
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 492570, 10 pages
doi:10.1155/2010/492570

Research Article
Complementary Inequalities Involving
the Stolarsky Mean

Ovidiu Bagdasar

Department of Mathematical Sciences, The University of Nottingham, University Park,
Nottingham NG7 2RD, UK

Correspondence should be addressed to Ovidiu Bagdasar, ovidiubagdasar@yahoo.com

Received 24 February 2010; Accepted 1 May 2010

Academic Editor: László Losonczi
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Let n be a positive integer and p, q, a, and b real numbers satisfying p > q > 0 and 0 < a < b.
It is proved that for the real numbers a1, . . . , an ∈ [a, b], the maximum of the function
fp,q(a1, . . . , an) = (ap

1 + · · · + a
p
n)/n − ((aq

1 + · · · + a
q
n)/n)

p/q is attained if and only if k(n) of the
numbers a1, . . . , an are equal to a and the other n − k(n) are equal to b, while k(n) is one of the
values [(bq − D

q
p,q(a, b))/(bq − aq) · n], [(bq − D

q
p,q(a, b))/(bq − aq) · n] + 1, where [·] denotes the

integer part and Dp,q(a, b) represents the Stolarsky mean of a and b, of powers p and q. Some
asymptotic results concerning k(n) are also discussed.

1. Introduction

Let us begin with some definitions. Given the positive real numbers a and b and the real
numbers p and q, the difference mean or Stolarsky mean Dp,q(a, b) of a and b is defined by
(see, e.g., [1] or [2])

Dp,q(a, b) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q(ap − bp)
p(aq − bq)

)1/(p−q)
, if pq

(
p − q

)
(b − a)/= 0,

(
ap − bp

p(lna − ln b)

)1/p

, if p(a − b)/= 0, q = 0,

(
q(lna − ln b)
(aq − bq)

)−1/q
, if q(a − b)/= 0, p = 0,

exp
(

−1
p
+
ap lna − bp ln b

ap − bp

)

, if q(a − b)/= 0, p = q,

(ab)1/2, if a − b /= 0, p = q = 0,

a, if a − b = 0.

(1.1)
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The power mean of power p ∈ R corresponding to the real numbers a1, . . . , an is defined by

Mp(a1, . . . , an) =

⎧
⎪⎪⎨

⎪⎪⎩

(
a
p

1 + · · · + a
p
n

n

)1/p

, if p /= 0,

(a1 · · ·an)1/n, if p = 0.

(1.2)

The relation between the Stolarsky mean and the power mean can be written as

D2p,p(a, b) = Mp(a, b) =

⎧
⎪⎨

⎪⎩

(
ap + bp

2

)1/p

, if p /= 0,

(ab)1/2, if p = 0.
(1.3)

It is well known that for fixed a1, . . . , an and r ≥ s, we have the inequality

0 ≤ Mr(a1, . . . , an) −Ms(a1, . . . , an), (1.4)

with equality for r = s (independent of a1, . . . , an), or for a1 = · · · = an (see [3–5] or [6]).
Shisha and Mond [7] obtained a complementary result which examines the upper

bounds of (1.4) for weighted versions of the power means. Also, we have a considerable
amount of work regarding the complementary means done by many authors, including Diaz
and Metcalf [8], Beck [9], and Páles [10].

Returning to our problem, by defining the function

Fs(a1, . . . , an) =
a1 + · · · + an

n
−
(
as
1 + · · · + as

n

n

)1/s

= M1(a1, . . . , an) −Ms(a1, . . . , an),

(1.5)

we obtain

fp,q(a1, . . . , an) =
a
p

1 + . . . + a
p
n

n
−
(

a
q

1 + · · · + a
q
n

n

)p/q

= Fq/p

(
a
p

1 , . . . , a
p
n

)
. (1.6)

Using the inequalities between powermeans (1.4), Fs ≥ 0 if and only if 1 ≥ s, therefore fp,q ≥ 0
if and only if 1 ≥ q/p. This condition is more general than q > p > 0, but there are details in
the subsequent proofs which would not be satisfied in the other cases.

As the minimum of fp,q over [0,∞)n is 0 (possible only for a1 = · · · = an), it is natural
to question what the maximum of fp,q is, and, eventually, to find the configuration where this
is attained. Since supa1,...,an∈[0,∞)fp,q(a1, . . . , an) = ∞, the problem of finding the maximum of
fp,q only makes sense when all the variables a1, . . . , an of fp,q are restricted to the compact
interval [a, b] ⊆ [0,∞).

