Research Article

Hyers-Ulam Stability of a Bi-Jensen Functional Equation on a Punctured Domain

Gwang Hui Kim and Yang-Hi Lee

1 Department of Mathematics, Kangnam University, Yongin, Gyeonggi 446-702, South Korea
2 Department of Mathematics Education, Gongju National University of Education, Gongju 314-711, South Korea

Correspondence should be addressed to Gwang Hui Kim, ghkim@kangnam.ac.kr

Received 16 November 2009; Revised 8 February 2010; Accepted 15 February 2010

Academic Editor: Yong Zhou

Copyright © 2010 G. H. Kim and Y.-H. Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We obtain the Hyers-Ulam stability of a bi-Jensen functional equation: $2f((x+y)/2, z) - f(x, z) - f(y, z) = 0$ and simultaneously $2f(x,(y+z)/2) - f(x, y) - f(x, z) = 0$. And we get its stability on the punctured domain.

1. Introduction

In 1940, Ulam [1] raised a question concerning the stability of homomorphisms: let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality

$$d(h(xy), h(x)h(y)) < \delta$$

(1.1)

for all $x, y \in G_1$, then there is a homomorphism $H : G_1 \to G_2$ with

$$d(h(x), H(x)) < \varepsilon$$

(1.2)

for all $x \in G_1$? The case of approximately additive mappings was solved by Hyers [2] under the assumption that G_1 and G_2 are Banach spaces. In 1949, 1950, and 1978, Bourgin [3], Aoki [4], and Rassias [5] gave a generalization of it under the conditions bounded by variables. Since then, the further generalization has been extensively investigated by a number of mathematicians, such as Găvruta, Rassias, and so forth, [6–25].
Throughout this paper, let X be a normed space and Y a Banach space. A mapping $g : X \to Y$ is called a Jensen mapping if g satisfies the functional equation $2g((x + y)/2) = g(x) + g(y)$. For a given mapping $f : X \times X \to Y$, we define

$$J_1 f(x, y, z) := 2f\left(\frac{x + y}{2}, z\right) - f(x, z) - f(y, z),$$

$$J_2 f(x, y, z) := 2f\left(x, \frac{y + z}{2}\right) - f(x, y) - f(x, z)$$

for all $x, y, z \in X$. A mapping $f : X \times X \to Y$ is called a bi-Jensen mapping if f satisfies the functional equations $J_1 f = 0$ and $J_2 f = 0$.

In 2006, Bae and Park [26] obtained the generalized Hyers-Ulam stability of a bi-Jensen mapping. The following result is a special case of Theorem 6 in [26].

Theorem A. Let $\varepsilon > 0$ and let $f : X \times X \to Y$ be a mapping such that

$$\|J_1 f(x, y, z)\| \leq \varepsilon,$$

$$\|J_2 f(x, y, z)\| \leq \varepsilon$$

for all $x, y, z \in X$. Then there exist two bi-Jensen mappings $F, F_0 : X \times X \to Y$ such that

$$\|f(x, y) - f(0, y) - F(x, y)\| \leq \varepsilon,$$

$$\|f(x, y) - f(x, 0) - F_0(x, y)\| \leq \varepsilon$$

for all $x, y \in X$.

In Theorem A, they did not show that there exist a $k \in \mathbb{R}$ and a unique bi-Jensen mapping $F : X \times X \to Y$ such that $\|f(x, y) - F(x, y)\| \leq k\varepsilon$ for all $x, y \in X$. In 2008, Jun et al. [7, 8] improved Bae and Park’s results.

In Section 2, we show that there exists a unique bi-Jensen mapping $F : X \times X \to Y$ such that $\|f(x, y) - F(x, y)\| \leq 4\varepsilon$ for all $x, y \in X$. In Section 3, we investigate the Hyers-Ulam stability of a bi-Jensen functional equation on the punctured domain.

2. Stability of a Bi-Jensen Functional Equation

From Lemma 1 in [8], we get the following lemma.

Lemma 2.1. Let $f : X \times X \to Y$ be a bi-Jensen mapping. Then

$$f(x, y) = \frac{1}{4^n} f(2^n x, 2^n y) + \left(\frac{1}{2^n} - \frac{1}{4^n}\right) (f(2^n x, 0) + f(0, 2^n y)) + \left(1 - \frac{1}{2^n}\right)^2 f(0, 0)$$

for all $x, y \in X$ and $n \in \mathbb{N}$.

