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We investigate the Hyers-Ulam stability of the quadratic functional equation on restricted
domains. Applying these results, we study of an asymptotic behavior of these quadratic mappings.

1. Introduction

The question concerning the stability of group homomorphisms was posed by Ulam [1].
Hyers [2] solved the case of approximately additive mappings on Banach spaces. Aoki
[3] provided a generalization of the Hyers’ theorem for additive mappings. In [4], Rassias
generalized the result of Hyers for linear mappings by allowing the Cauchy difference to be
unbounded (see also [5]). The result of Rassias has been generalized by Găvruţa [6] who
permitted the norm of the Cauchy difference f(x + y) − f(x) − f(y) to be bounded by a
general control function under some conditions. This stability concept is also applied to the
case of various functional equations by a number of authors. For more results on the stability
of functional equations, see [7–32]. We also refer the readers to the books [33–37].

It is easy to see that the function f : � → � defined by f(x) = cx2 with c an arbitrary
constant is a solution of the functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)
. (1.1)

So, it is natural that each equation is called a quadratic functional equation. In particular, every
solution of the quadratic equation (1.1) is said to be a quadratic function. It is well known that
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a function f : X → Y between real vector spaces X and Y is quadratic if and only if there
exists a unique symmetric biadditive function B : X ×X → Y such that f(x) = B(x, x) for all
x ∈ X (see [21, 33, 35]).

A stability theorem for the quadratic functional equation (1.1)was proved by Skof [38]
for functions f : X → Y , where X is a normed space and Y is a Banach space. Cholewa [11]
noticed that the result of Skof holds (with the same proof) ifX is replaced by an abelian group
G. In [12], Czerwik generalized the result of Skof by allowing growth of the form ε · (‖x‖p +
‖y‖p) for the norm of f(x +y) − f(x − y) − 2f(x) − 2f(y), where ε > 0 and p /= 2. In 1998, Jung
[39] investigated the Hyers-Ulam stability for additive and quadratic mappings on restricted
domains (see also [40–42]). Rassias [43] investigated the Hyers-Ulam stability of mixed type
mappings on restricted domains. In [44], the authors considered the asymptoticity of Hyers-
Ulam stability close to the asymptotic derivability.

2. Stability of (1.1) on Restricted Domains

In this section, we investigate the Hyers-Ulam stability of the functional equation (1.1) on a
restricted domain. As an application, we use the result to the study of an asymptotic behavior
of that equation.

Theorem 2.1. Given a real normed vector space X and a real Banach space Y , let ε, δ, θ ≥ 0 and
M,p > 0 with 0 < p < 1 be fixed. If a mapping f : X → Y satisfies the inequality

‖f(x + y
)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)‖ ≤ ψ

(
x, y

)
, (2.1)

for all x, y ∈ X such that ‖x‖p + ‖y‖p ≥ Mp, where ψ(x, y) = δ + ε(‖x‖2p + ‖y‖2p) + θ‖x‖p‖y‖p,
then there exists a unique quadratic mappingQ : X → Y such that

‖Q(x) − f(x)‖ ≤ 3δ +M2p · ε
6

+
2ε + θ

4 − 4p
‖x‖2p, (2.2)

for all x ∈ X with ‖x‖ ≥ M/21/p and Q(x) = limn→∞(f(2nx)/4n). Moreover, if f is measurable or
if f(tx) is continuous in t for each fixed x ∈ X, thenQ(tx) = t2Q(x) for all x ∈ X and t ∈ �.

Proof. Letting y = x in (2.1), we get

‖f(2x) − 4f(x) + f(0)‖ ≤ δ + (2ε + θ)‖x‖2p, (2.3)

for all x ∈ X with ‖x‖ ≥ M/21/p. If we put x ∈ X with ‖x‖ = M and y = 0 in (2.1), we obtain

‖f(0)‖ ≤ δ +M2p · ε
2

. (2.4)

It follows from (2.3) and (2.4) that

‖f(2x) − 4f(x)‖ ≤ 3δ +M2p · ε
2

+ (2ε + θ)‖x‖2p, (2.5)
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for all x ∈ X with ‖x‖ ≥ M/21/p. Replacing x by 2nx in (2.5), we infer the inequality

∥∥∥
∥∥
f
(
2n+1x

)

4n+1
− f(2nx)

