult to see that the left-hand
sides in inequalities (7.34) and (7.36) are special cases of the inequality (7.37).

In [186, 187], the following logarithmically complete monotonicities, as generaliza-
tions of the decreasingly monotonic property in [183], are presented.

(1) For given y > 1, the function f(x,y) defined by (7.35) is decreasing and loga-
rithmically concave with respect to x € (0,0), and 1/ f(x,y) is a logarithmically
completely monotonic function of second order in x € (0, 00).

(2) For given 0 < y < 1, the function f(x,y) defined by (7.35) is increasing and
logarithmically convex with respect to x € (0, ), and f(x,y) is a logarithmically
completely monotonic function of second order in x € (0, 00).

(3) For given x € (0,00), the function f(x,y) defined by (7.35) is logarithmically
concave with respect to y € (0,90), and 1/ f(x,y) is a logarithmically completely
monotonic function of first order in y € (0, o).

(4) For given x € (0, o0), let

B I(1+y)[C(1+x)]”

Fi(y) = (1 xy) (7.38)

on € (0,00). If 0 < x < 1, then F,(y) is a logarithmically completely monotonic
function of second order on (0,00); if x > 1, then 1/F,(y) is a logarithmically
completely monotonic function of second order on (0, o).

In [188, Theorem 2.1], it was proved that the function

[C(1+tx)]

G = T e

(7.39)

is decreasing (or increasing, resp.) in x € [0, o) if either s >t >0o0r0 > s > t (or both s > 0
and t < 0, resp.) such that 1 + sx > 0 and 1 + fx > 0. This result generalized and extended the
corresponding conclusions in [182, 183, 185].
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In [23, 24], the following logarithmically complete monotonicity, logarithmically
absolute monotonicity and logarithmically absolute convexity of G:(x) defined by (7.39)
are verified. The function G, (x) for x,s,t € R such that 1 + sx > 0 and 1 + tx > 0 with s#¢
has the following properties.

(1) Fort > s > 0and x € (0,00), G,(x) is an increasing function and a logarithmically
completely monotonic function of second order in x.

(2) Fort > s > 0and x € (-1/t,0), Gs(x) is a logarithmically completely monotonic
function in x;

(3) Fors <t <0and x € (-o0,0), Gs4(x) is a decreasing function and a logarithmically
absolutely monotonic function of second order in x;

(4) For s <t <0and x € (0,-1/s), Gs¢(x) is a logarithmically completely monotonic
function in x.

(5) For s < 0 < t and x € (-1/t,0), Gis(x) is an increasing function and a
logarithmically absolutely convex function in x.

(6) Fors <0 <tand x € (0,-1/s), G;s(x) is a decreasing function and a logarithmically
absolutely convex function in x.

As generalizations of [24, Theorem 1.4] and the main results in [187], the following
i-log convex properties for i € N are established in [189] and its simplified version [190,
Theorem 1.2].

Theorem 7.16. Let a and b be two real numbers, f(x) a positive function on an interval I, and

(7.40)

defined for ax € I and bx € 1. For i € N, the function g,,(x) has the following properties.

(1) Foreitherb>a>0and x >00r0>b > aand x >0,

(a) if the function u'[In f (u)]? for all i € N is increasing on I, then g,p(x) is i-log-
convex;

(b) if the function u'~*[In f(u)](i) forall i € N is decreasing on I, then g,p(x) is i-log-
concave.

(2) Forb>0>aand x>0,

(a) if the function u'[In f (u)]? for all i € N is increasing on I, then g,p(x) is i-log-
concave;

(b) if the function u'~'[In f(u)]? for all i € N is decreasing on I, then gqp(x) is i-log-
convex.

(3) Foreitherb>a>0and x>00r0>b>aand x <0,

(a) if the function u'~'[In f (u)]? for all i € N is increasing on I, then ga(x) is (2i—1)-
log-concave and (2i)-log-convex;



76 Journal of Inequalities and Applications

(b) if the function u~'[In f ()] for all i € N is decreasing on I, then g, p(x) is (2i—1)-
log-convex and (2i)-log-concave.

(4) Forb>0>aand x <0,

(a) if the function u'="[In f (u)]? for all i € N is increasing on I, then ga(x) is (2i—1)-
log-convex and (2i)-log-concave;

(b) if the function u~'[In f ()] for all i € N is decreasing on I, then g, p(x) is (2i —1)-
log-concave and (2i)-log-convex.

Remark 7.17. Most results in [191-194] are simple and direct consequences of Theorem 7.16.

Remark 7.18. Some proofs in [23, 24, 189, 190] need to use the main results in [160-162] on
monotonic properties of some functions involving the psi and polygamma functions.

Remark 7.19. Recently, some new results on this topic are obtained in [84, 195-200] and
closely-related references therein.
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