Now we will give the Hyers-Ulam stability for a bi-Jensen mapping.
Theorem 2.2. Let \(\varepsilon > 0 \) and let \(f : X \times X \to Y \) be a mapping satisfying (1.4) for all \(x, y, z \in X \). Then there exists a unique bi-Jensen mapping \(F : X \times X \to Y \) such that

\[
\|f(x, y) - F(x, y)\| \leq 4\varepsilon \tag{2.2}
\]

for all \(x, y \in X \) with \(F(0, 0) = f(0, 0) \). In particular, the mapping \(F : X \times X \to Y \) is given by

\[
F(x, y) := \lim_{j \to \infty} \left[\frac{1}{4^j} f\left(2^j x, 2^j y\right) + \left(\frac{1}{2^j} - \frac{1}{4^j}\right) \left(f\left(2^j x, 0\right) + f\left(0, 2^j y\right)\right) \right] + f(0, 0) \tag{2.3}
\]

for all \(x, y \in X \).

Proof. Let \(f_j \) be the map defined by

\[
f_j(x, y) = \frac{f\left(2^j x, 2^j y\right)}{4^j} + \left(\frac{1}{2^j} - \frac{1}{4^j}\right) \left(f\left(2^j x, 0\right) + f\left(0, 2^j y\right)\right) + \left(1 - \frac{1}{2^{j+1}} + \frac{1}{4^j}\right)f(0, 0) \tag{2.4}
\]

for all \(x, y \in X \) and \(j \in \mathbb{N} \). By (1.4), we get

\[
\|f_j(x, y) - f_{j+1}(x, y)\| = \left\| \frac{f_1(2^{j+1} x, 0, 0)}{2^{j+1}} + \frac{f_1(2^{j+1} x, 0, 2^{j+1} y)}{2 \cdot 4^{j+1}} + \frac{f_1(2^{j+1} x, 0, 2^{j+1} y)}{4^{j+1}} - \frac{3 f_1(2^{j+1} x, 0, 0)}{2 \cdot 4^{j+1}} - \frac{f_2(0, 0, 2^{j+1} y)}{2^{j+1}} + \frac{f_2(2^{j+1} x, 0, 2^{j+1} y)}{2 \cdot 4^{j+1}} \right\|
\]

\[
\leq \left(\frac{1}{2^j} + \frac{3}{2 \cdot 4^j}\right)\varepsilon
\]

for all \(x, y \in X \) and \(j \in \mathbb{N} \). For given integers \(l, m \) with \(0 \leq l < m \), we obtain

\[
\|f_l(x, y) - f_m(x, y)\| \leq \sum_{j=l}^{m-1} \left(\frac{1}{2^j} + \frac{3}{2 \cdot 4^j}\right)\varepsilon \tag{2.6}
\]

for all \(x, y \in X \). By the above inequality, the sequence \(\{f_j(x, y)\} \) is a Cauchy sequence for all \(x, y \in X \). Since \(Y \) is complete, the sequence \(\{f_j(x, y)\} \) converges for all \(x, y \in X \). Define \(F : X \times X \to Y \) by

\[
F(x, y) := \lim_{j \to \infty} f_j(x, y) \tag{2.7}
\]
for all \(x, y \in X \). Putting \(l = 0 \) and taking \(m \to \infty \) in (2.6), we obtain the inequality

\[
\|f(x, y) - F(x, y)\| \leq 4\varepsilon
\]
(2.8)

for all \(x, y \in X \). By (1.4) and the definition of \(F \), we get

\[
\begin{align*}
J_1F(x, y, z) &= \lim_{j \to \infty} \frac{1}{4^j} J_1 f(2^j x, 2^j y) + \left(\frac{1}{2^j} - \frac{1}{4^j} \right) \left(J_1 f(2^j x, 0) + J_1 f(0, 2^j y) \right) = 0, \\
J_2F_3(x, y, z) &= \lim_{j \to \infty} \frac{1}{4^j} J_2 f(2^j x, 2^j y) + \left(\frac{1}{2^j} - \frac{1}{4^j} \right) \left(J_2 f(2^j x, 0) + J_2 f(0, 2^j y) \right) = 0
\end{align*}
\]
(2.9)

for all \(x, y, z \in X \). So \(F \) is a bi-Jensen mapping satisfying (2.2). Now, let \(F' : X \times X \to Y \) be another bi-Jensen mapping satisfying (2.2) with \(F'(0, 0) = f(0, 0) \). By Lemma 2.1, we have

\[
\|F(x, y) - F'(x, y)\| \leq \left(\frac{1}{2^n} + \frac{1}{4^{n-1}} \right) \varepsilon
\]
(2.10)

for all \(x, y \in X \) and \(n \in \mathbb{N} \). As \(n \to \infty \), we may conclude that \(F(x, y) = F'(x, y) \) for all \(x, y \in X \). Thus the bi-Jensen mapping \(F : X \times X \to Y \) is unique. \(\square \)