4n

∥∥∥
∥∥≤

3δ +M2p · ε
8 × 4n

+
2ε + θ

4

(
4p

4

)n

‖x‖2p, (2.6)

for all x ∈ X with ‖x‖ ≥ M/21/p and all integers n ≥ 0. Therefore,

∥∥∥
∥∥
f
(
2n+1x

)

4n+1
− f(2mx)

4m

∥∥∥
∥∥
≤

n∑

k=m

∥∥∥
∥∥
f
(
2k+1x

)

4k+1
− f

(
2kx

)

4k

∥∥∥
∥∥

≤ 3δ +M2p · ε
8

n∑

k=m

1
4k

+
2ε + θ

4

n∑

k=m

(
4p

4

)k

‖x‖2p,
(2.7)

for all x ∈ X with ‖x‖ ≥ M/21/p and all integers n ≥ m ≥ 0. It follows from (2.7) that the
sequence {4−nf(2nx)} converges for all x ∈ X with ‖x‖ ≥ M/21/p. Let us denote ϕ(x) =
limn→∞(f(2nx)/4n) for all x ∈ X with ‖x‖ ≥ M/21/p. It is clear that

ϕ(2x) = 4ϕ(x), (2.8)

for all x ∈ X with ‖x‖ ≥ M/21/p. Letting m = 0 and n → ∞ in (2.7), we get

‖ϕ(x) − f(x)‖ ≤ 3δ +M2p · ε
6

+
2ε + θ

4 − 4p
‖x‖2p, (2.9)

for all x ∈ X with ‖x‖ ≥ M/21/p.
Now, suppose that x, y ∈ X such that ‖x‖, ‖y‖, ‖x±y‖ ≥ M/21/p, then by (2.1) and the

definition of ϕ, we obtain

ϕ
(
x + y

)
+ ϕ

(
x − y

)
= 2ϕ(x) + 2ϕ

(
y
)
. (2.10)

We have to extend the mapping ϕ to the whole space X. Given any x ∈ X with 0 < ‖x‖ <
M/21/p, let k = k(x) denote the largest integer such that M/21/p ≤ 2k‖x‖ < M. Consider the
mapping Q : X → Y defined by Q(0) = 0 and

Q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ
(
2kx

)

4k
for 0 < ‖x‖ <

M

21/p
, where k = k(x),

ϕ(x) for ‖x‖ ≥ M

21/p
.

(2.11)

Let x ∈ X with 0 < ‖x‖ < M/21/p and let k = k(x). We have two cases.

Case 1. If 2‖x‖ ≥ M/21/p, we have from (2.8) that

Q(2x) = ϕ(2x) =
ϕ(4x)

4
= · · · = ϕ

(
2kx

)

4k−1
= 4Q(x). (2.12)
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Case 2. If 0 < 2‖x‖ < M/21/p, then k − 1 is the largest integer satisfying M/21/p ≤ 2k−1‖2x‖ <
M, and we have

Q(2x) =
ϕ
(
2kx

)

4k−1
= 4

ϕ
(
2kx

)

4k
= 4Q(x). (2.13)

Therefore, Q(2x) = 4Q(x) for all x ∈ X with 0 < ‖x‖ < M/21/p. From the definition of Q and
(2.8), it follows that Q(2x) = 4Q(x) for all x ∈ X. Now, suppose that x ∈ X with x /= 0 and
choose a positive integerm such that ‖2mx‖ ≥ M/21/p. By the definition ofQ and its property,
we have

Q(x) =
Q(2mx)

4m
=

ϕ(2mx)
4m

. (2.14)

So by the definition of ϕ, we have

Q(x) = lim
n→∞

f(2m+nx)
4m+n = lim

n→∞
f(2nx)
4n

, (2.15)

for all x ∈ X with x/= 0. Since Q(0) = 0, (2.15) holds true for x = 0. Let x, y ∈ X with x, y /= 0.
It follows from (2.1) and (2.15) that

Q
(
x + y

)
+Q

(
x − y

)
= 2Q(x) + 2Q

(
y
)
. (2.16)

Letting y = −x in (2.16), we get Q(−x) = Q(x) for all x ∈ X with x /= 0. Since Q(0) = 0,
the same is true for x = 0. So, Q is even and this implies that (2.16) is true for all x, y ∈ X.
Therefore, Q is quadratic. By the definition Q(x) = ϕ(x) when ‖x‖ ≥ M/21/p, thus (2.2)
follows from (2.9). To prove the uniqueness of Q, let T : X → Y be another quadratic
mapping satisfying (2.2) for all ‖x‖ ≥ M/21/p. Let x ∈ X with x/= 0 and choose a positive
integer m such that ‖2mx‖ ≥ M/21/p, then