The first theorem in the next section, deals with finding the maximum and the
corresponding optimal configuration. The result enables one to obtain elegant proofs for some
related inequalities. In the end of the present work we obtain some asymptotic limits relative
to the configuration where the maximum of fp,q is attained.
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2. Results

Theorem 2.1. Given the positive integer n, the real numbers p > q > 0 and 0 < a < b. Consider the
function fp,q : [a, b]

n → R, defined by (1.4). Then the following assertions are true.

(1) The function fp,q attains its maximum at a point (a1, . . . , an) if and only if k(n) of the
variables are equal to a, while the other n − k(n) are equal to b, where k(n) can be

k(n) ∈
{[

bq −D
q
p,q(a, b)

bq − aq
· n

]

,

[
bq −D

q
p,q(a, b)

bq − aq
· n

]

+ 1

}

. (2.1)

(2) If n, p, and q are held fixed while b → a, it can be proven that

1
2
− 1
n
≤ lim

b↘a

k(n)
n

≤ 1
2
+
1
n
, (2.2)

provided the limit exists.

As an application of Theorem 2.1, the following problem (see [3, pages 70–72]) is
solved.

Corollary 2.2. Given the positive integer n, determine the smallest value of α such that the inequality

a2
1 + · · · + a2

n

n
−
(
a1 + · · · + an

n

)2

≤ α max
1≤i≤j≤n

(
ai − aj

)2

n2
(2.3)

holds true for all positive real numbers a1, . . . , an.

Theorem 2.3. Given the positive integer n, the smallest value of α such that (2.3) holds true for all
positive real numbers a1, . . . , an is

α =
[n

2

][n + 1
2

]

. (2.4)

In the following theorem we examine the behavior of k(n) when the numbers p, q in
Theorem 2.1, are terms of a sequence with certain properties.

Theorem 2.4. Consider the sequences {pn}n∈N and {qn}n∈N satisfying pn > qn, n ∈ N, with
limn→∞qn = ∞ and limn→∞(pn/qn) = 1. For each n ∈ N define k(n) as in (2.1), for the powers pn
and qn. Then the k(n) verifies

lim
n→∞

k(n)
n

=
e − 1
e

. (2.5)
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3. Proofs

Proof of Theorem 2.1. (1) We first prove that the point (a1, . . . , an) where the maximum of fp,q
is attained lies on the boundary of the hypercube [a, b]n and moreover, it is a vertex. This
result is the subject of Lemma 3.1. We then find the configuration where the maximum is
realized.

Lemma 3.1. The function fp,q attains its maximum at the point (a1, . . . , an) if and only if ai ∈ {a, b}
for all i ∈ 1, . . . , n.

Proof of Lemma 3.1. Since fp,q is continuous on the compact interval [a, b]n, there is a point
(a1, . . . , an) ∈ [a, b]n where fp,q attains its maximum. If (a1, . . . , an) is an interior point of
[a, b]n, then (∂fp,q/∂ai)(a1, . . . , an) = 0 for all i = 1, . . . , n, therefore

p · ai
p−1

n
− p

q
· qai

q−1

n

(
a1

q + · · · + an
q

n

)p/q−1
= 0, (3.1)

which implies

ai =
(
a1

q + · · · + an
q

n

)1/q
(3.2)

for all i = 1, . . . , n. However, if a1 = · · · = an, then fp,q(a1, . . . , an) = 0 which clearly is not the
maximum of fp,q. Consequently, (a1, . . . , an) lies on the boundary of [a, b]n. Due to symmetry
and since fp,q(a, . . . , a) = fp,q(b, . . . , b) = 0, there exist k ∈ {1, . . . , n − 1} and l ∈ {k + 1, . . . , n}
such that

a1 = · · · = ak = a, ak+1 = · · · = al = b. (3.3)

If l < n then al+1, . . . , an ∈ (a, b). For this case, consider the function gl : (a, b)
n−l → R, defined

by

gl(al+1, . . . , an) = fp,q

⎛

⎜
⎝a, . . . , a

︸ ︷︷ ︸
k

, b, . . . , b
︸ ︷︷ ︸

l−k

, al+1, . . . , an

⎞

⎟
⎠. (3.4)