Example 2.3. Let \(f, F, F' : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be the bi-Jensen mappings defined by

\[
f(x, y) := 0, \quad F(x, y) := \varepsilon, \quad F'(x, y) := -\varepsilon
\]
(2.11)

for all \(x, y \in \mathbb{R} \). Then \(f, F, F' \) satisfy (1.4) for all \(x, y, z \in \mathbb{R} \). In addition, \(f, F \) satisfy (2.2) for all \(x, y \in \mathbb{R} \) and \(f, F' \) also satisfy (2.2) for all \(x, y \in \mathbb{R} \). But we get \(F \neq F' \). Hence the condition \(F(0, 0) = f(0, 0) \) is necessary to show that the mapping \(F \) is unique.

Let A be a subset of X. $X \setminus A$ and $(X \times X) \setminus (A \times A)$ are punctured domain on the spaces X and $(X \times X)$, respectively.

Throughout this paper, for a given mapping $f : X \times X \to Y$, let $f_1, A_1, A_2 : X \times X \to Y$ be the mappings defined by

$$f_1(x, y) := \frac{f(x, y) - f(-x, y) - f(x, -y) + f(-x, -y)}{4},$$

$$A_1(x, y) := \sum_{m=0}^{n} \sum_{n=0}^{1} (-1)^{m+1} f((-1)^m x, (-1)^n \cdot 3x, y),$$

$$A_2(x, y) := \sum_{m=0}^{n} \sum_{n=0}^{1} (-1)^{m+1} f(x, (-1)^m \cdot 3y, (-1)^n y)$$

for all $x, y \in X$.

Lemma 3.1. Let A be a subset of X satisfying the following condition: for every $x \neq 0$, there exists a positive integer n_x such that $kx \notin A$ for all integer k with $|k| \geq n_x$, and such that $kx \in A$ for all integer k with $|k| < n_x$. Let $f : X \times X \to Y$ be a mapping such that

$$J_1 f(x, y, z) = 0, \quad J_2 f(x, y, z) = 0$$

for all $x, y, z \in X \setminus A$. Then there exists a unique bi-Jensen mapping $F : X \times X \to Y$ such that

$$F(x, y) = f(x, y)$$

for all $x, y \in X \setminus A$. Moreover, the equality

$$F(x, y) = f(x, y)$$

holds for all $(x, y) \in (X \times X) \setminus (A \times A)$.

Proof. Note that $J_1 f(x, y, z) = 0, J_2 f(x, y, z) = 0, A_1(x, y) = 0$, and $A_2(x, y) = 0$ for all $x, y \in X \setminus A$. Let $((f(0, y) + f(0, -y))/2) = c \in Y$ for any $y \in X \setminus A$. From (3.2), we get the equality

$$f(0, y) + f(0, -y) = f(x, 0) + f(-x, 0) + \frac{1}{2} (J_1 f(x, -x, y) + J_1 f(x, -x, -y) - J_2 f(x, y, -y))$$

for all $x, y \in X \setminus A$, and we know that the equality

$$\frac{f(0, y) + f(0, -y)}{2} = \frac{f(x, 0) + f(-x, 0)}{2} = c$$

(3.6)
holds for all \(x, y \in X \setminus A \). From (3.2), we have

\[
f_1(x, y) = \frac{f_1(2x, y) + A_1(x, y)}{2} - \frac{A_1(x, -y)}{16},
\]

\[
f_1(2x, y) = \frac{f_1(2x, 2y) + A_2(2x, y)}{4} - \frac{A_2(-2x, y)}{32},
\]

\[
f(x, y) = \frac{f(0, y) - f(0, -y)}{2} + \frac{f(0, y) + f(0, -y)}{2} + \frac{f(x, 0) - f(-x, 0)}{2}
\]

\[+ f_1(x, y) - \frac{1}{4}(2J_1 f(x, -x, y) + J_2 f(x, y, -y) - J_2 f(-x, y, -y)),
\]

\[
f(x, 0) - f(-x, 0) = \frac{f(2x, 0) - f(-2x, 0)}{2}
\]

\[+ \frac{1}{8}(4J_2 f(x, y, -y) - 4J_1 f(-x, y, -y) - 2J_1 f(2x, y, -y)
\]