‖Q(2nx) − T(2nx)‖ ≤ ‖Q(2nx) − f(2nx)‖ + ‖f(2nx) − T(2nx)‖

≤ M2p · ε + 12δ
12

+
2(2ε + θ)4np

4 − 4p
‖x‖2p,

(2.17)

for all n ≥ m. Since Q and T are quadratic, we get

‖Q(x) − T(x)‖ ≤ M2p · ε + 12δ
12 × 4n

+
2(2ε + θ)
4 − 4p

(
4p

4

)n

‖x‖2p, (2.18)

for all n ≥ m. Therefore, Q(x) = T(x). Since Q(0) = T(0) = 0, we have Q(x) = T(x) for all
x ∈ X. The proof of our last assertion follows from the proof of Theorem 1 in [12].

We now introduce one of the fundamental results of fixed point theory by Margolis
and Diaz.
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Theorem 2.2 (see [22]). Let (E, d) be a complete generalized metric space and let J : E → E be a
strictly contractive mapping with Lipschitz constant 0 < L < 1. If there exists a nonnegative integer
k such that d(Jkx, Jk+1x) < ∞ for some x ∈ X, then the following are true:

(1) the sequence {Jnx} converges to a fixed point x∗ of J ,

(2) x∗ is the unique fixed point of J in

Y =
{
y ∈ E : d

(
Jkx, y

)
< ∞

}
, (2.19)

(3) d(y, x∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

By using the idea of Cădariu and Radu [45], we applied a fixed point method to the
investigation of the generalized Hyers-Ulam stability of the functional equation (1.1) on a
restricted domain.

Theorem 2.3. Given a real normed vector space X and a real Banach space Y , letM > 0 be fixed and
let f : X → Y be a mapping which satisfies the inequality (2.1) for all x, y ∈ S := {(x, y) ∈ X ×X :
‖x‖, ‖y‖, ‖x ± y‖ ≥ M}, where ψ(x, y) : X ×X → Y is a function such that

ψ
(
2x, 2y

) ≤ 4Lψ
(
x, y

)
, (2.20)

for all x, y ∈ X, where 0 < L < 1 is a constant number, then there exists a unique quadratic mapping
Q : X → Y such that

‖Q(x) − f(x)‖ ≤ 1
1 − L

σ(x), (2.21)

for all x ∈ X with ‖x‖ ≥ M, where

σ(x) :=
1
8
[
ψ(5x, x) + ψ(4x, 2x) + 2ψ(4x, x) + 5ψ(3x, x) + 8ψ(2x, x)

]
(2.22)

andQ(x) = limn→∞(f(2nx)/4n) for all x ∈ X. Moreover, if f is measurable or if f(tx) is continuous
in t for each fixed x ∈ X, then Q(tx) = t2Q(x) for all x ∈ X and t ∈ �.

Proof. It follows from (2.20) that

lim
n→∞

ψ
(
2nx, 2ny

)

4n
= 0, (2.23)
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for all x, y ∈ X. Let y ∈ XM := {x ∈ X : ‖x‖ ≥ M}. Letting x = ky for k = 2, 3, 4, 5 in (2.1), we
get the following inequalities:

‖f(3y) − 2f
(
2y

) − f
(
y
)‖ ≤ ψ

(
2y, y

)
, (2.24)

‖f(4y) − 2f
(
3y

)
+ f

(
2y

) − 2f
(
y
)‖ ≤ ψ

(
3y, y

)
, (2.25)

‖f(5y) − 2f
(
4y

)
+ f

(
3y

) − 2f
(
y
)‖ ≤ ψ

(
4y, y

)
, (2.26)

‖f(6y) − 2f
(
5y

)
+ f

(
4y

) − 2f
(
y
)‖ ≤ ψ

(
5y, y

)
. (2.27)

It follows from (2.24) and (2.25) that

‖f(4y) − 3f
(
2y

) − 4f
(
y
)‖ ≤ 2ψ

(
2y, y

)
+ ψ

(
3y, y

)
. (2.28)

By (2.26) and (2.27), we have

‖f(6y) − 3f
(
4y

)
+ 2f

(
3y

) − 6f
(
y
)‖ ≤ 2ψ

(
4y, y

)
+ ψ

(
5y, y

)
. (2.29)