If the point (al+1, . . . , an) where the maximum of gl is attained is interior to [a, b]n−l, in virtue
of Fermat’s theorem, we deduce that

∂gl
∂ai

(al+1, . . . , an) = 0 (3.5)

for all i = l + 1, . . . , n. This is equivalent to

p · ai
p−1

n
− p

q
· qai

q−1

n

(
a1

q + · · · + an
q

n

)p/q−1
= 0, (3.6)
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hence

ai =
(
a1

q + · · · + an
q

n

)1/q

= c. (3.7)

A simple computation shows that

cq =
kaq + (l − k)bq

l
, (3.8)

and for this configuration we have

gl(c, . . . , c) =
kap + (l − k)bp + (n − l)cp

n
− cp

=
k(ap − bp) + l

[
bp − (bq − (k/l)(bq − aq))p/q

]

n
.

(3.9)

Let us define the function h : [k + 1, n] → R as

h(x) = x

[

bp −
(

bq − k

x
(bq − aq)

)p/q
]

, (3.10)

and prove it is increasing. Indeed, one finds

h′(x) =

[

bp −
(

bq − k

x
(bq − aq)

)p/q
]

− x · p
q

(

bq − k

x
(bq − aq)

)p/q−1 k

x2 (b
q − aq)

= bp −
[

bq − k

x
(bq − aq)

]p/q

− p

q
· k
x
(bq − aq)

[

bq − k

x
(bq − aq)

]p/q−1

= bp − (
bq − αη

)p/q − p

q
αη

(
bq − αη

)p/q−1
,

(3.11)

where α = bq − aq, and η = k/x < 1. Since aq < bq − αη = bq − (k/x)(bq − aq) < bq, it follows
that h′(x) > 0 so h is increasing and the upper bound is

max gl =
k(ap − bp) + h(l)

n
≤ k(ap − bp) + h(n)

n

=
kap + (n − k)bp

n
−
[
kaq + (n − k)bq

n

]p/q

.

(3.12)

This finally proves that k of the numbers a1, a2, . . . , an are equal to a,while the other n−k are
equal to b as anticipated. This ends the proof of Lemma 3.1.
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The only thing to be done is to find the value of k ∈ [0, . . . , n] for which the expression

ap − bp

n
k + bp −

(
aq − bq

n
k + bq

)p/q

(3.13)

attains its maximum.
To do this, consider the function g : [0, n] → R defined by

g(x) =
ap − bp

n
x + bp −

(
aq − bq

n
x + bq

)p/q

, (3.14)

and find the points where the maximum of g is attained in the interval [0, n].
The critical points of g are found from the equation

g ′(x∗) =
ap − bp

n
− p

q
· a

q − bq

n

(
aq − bq

n
x∗ + bq

)p/q−1
= 0, (3.15)

so they satisfy

q(ap − bp)
p(aq − bq)

=
(
aq − bq

n
x∗ + bq

)p/q−1
. (3.16)

As seen in the definition of the Stolarsky mean for this case,

D
p−q
p,q (a, b) =

[
aq − bq

n
x∗ + bq

](p−q)/q
. (3.17)

It is finally found that g has a single critical point

x∗ =
bq −D

q
p,q(a, b)

bq − aq
· n, (3.18)

which (fortunately) is contained in the interior of [0, n].
Taking into account that the second derivative of g is

g ′′(x) = −p
q
·
(
p

q
− 1

)

·
(
aq − bq

n

)2

·
(
aq − bq

n
x + bq

)p/q−2
< 0, (3.19)

the extremal point x∗ is a point of maximum for g, and also the function g ′ is decreasing on
the interval (0, n). Because g ′(x∗) = 0, we obtain g ′(y) > 0 for y ∈ (0, x∗), and g ′(y) < 0 for
y ∈ (x∗, n). Finally, this means that g is increasing on (0, x∗) and decreasing on (x∗, n).

We conclude that

g(1) < g(2) < · · · < g([x∗]),

g(n) < g(n − 1) < . . . < g([x∗] + 1).
(3.20)
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The maximum of (3.13) is then attained when k takes one of the values [x∗] and [x∗] + 1,
where

x∗ =
bq −D

q
p,q(a, b)

bq − aq
· n. (3.21)

The value of this k is to be called k(n) from now on.