\[+ 2J_1 f(-2x, y, -y) + A_1(x, y) + A_1(x, -y)),
\]

\[
f(0, y) - f(0, -y) = \frac{f(0, 2y) - f(0, -2y)}{2}
\]

\[+ \frac{1}{8}(4J_1 f(x, -x, y) - 4J_1 f(x, -x, -y) - 2J_1 f(x, -x, 2y)
\]

\[+ 2J_1 f(-x, -x, -2y) + A_2(x, y) + A_2(-x, y))
\]

for all \(x, y \in X \setminus A \). From the above equalities, we obtain the equalities

\[
f_1(x, y) = \frac{f_1(2x, y)}{2},
\]

\[
f(x, 0) - f(-x, 0) = \frac{f(2x, 0) - f(-2x, 0)}{2},
\]

\[
f(0, y) - f(0, -y) = \frac{f(0, 2y) - f(0, -2y)}{2},
\]

\[
f_1(x, y) = \frac{f_1(2^n x, 2^n y)}{4^n},
\]

\[
f(x, 0) = \frac{f(x, 0) - f(-x, 0)}{2} + \frac{f(x, 0) + f(-x, 0)}{2} = \frac{f(2^n x, 0) - f(-2^n x, 0)}{2^{n+1}} + c,
\]

\[
f(0, y) = \frac{f(0, y) - f(0, -y)}{2} + \frac{f(0, y) + f(0, -y)}{2} = \frac{f(0, 2^n y) - f(0, -2^n y)}{2^{n+1}} + c,
\]

\[
f(x, y) = \frac{f_1(2^n x, 2^n y)}{4^n} + \frac{f(0, 2^n y) - f(0, -2^n y) + f(2^n x, 0) - f(-2^n x, 0)}{2^{n+1}} + c
\]

for all \(x, y \in X \setminus A \) and \(n \in \mathbb{N} \).
Let A_x be the set defined by $A_x = \{ n \in \mathbb{N} \mid nx \notin A \}$ for each $x \neq 0$. From the above equalities, we can define $F : X \times X \to Y$ by

$$F(x, y) := \begin{cases} \frac{f_1(2^k x, 2^k y)}{4^k} + \frac{f(0, 2^k y) - f(0, -2^k y) + f(2^k x, 0) - f(-2^k x, 0)}{2^{k+1}} + c, & \text{for some } 2^k \in A_x \cap A_y \text{ if } x, y \neq 0, \\ \frac{f(2^k x, 0) - f(-2^k x, 0)}{2^{k+1}} + c, & \text{for some } 2^k \in A_x \text{ if } x \neq 0, y = 0, \\ \frac{f(0, 2^k y) - f(0, -2^k y)}{2^{k+1}} + c & \text{for some } 2^k \in A_y \text{ if } x = 0, y \neq 0, \\ c & \text{if } x, y = 0. \end{cases}$$ (3.12)

From the definition of F, we get the equalities

$$F(x, y) = f(x, y), \quad F(0, y) = f(0, y), \quad F(x, 0) = f(x, 0)$$ (3.13)

for all $x, y \in X \setminus A$. By (3.10), we get the equality

$$f(x, y) - F(x, y) = \frac{1}{2} \left[J_2 f \left(x, (2^k + 2) y, -2^k y \right) - J_2 F \left(x, (2^k + 2) y, -2^k y \right) \right] = 0$$ (3.14)

for all $x \in X \setminus A$ and $y \neq 0$, where $2^k \in A_y$. And also we get the equality

$$f(x, y) - F(x, y) = \frac{1}{2} \left[J_1 f \left((2^k + 2) x, -2^k x, y \right) - J_1 F \left((2^k + 2) x, -2^k x, y \right) \right] = 0$$ (3.15)

for all $x \neq 0$ and $y \in X \setminus A$, where $2^k \in A_x$. Hence the equality

$$f(x, y) = F(x, y)$$ (3.16)

holds for all $(x, y) \in (X \times X) \setminus (A \times A)$. From (3.8), (3.9), (3.10), and the definition of F, we easily get

$$J_1 F(x, -x, y) = 0, \quad J_1 F(x, -x, 0) = 0, \quad J_1 F(0, 0, y) = 0,$$

$$J_1 F(x, 0, y) = 0, \quad J_1 F(x, 0, 0) = 0, \quad J_1 F(0, 0, 0) = 0$$ (3.17)
for all \(x, y \neq 0 \). And we obtain
\[
J_1F(x, y, 0) = \frac{J_2f(2^{k-1}(x + y), z, -z) - J_2f(-2^{k-1}(x + y), z, -z)}{2^{k+1}} \\
+ \frac{-J_2f(2^k x, z, -z) + J_2f(-2^k x, z, -z)}{2^{k+2}} \\
+ \frac{J_1f(-2^k y, z, -z) + J_1f(2^k x, 2^k y, z) - J_1f(-2^k x, -2^k y, z)}{2^{k+2}} \\
+ \frac{J_1f(2^k x, 2^k y, -z) - J_1f(-2^k x, -2^k y, -z)}{2^{k+2}} = 0
\] (3.18)