It follows from (2.25) and (2.29) that

‖f(6y) − 2f
(
4y

)
+ f

(
2y

) − 8f
(
y
)‖ ≤ ψ

(
5y, y

)
+ 2ψ

(
4y, y

)
+ ψ

(
3y, y

)
. (2.30)

Using (2.28) and (2.30), we have

‖f(6y) − 5f
(
2y

) − 16f
(
y
)‖ ≤ ψ

(
5y, y

)
+ 2ψ

(
4y, y

)
+ 3ψ

(
3y, y

)
+ 4ψ

(
2y, y

)
. (2.31)

By (2.24), we get

‖f(6y) − 2f
(
4y

) − f
(
2y

)‖ ≤ ψ
(
4y, 2y

)
. (2.32)

Hence, we obtain from (2.31) and (2.32) that

‖2f(4y) − 4f
(
2y

) − 16f
(
y
)‖ ≤ ψ

(
5y, y

)
+ ψ

(
4y, 2y

)
+ 2ψ

(
4y, y

)
+ 3ψ

(
3y, y

)
+ 4ψ

(
2y, y

)
.

(2.33)

So, it follows from (2.28) and (2.33) that

∥∥
∥∥∥
f
(
2y

)

4
− f

(
y
)
∥∥
∥∥∥
≤ σ

(
y
)
, (2.34)

for all y ∈ XM. Let E := {h : XM → Y}. We introduce a generalized metric on E as follows:

d(h, k) := inf{C ∈ [0,∞] : ‖h(x) − k(x)‖ ≤ Cσ(x) ∀x ∈ XM }. (2.35)
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We assert that (E, d) is a generalized complete metric space. Let {hn} be a Cauchy sequence
in (E, d) and ε > 0 be given, then there exists an integer N such that d(hm, hn) ≤ ε for all
m,n ≥ N. This implies that ‖hm(x) − hn(x)‖ ≤ εσ(x) for all x ∈ XM and all m,n ≥ N.
Therefore, {hn(x)} is a Cauchy sequence in Y for all x ∈ XM. Since Y is a Banach space,
{hn(x)} converges for all x ∈ XM. Thus, we can define a function h : XM → Y by

h(x) := lim
n→∞

hn(x). (2.36)

Since

‖hm(x) − h(x)‖ = lim
n→∞

‖hm(x) − hn(x)‖ ≤ εσ(x), (2.37)

for all x ∈ XM and allm ≥ N, we get d(hm, h) ≤ ε for allm ≥ N. That is, the Cauchy sequence
{hn} converges to h in (E, d). Hence, (E, d) is complete. We now consider the mapping Λ :
E → E defined by

(Λh)(x) =
1
4
h(2x), ∀h ∈ E, x ∈ XM. (2.38)

Let h, k ∈ E and let C ∈ [0,∞] be an arbitrary constant with d(h, k) ≤ C. From the definition
of d, we have

‖h(x) − k(x)‖ ≤ Cσ(x), (2.39)

for all x ∈ XM. By the assumption (2.20) and the last inequality, we have

‖(Λh)(x) − (Λk)(x)‖ =
1
4
‖h(2x) − k(2x)‖ ≤ C

4
σ(2x) ≤ CLσ(x), (2.40)

for all x ∈ XM. So d(Λh,Λk) ≤ Ld(h, k). That is, Λ is a strictly contractive on E. It follows
from (2.34) that d(Λf, f) ≤ 1. Therefore, according to Theorem 2.2, there exists a function
ϕ ∈ E such that the sequence {Λnf} converges to ϕ and Λϕ = ϕ. Indeed,

ϕ : XM → Y, ϕ(x) = lim
n→∞

(
Λnf

)
(x) = lim

n→∞
f(2nx)

4n
(2.41)

and ϕ(2x) = 4ϕ(x), for all x ∈ XM. Also, ϕ is the unique fixed point of Λ in the set E∗ = {h ∈
E : d(f, h) < ∞} and

d
(
ϕ, f

) ≤ 1
1 − L

d
(
Λf, f

) ≤ 1
1 − L

. (2.42)

By (2.1), (2.23) and using the definition of ϕ, we get

ϕ
(
x + y

)
+ ϕ

(
x − y

)
= 2ϕ(x) + 2ϕ

(
y
)
, (2.43)
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for all (x, y) ∈ S. We will define a mapping Q : X → Y such that Q|XM = ϕ. Similar to the
proof of Theorem 2.1 for a given x ∈ X with 0 < ‖x‖ < M, let k = k(x) denote the largest
integer such that M/2 ≤ 2k‖x‖ < M. Consider the mapping Q : X → Y defined by Q(0) = 0
and

Q(x) =

⎧
⎪⎨

⎪⎩

ϕ
(
2kx

)

4k
for 0 < ‖x‖ < M, where k = k(x),

ϕ(x) for ‖x‖ ≥ M.