Remark 3.2. Because in our case

pq
(
p − q

)
(b − a)/= 0, (3.22)

the Stolarsky mean satisfies the strict inequality a < Dp,q(a, b) < b, so 0 < x∗ < n.

(2) Using the properties of the integer part [x∗] ≤ x∗ < [x∗] + 1, we obtain

x∗

n
− 1
n
≤ [x∗]

n
≤ [x∗] + 1

n
≤ x∗

n
+
1
n
, (3.23)

so

x∗

n
− 1
n
≤ k(n)

n
≤ x∗

n
+
1
n
. (3.24)

It is then enough to work out the limit

lim
b↘a

bq −D
q
p,q(a, b)

bq − aq
=

qaq−1 − qD
q−1
p,q (a, a)

(
∂Dp,q/∂b

)
(a, a)

qaq−1 . (3.25)

On the other hand we have

1 =
dDp,q(a, a)

da
=

∂Dp,q

∂a
(a, a) +

∂Dp,q

∂b
(a, a). (3.26)

Due to symmetry the partial derivatives are equal, so the desired limit is

lim
b↘a

bq −D
q
p,q(a, b)

bq − aq
=

qaq−1 − (1/2)qaq−1

qaq−1 =
1
2
. (3.27)

Taking the limit b → a in (3.23), we obtain that the limit of k(n)/n as b → a is confined to
the interval [1/2 − 1/n, 1/2 + 1/n].
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Proof of Theorem 2.3. Considering p = 2 and q = 1 in Theorem 2.1, we obtain

D2,1(a, b) =
1
2
· b

2 − a2

b − a
=

1
2
(b + a),

k(n)
n

=
b − (1/2)(b + a)

b − a
=

1
2
.

(3.28)

Out of here, we can immediately obtain the best constant α for which

a2
1 + · · · + a2

n

n
−
(
a1 + · · · + an

n

)2

≤ α max
1≤i≤j≤n

(
ai − aj

)2
. (3.29)

Following the steps mentioned before, the function gets the maximum only when

a1 = · · · = ak = a, ak+1 = · · · = an = b, (3.30)

where k = [n/2], or k = [(n + 1)/2].
This proves that the following inequality holds:

a2
1 + · · · + a2

n

n
−
(
a1 + · · · + an

n

)2

≤ (b − a)2

n2

(
nk − k2

)
, (3.31)

so the best constant α will be

α =
[n

2

][n + 1
2

]

. (3.32)

Remark 3.3. Although appealing, a result involving arbitrary powers p would depend on
which the exact value of k(n) is (out of the two possibilities). At the same time, the power
(b − a)p on the righthand-side can only be obtained for p = 2.

Proof of Theorem 2.4. To ease the notations we write p = p(n) = pn and q = q(n) = qn. The
following relation holds:

lim
n→∞

k(n)
n

= lim
n→∞

bq −D
q
p,q(a, b)

bq − aq
. (3.33)

Using the notation b = at, the limit can be written as

lim
n→∞

1 − [
q(tp − tpq)/p(tq − tpq)

]q/(p−q)

1 − 1/tp
. (3.34)
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Since the denominator converges to 1, it only remains to examine the limit

lim
n→∞

[
q(tp − tpq)
p(tq − tpq)

]q/(p−q)
, (3.35)

which can be written as

lim
n→∞

(
q

p

)q/(p−q)[ tp − tpq

tq − tpq

]q/(p−q)
. (3.36)

It can be proven that the two terms of (3.36) converge to finite limits, and analyze each. From
the hypothesis limn→∞((pn − qn)/pn) = 0, so the limit of the first term is

lim
n→∞

(
q

p

)q/(p−q)
= lim

n→∞

((

1 +
q − p

p

)p/(q−p))−q/p
= e−1, (3.37)

while second term can be written as

(

1 +
tp − tq

tpq − tp

)q/(p−q)
. (3.38)

Since

lim
n→∞

tp − tq

tpq − tp
= 0, (3.39)

the same argument as above can be used to obtain

lim
n→∞

(

1 +
tp − tq

tpq − tp

)q/(p−q)
= eL, (3.40)

where

L = lim
n→∞

tp − tq

tpq − tp
q

p − q
= 0. (3.41)

In the end we obtain

lim
n→∞

k(n)
n

= 1 − e−1. (3.42)
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[3] M. O. Drâmbe, Inequalities—Ideas and Methods, Zalău, Romania, Gil, 2003.
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