for all \(x, y \neq 0 \) with \(x + y \neq 0 \), where \(2^k \in A_x \cap A_y \cap A_{x+y} \) and \(z \not\in A \). From this, we have
\[
J_1F(x, y, z) = \frac{J_1f(2^k x, 2^k y, 2^k z) - J_1f(-2^k x, -2^k y, 2^k z)}{4^{k+1}} \\
+ \frac{J_1f(-2^k x, -2^k y, -2^k z) - J_1f(2^k x, 2^k y, -2^k z)}{4^{k+1}} + J_1F(x, y, 0) = 0
\] (3.19)

for all \(x, y, z \neq 0 \) with \(x + y \neq 0 \), where \(2^k \in A_x \cap A_y \cap A_z \). From the above equalities, we get
\[
J_1F(x, y, z) = 0
\] (3.20)

for all \(x, y, z \in X \). By the similar method, we have
\[
J_2F(x, y, z) = 0
\] (3.21)

for all \(x, y, z \in X \). Hence \(F \) is a bi-Jensen mapping. Let \(F' \) be another bi-Jensen mapping satisfying
\[
F'(x, y) = f(x, y) = F(x, y)
\] (3.22)

for all \((x, y) \in (X \times X) \setminus (A \times A)\). Using the above equality, we show that the equalities
\[
F'(x, y) - F(x, y) = \frac{1}{2} (J_1F((k + 2)x, -kx, y) - J_1F((k + 2)x, -kx, y)) = 0,
\] (3.23)

\[
F'(0, y) - F(0, y) = \frac{1}{2} (J_1F(kx, -kx, y) - J_1F(kx, -kx, y)) = 0
\]

hold for all \(x \neq 0 \) and \(y \in X \) as we desired, where \(k \in A_x \). \(\square \)
Corollary 3.2. Let \(f : X \times X \rightarrow Y \) be a mapping such that

\[
J_1 f(x, y, z) = 0, \quad J_2 f(x, y, z) = 0
\]

for all \(x, y, z \in X \setminus \{0\} \). Then there exists a unique bi-Jensen mapping \(F : X \times X \rightarrow Y \) such that

\[
F(x, y) = f(x, y)
\]

for all \((x, y) \neq (0, 0) \).

Example 3.3. Let \(f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) be the mapping defined by

\[
f(x, y) := \begin{cases}
(x + 3)(y + 4) & \text{for } (x, y) \neq (0, 0), \\
1 & \text{for } (x, y) = (0, 0),
\end{cases}
\]

and let \(F \) be the mapping defined by \(F(x, y) := (x + 3)(y + 4) \) for all \(x, y \in \mathbb{R} \). Then the mappings \(f, F \) satisfy the conditions of Corollary 3.2 with \(f(0, 0) \neq F(0, 0) \).

Now, we prove the Hyers-Ulam stability of a bi-Jensen functional equation on the punctured domain \(X \setminus A \).

Theorem 3.4. Let \(\varepsilon > 0 \) and \(x_0 \in X \setminus A \). Let \(f : X \times X \rightarrow Y \) be a mapping such that

\[
\| J_1 f(x, y, z) \| \leq \varepsilon, \quad \| J_2 f(x, y, z) \| \leq \varepsilon
\]

for all \(x, y, z \in X \setminus A \). Then there exists a unique bi-Jensen mapping \(F : X \times X \rightarrow Y \) such that

\[
\| f(x, y) - F(x, y) \| \leq \frac{17}{2} \varepsilon
\]

holds for all \((x, y) \in (X \times X) \setminus (A \times A) \) with \(F(0, 0) = (f(x_0, 0) + f(-x_0, 0))/2 \). The mapping \(F : X \times X \rightarrow Y \) is given by

\[
F(x, y) := \lim_{j \to \infty} \left(f(x, y) + \frac{f(0, y) + f(0, 0)}{2^{j+1}} \right) + \frac{f(x_0, 0) + f(-x_0, 0)}{2}
\]