(2.44)

Let x ∈ X with 0 < ‖x‖ < M and let k = k(x). We have two cases.

Case 1. 2‖x‖ ≥ M. Since ϕ(2x) = 4ϕ(x) for all x ∈ XM, we have

Q(2x) = ϕ(2x) =
ϕ(4x)

4
= · · · = ϕ

(
2kx

)

4k−1
= 4Q(x). (2.45)

Case 2. If 0 < 2‖x‖ < M, then k − 1 is the largest integer satisfyingM/2 ≤ 2k−1‖2x‖ < M, and
we have

Q(2x) =
ϕ
(
2kx

)

4k−1
= 4

ϕ
(
2kx

)

4k
= 4Q(x). (2.46)

Therefore,Q(2x) = 4Q(x) for all x ∈ X with 0 < ‖x‖ < M. Using ϕ(2x) = 4ϕ(x) for all x ∈ XM

and the definition of Q, we get that Q(2x) = 4Q(x) for all x ∈ X. Now, suppose that x ∈ X
with x /= 0 and choose a positive integer m such that ‖2mx‖ ≥ M. By the definition of Q and
its property, we have

Q(x) =
Q(2mx)

4m
=

ϕ(2mx)
4m

. (2.47)

So by the definition of ϕ, we have

Q(x) = lim
n→∞

f(2m+nx)
4m+n = lim

n→∞
f(2nx)
4n

, (2.48)

for all x ∈ X with x /= 0. Since Q(0) = 0, (2.48) holds true for x = 0. Let x, y ∈ X with x, y,
x ± y /= 0. It follows from (2.1), (2.23), and (2.48) that

Q
(
x + y

)
+Q

(
x − y

)
= 2Q(x) + 2Q

(
y
)
. (2.49)

Since Q(0) = 0 and Q(2x) = 4Q(x) for all x ∈ X, we conclude that (2.49) is true for all
y ∈ {0, x}. Let y ∈ X with y /= 0. Putting x = 2y in (2.49), we get Q(3y) = 9Q(y). Therefore,
by letting y = 2x in (2.49), we get Q(−x) = Q(x) for all x ∈ X with x/= 0. Since Q(0) = 0,
the same is true for x = 0. So, Q is even and this implies that (2.49) is true for all x, y ∈ X.
Therefore, Q is quadratic. To prove the uniqueness of Q, let T : X → Y be another quadratic
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mapping satisfying (2.21), for all ‖x‖ ≥ M. Let x ∈ X with x/= 0 and choose a positive integer
m such that ‖2mx‖ ≥ M, then

‖Q(2nx) − T(2nx)‖ ≤ ‖Q(2nx) − f(2nx)‖ + ‖f(2nx) − T(2nx)‖

≤ 2
1 − L

σ(2nx),
(2.50)

for all n ≥ m. Since Q and T are quadratic, we get

‖Q(x) − T(x)‖ ≤ 2
1 − L

× σ(2nx)
4n

, (2.51)

for all n ≥ m. Therefore, (2.23) implies that Q(x) = T(x). Since Q(0) = T(0) = 0, we have
Q(x) = T(x) for all x ∈ X. Our last assertion is trivial in view of Theorem 2.1.

Corollary 2.4. Given a real normed vector space X and a real Banach space Y , let ε, δ, θ ≥ 0 and
M,p > 0 with 0 < p < 1 be fixed. Suppose that a mapping f : X → Y satisfies the inequality (2.1)
for all (x, y) ∈ S, then there exists a unique quadratic mappingQ : X → Y such that

‖Q(x) − f(x)‖ ≤ 1
2(4 − 4p)

[17δ + (25p + 3 × 16p + 5 × 9p + 9 × 4p + 16)ε

+(8p + 5p + 2 × 4p + 5 × 3p + 8 × 2p)θ]‖x‖2p,
(2.52)

for all x ∈ X with ‖x‖ ≥ M and Q(x) = limn→∞(f(2nx)/4n). Moreover, if f is measurable or if
f(tx) is continuous in t for each fixed x ∈ X, then Q(tx) = t2Q(x) for all x ∈ X and t ∈ �.