for all \(x, y \in X \).
Proof. By (3.27), we get

\[
\left\|\frac{f_1(2^i x, 2^i y)}{4^i} - \frac{f_1(2^{i+1} x, 2^{i+1} y)}{4^{i+1}}\right\| = \frac{1}{4^{i+2}} \left\| A_1(2^i x, 2^i y) - A_1(2^i x, -2^i y) + \frac{1}{2} A_2(2^{i+1} x, 2^i y) - \frac{1}{2} A_2(-2^{i+1} x, 2^i y)\right\| \leq \frac{3\varepsilon}{4^{i+1}},
\]

\[
\left\|\frac{f(0, 2^i y) - f(0, -2^i y)}{2^{i+1}} - \frac{f(0, 2^{i+1} y) - f(0, -2^{i+1} y)}{2^{i+2}}\right\| = \frac{1}{2^{i+4}} \left\| 4 f_1(0, -2^i y) - 4 f_1(0, -2^{i+1} y) - 2 f_1(x, -x, 2^{i+1} y) + 2 f_1(x, -x, 2^{i+1} y) + A_2(x, 2^i y) + A_2(-x, 2^i y)\right\| \leq \frac{5\varepsilon}{2^{i+2}},
\]

\[
\left\|\frac{f(0, y) + f(0, -y)}{2} - \frac{f(x, 0) + f(-x, 0)}{2}\right\| = \frac{1}{4} \left\| J_1 f(x, -x, y) + J_1 f(x, -x, -y) - J_2 f(x, y, -y) - J_2 f(-x, y, -y)\right\| \leq \varepsilon
\]

(3.30)

for all \(x, y \in X \setminus A\) and \(j \in \mathbb{N}\). For given integers \(l, m (0 \leq l < m)\), we have

\[
\left\|\frac{f_1(2^l x, 2^l y)}{4^l} - \frac{f_1(2^m x, 2^m y)}{4^m}\right\| \leq \sum_{j=l}^{m-1} \frac{3\varepsilon}{4^{j+1}},
\]

(3.31)

\[
\left\|\frac{f(0, 2^l y) - f(0, -2^l y)}{2^{l+1}} - \frac{f(0, 2^m y) - f(0, -2^m y)}{2^{m+1}}\right\| \leq \sum_{j=l}^{m-1} \frac{5\varepsilon}{2^{j+2}},
\]

(3.32)

\[
\left\|\frac{f(2^l x, 0) - f(-2^l x, 0)}{2^{l+1}} - \frac{f(2^m x, 0) - f(-2^m x, 0)}{2^{m+1}}\right\| \leq \sum_{j=l}^{m-1} \frac{5\varepsilon}{2^{j+2}},
\]

(3.33)

\[
\left\|\frac{f(x, 0) + f(-x, 0)}{2} - \frac{f(0, 2^m y) + f(0, -2^m y)}{2}\right\| \leq \varepsilon,
\]

(3.34)

\[
\left\|\frac{f(0, y) + f(0, -y)}{2} - \frac{f(2^m x, 0) + f(-2^m x, 0)}{2}\right\| \leq \varepsilon
\]

(3.35)

for all \(x, y \in X \setminus A\). The sequences \(\{(f_1(2^l x, 2^l y))/4^l\}, \{(f(0, 2^l y) - f(0, -2^l y))/2^{l+1}\}, \) and \(\{(f(2^l x, 0) - f(-2^l x, 0))/2^{l+1}\}\) are Cauchy sequences for all \(x, y \in X \setminus A\). Since \(Y\) is complete, the above sequences converge for all \(x, y \in X \setminus A\). From (3.34) and (3.35), we have

\[
\lim_{j \to \infty} \frac{f(0, 2^j y) + f(0, -2^j y)}{2^{j+1}} = \lim_{j \to \infty} \frac{f(2^j x, 0) + f(-2^j x, 0)}{2^{j+1}} = 0
\]

(3.36)
for all \(x, y \in X \). Using the inequalities (3.31)–(3.35) and the above equality, we can define the mappings \(F_1, F_2, F_3 : X \times X \to Y \) by

\[
F_1(x, y) := \lim_{j \to \infty} \frac{f(2^j x, 2^j y)}{2^j},
\]

\[
F_2(x, y) := \lim_{j \to \infty} \frac{f(0, 2^j y)}{2^j} = \lim_{j \to \infty} \frac{f(0, 2^j y) - f(0, -2^j y)}{2^{j+1}},
\]

\[
F_3(x, y) := \lim_{j \to \infty} \frac{f(2^j x, 0)}{2^j} = \lim_{j \to \infty} \frac{f(2^j x, 0) - f(-2^j x, 0)}{2^{j+1}}.
\]

for all \(x, y \in X \). By (3.27) and the definition of \(F_1 \), we obtain

\[
J_1 F_1(x, y, z) = \lim_{j \to \infty} \left[\frac{J_1 f(2^j x, 2^j y, 2^j z) - J_1 f(-2^j x, 2^j y, 2^j z)}{4^{j+1}} - \frac{J_1 f(2^j x, 2^j y, -2^j z) - J_1 f(-2^j x, 2^j y, -2^j z)}{4^{j+1}} \right] = 0,
\]

\[
J_2 F_1(x, y, z) = \lim_{j \to \infty} \left[\frac{J_2 f(2^j x, 2^j y, 2^j z) - J_2 f(-2^j x, 2^j y, 2^j z)}{4^{j+1}} - \frac{J_2 f(2^j x, 2^j y, -2^j z) - J_2 f(-2^j x, 2^j y, -2^j z)}{4^{j+1}} \right] = 0
\]

for all \(x, y, z \neq 0 \). Since \(J_2 F_2(x, y, -y) = 0 \) and

\[
J_2 F_2(x, y, z) = \lim_{j \to \infty} \left(\frac{J_1 f(w, -w, 2^{j-1}(y + z))}{2^j} - \frac{J_1 f(w, -w, 2^j y)}{2^{j+1}} - \frac{J_1 f(w, -w, 2^j z)}{2^{j+1}} + \frac{J_2 f(w, 2^j y, 2^j z)}{2^{j+1}} + \frac{J_2 f(-w, 2^j y, 2^j z)}{2^{j+1}} \right) = 0
\]

for all \(x, y, z \neq 0 \) with \(y + z \neq 0 \), where \(w \notin A \), we have

\[
J_1 F_2(x, y, z) = 0, \quad J_2 F_2(x, y, z) = 0
\]

(3.40)

for all \(x, y, z \neq 0 \). Similarly, the equalities

\[
J_1 F_3(x, y, z) = 0, \quad J_2 F_3(x, y, z) = 0
\]

(3.41)
hold for all $x, y, z \neq 0$. By Lemma 3.1, there exist bi-Jensen mappings $F_1', F_2', F_3' : X \times X \to Y$ such that

$$f_1'(x, y) = F_1(x, y), \quad f_2'(x, y) = F_2(x, y), \quad f_3'(x, y) = F_3(x, y)$$

(3.42)

for all $(x, y) \neq (0, 0)$. Since the equalities

$$F'_1(0, 0) = \frac{F'_1(x, 0) + F'_1(-x, 0)}{2} = \frac{F_1(x, 0) + F_1(-x, 0)}{2} = F_1(0, 0),$$

$$F'_2(0, 0) = \frac{F'_2(x, 0) + F'_2(-x, 0)}{2} = \frac{F_2(x, 0) + F_2(-x, 0)}{2} = F_2(0, 0),$$

$$F'_3(0, 0) = \frac{F'_3(x, 0) + F'_3(-x, 0)}{2} = \frac{F_3(x, 0) + F_3(-x, 0)}{2} = F_3(0, 0)$$

(3.43)

hold, F_1, F_2, F_3 are bi-Jensen mappings. Putting $l = 0$ and taking $m \to \infty$ in (3.31), (3.32), and (3.33), one can obtain the inequalities

$$\left\| f_1(x, y) - F_1(x, y) \right\| \leq \varepsilon, \quad \left\| \frac{1}{2} (f(0, y) - f(0, -y)) - F_2(x, y) \right\| \leq \frac{5\varepsilon}{2},$$

$$\left\| \frac{1}{2} (f(x, 0) - f(-x, 0)) - F_3(x, y) \right\| \leq \frac{5\varepsilon}{2}$$

(3.44)

for all $x, y \in X \setminus A$. By (3.30) and the above equalities, we get

$$\left\| f(x, y) - F(x, y) \right\| \leq \left\| f(x, y) - f_1(x, y) - f(0, y) - \frac{f(x, 0) - f(-x, 0)}{2} \right\|$$

$$+ \left\| \frac{f(0, y) + f(0, -y)}{2} - \frac{f(x_0, 0) + f(-x_0, 0)}{2} \right\| + \left\| f_1(x, y) - F_1(x, y) \right\|$$

$$+ \left\| \frac{f(0, y) - f(-x, 0)}{2} - F_2(x, y) \right\| + \left\| \frac{f(x, 0) - f(-x, 0)}{2} - F_3(x, y) \right\|$$

$$\leq \left\| -\frac{1}{2} I_1 f(x, -x, y) - \frac{1}{4} I_2 f(x, y, -y) + \frac{1}{4} I_2 f(-x, y, -y) \right\| + 7\varepsilon$$

$$\leq 8\varepsilon$$

(3.45)

for all $x, y \in X \setminus A$, where F is given by

$$F(x, y) = F_1(x, y) + F_2(x, y) + F_3(x, y) + \frac{f(x_0, 0) + f(-x_0, 0)}{2}$$