Remark 2.5. We may replace the condition (2.20) by

lim
n→∞

ψ
(
2nx, 2ny

)

4n
= 0

(
x, y

) ∈ S,

ψ̃
(
x, y

)
:=

∞∑

n=1

ψ
(
2nx, 2ny

)

4n
< ∞,

(2.53)

for all y ∈ X and x ∈ {2y, 3y, 4y, 5y}. Using the direct method, there exists a unique quadratic
mapping Q : X → Y such that

‖Q(x) − f(x)‖ ≤ 1
8
[
ψ̃(5x, x) + ψ̃(4x, 2x) + 2ψ̃(4x, x) + 5ψ̃(3x, x) + 8ψ̃(2x, x)

]
, (2.54)
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for all x ∈ X with ‖x‖ ≥ M. For the case ψ(x, y) = δ + ε(‖x‖2p + ‖y‖2p) + θ‖x‖p‖y‖p, where
δ, ε, θ ≥ 0 and 0 < p < 1, we have

‖Q(x) − f(x)‖ ≤ 17
6
δ +

1
2(4 − 4p)

[(25p + 3 × 16p + 5 × 9p + 9 × 4p + 16)ε

+(8p + 5p + 2 × 4p + 5 × 3p + 8 × 2p)θ]‖x‖2p.
(2.55)

Using ideas from the papers [39, 43], we prove the generalized Hyers-Ulam stability
of (1.1) on restricted domains. We first prove the following lemma.

Lemma 2.6. Given a real normed vector spaceX and a real Banach space Y , letM,p > 0 and δ, ε ≥ 0
be fixed. If a mapping f : X → Y satisfies the inequality

‖f(x + y
)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)‖ ≤ δ + ε

(‖x‖p + ‖y‖p), (2.56)

for all x, y ∈ X with ‖x‖p + ‖y‖p ≥ Mp, then

‖f(x + y
)
+ f

(
x − y

) − 2f(x) − 2f
(
y
) − f(0)‖ ≤ φ

(
x, y

)
, (2.57)

for all x, y ∈ X, where

φ
(
x, y

)
:=

1
2

[
9δ + (16p + 4 × 9p + 8 × 4p)M2pε + ε

(‖x − y‖p + 2‖x‖p + 2‖y‖p)
]
. (2.58)

Proof. Assume that ‖x‖p + ‖y‖p < Mp. If x = y = 0, then we choose a t ∈ X with ‖t‖ = M.
Otherwise, let

t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(‖x‖ +M)
x

‖x‖ if ‖x‖ ≥ ‖y‖,

(‖y‖ +M
) y

‖y‖ if ‖y‖ ≥ ‖x‖.
(2.59)

It is clear that ‖t‖ ≥ M and

‖x − t‖p + ‖y + t‖p ≥ max
{‖x − t‖p, ‖y + t‖p} ≥ Mp,

‖x − y‖p + ‖2t‖p ≥ ‖t‖p ≥ Mp,

‖x + t‖p + ‖t − y‖p ≥ max
{‖x + t‖p, ‖t − y‖p} ≥ Mp,

min
{‖x‖p + ‖t‖p, ‖y‖p + ‖t‖p, ‖t‖p + ‖t‖p} ≥ ‖t‖p ≥ Mp.

(2.60)

Also

max
{‖x − t‖, ‖x + t‖, ‖y − t‖, ‖y + t‖} < 3M, ‖t‖ < 2M. (2.61)
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Therefore,

2
[
f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
) − f(0)

]

=
[
f
(
x + y

)
+ f

(
x − y − 2t

) − 2f(x − t) − 2f
(
y + t

)]

− [
f
(
x − y − 2t

)
+ f

(
x − y + 2t

) − 2f
(
x − y

) − 2f(2t)
]

+
[
f
(
x − y + 2t

)
+ f

(
x + y

) − 2f(x + t) − 2f
(
t − y

)]

+ 2
[
f(x + t) + f(x − t) − 2f(x) − 2f(t)

]

+ 2
[
f
(
t + y

)
+ f

(
t − y

) − 2f(t) − 2f
(
y
)]

− 2
[
f(2t) + f(0) − 2f(t) − 2f(t)

]
.