(3.46)
and $z \notin A$. By (3.45), we get the inequalities

$$
\|f(x, y) - F(x, y)\| = \frac{1}{2} \|J_1 f((k+2)x, -kx, y) + f((k+2)x, y) - F((k+2)x, y) + f(-kx, y) - F(-kx, y)\| \leq \frac{17}{2} \varepsilon,
$$

$$
\|f(0, y) - F(0, y)\| = \frac{1}{2} \|J_1 f(kx, -kx, y) + f(kx, y) - F(kx, y) + f(-kx, y) - F(-kx, y)\| \leq \frac{17}{2} \varepsilon,
$$

(3.47)

for all $x \neq 0$ and $y \notin A$, where $k \in A_x$, and the inequalities

$$
\|f(x, y) - F(x, y)\| \leq \frac{17}{2} \varepsilon,
$$

$$
\|f(x, 0) - F(x, 0)\| \leq \frac{17}{2} \varepsilon
$$

(3.48)

for all $y \neq 0$ and $x \notin A$. Hence F is a bi-Jensen mapping satisfying (3.28).

Now, let $F' : X \times X \to Y$ be another bi-Jensen mapping satisfying (3.28) with $F'(0, 0) = F(0, 0)$. By Lemma 2.1, we have

$$
\|F(x, y) - F'(x, y)\|
\leq \left\| \frac{1}{4^n} (f - F)(2^n x, 2^n y) + \left(\frac{1}{2^n} - \frac{1}{4^n}\right) ((F - f)(2^n x, 0) + (F - f)(0, 2^n y)) \right\|
\leq \frac{17 \varepsilon}{2^{n-1}}
$$

(3.49)

for all $x, y \in X \setminus A$ and $n \in \mathbb{N}$. As $n \to \infty$, we may conclude that $F(x, y) = F'(x, y)$ for all $x, y \in X \setminus A$. By Lemma 3.1, $F = F'$ as we desired.

Example 3.5. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the mapping defined by

$$
f(x, y) := \begin{cases}
\frac{\varepsilon}{2} & \text{if } (x, y) = (0, 0), \\
0 & \text{if } (x, y) \neq (0, 0).
\end{cases}
$$

(3.50)

Let $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the mapping defined by $F(x, y) = 1$ for all $x, y \in X$. Then f satisfies the conditions in Theorem 3.4, and F is a bi-Jensen mapping satisfying (3.28) but $F(0, 0) \neq f(0, 0)$.
Corollary 3.6. Let \(f : X \times X \to Y \) be a mapping satisfying (3.13) and (3.27) for all \(x, y, z \in X \setminus \{0\} \). Then there exists a bi-Jensen mapping \(F : X \times X \to Y \) such that

\[
\| f(x, y) - F(x, y) \| \leq 8\varepsilon
\]

for all \((x, y) \neq (0, 0) \).

Proof. Let \(F_2, F_3 \) be as in the proof of Theorem 3.4. By (3.30), we obtain

\[
\| f(0, y) - F(0, y) \| \leq \left\| \frac{f(0, y) + f(0, -y) - f(x_0, 0) - f(-x_0, 0)}{2} \right\| + \left\| \frac{f(0, y) - f(0, -y) - F_2(x, y)}{2} \right\| \leq \frac{7\varepsilon}{2},
\]

\[
\| f(x, 0) - F(x, 0) \| \leq \left\| \frac{f(x, 0) + f(-x, 0) - f(0, y) + f(0, -y)}{2} \right\| + \left\| \frac{f(x, 0) + f(0, -y) - f(x_0, 0) - f(-x_0, 0)}{2} \right\| + \left\| \frac{f(x, 0) - f(-x, 0) - F_3(x, y)}{2} \right\| \leq \frac{9\varepsilon}{2}
\]

for \(x, y \neq 0 \). From the above inequalities and (3.45), we get the inequality

\[
\| f(x, y) - F(x, y) \| \leq 8\varepsilon
\]

for all \((x, y) \neq (0, 0) \). \(\square \)

References