(2.62)

So, we get

2‖f(x + y
)
+ f

(
x − y

) − 2f(x) − 2f
(
y
) − f(0)‖

≤ 9δ + (16p + 4 × 9p + 8 × 4p)M2pε + ε
(‖x − y‖p + 2‖x‖p + 2‖y‖p).

(2.63)

So, f satisfies (2.57) for all x, y ∈ X.

Theorem 2.7. Given a real normed vector space X and a real Banach space Y , let δ, ε ≥ 0 and
M,p > 0 with 0 < p < 2 be given. Assume that a mapping f : X → Y satisfies the inequality (2.56)
for all x, y ∈ X with ‖x‖p + ‖y‖p ≥ Mp, then there exists a unique quadratic mapping Q : X → Y
such thatQ(x) = limn→∞4−nf(2nx) and

‖f(x) −Q(x)‖ ≤ 1
6

[
9δ + (16p + 4 × 9p + 8 × 4p)M2pε

]
+

2ε
4 − 2p

‖x‖p, (2.64)

for all x ∈ X.

Proof. By Lemma 2.6, f satisfies (2.57) for all x, y ∈ X. Letting y = x in (2.57), we get

∥∥
∥∥
f(2x)
4

− f(x)
∥∥
∥∥≤ K +

ε

2
‖x‖p, (2.65)

for all x ∈ X, where

K :=
1
8

[
9δ + (16p + 4 × 9p + 8 × 4p)M2pε

]
. (2.66)

We can use the argument given in the proof of Theorem 2.1 to arrive the inequality

∥∥∥
∥∥
f
(
2n+1x

)

4n+1
− f(2mx)

4m

∥∥∥
∥∥
≤ K

n∑

k=m

1
4k

+
ε

2

n∑

k=m

(
2p

4

)k

‖x‖p, (2.67)



12 Journal of Inequalities and Applications

for all x ∈ X and all integers n ≥ m ≥ 0. It follows from (2.67) that the sequence
{4−nf(2nx)} converges for all x ∈ X. So, we can define the mapping Q : X → Y by
Q(x) = limn→∞(f(2nx)/4n) for all x ∈ X. Letting m = 0 and n → ∞ in (2.67), we get
(2.64).

For the case ε = 0 and p = 1 in Theorem 2.7, it is obvious that our inequality (2.64) is
sharper than the corresponding inequalities of Jung [39] and Rassias [43].

Skof [38] has proved an asymptotic property of the additive mappings, and Jung [39]
has proved an asymptotic property of the quadratic mappings (see also [41]). Using the
method in [39], the proof of the following corollary follows from Theorem 2.7 by letting ε = 0
and p = 1.

Corollary 2.8 (see [39]). Given a real normed vector space X and a real Banach space Y , a mapping
f : X → Y satisfies (1.1) if and only if the asymptotic condition

‖f(x + y
)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)‖ −→ 0 as ‖x‖ + ‖y‖ −→ ∞ (2.68)

holds true.

3. p-Asymptotically Quadratic Mappings

We apply our results to the study of p-asymptotical derivatives. LetX be a real normed vector
space and let Y be a real Banach space Y . Let 0 < p < 2 be arbitrary.

Definition 3.1. A mapping f : X → Y is called p-asymptotically close to a mapping T : X → Y
if and only if lim‖x‖→∞(‖f(x) − T(x)‖/‖x‖p) = 0.

Definition 3.2. A mapping f : X → Y is called p-asymptotically derivable if the mapping f is
p-asymptotically close to a quadratic mapping Q : X → Y . In this case, we say that Q is a
p-asymptotical derivative of f .

Definition 3.3. A mapping f : X → Y is called p-asymptotically quadratic if and only if, for
every ε > 0, there exists δ > 0 such that

‖f(x + y
)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)‖ ≤ ε

(‖x‖p + ‖y‖p), (3.1)

for all x, y ∈ X with ‖x‖, ‖y‖, ‖x ± y‖ ≥ δ.

Definition 3.4. Amapping T : X → Y is called quadratic outside a ball if there exists δ > 0 such
that T(x + y) + T(x − y) = 2T(x) + 2T(y) for all x, y ∈ X with ‖x‖, ‖y‖, ‖x ± y‖ ≥ δ.

We have the following result.

Theorem 3.5. If T : X → Y is quadratic outside a ball and f : X → Y is p-asymptotically close to
T , then f is p-asymptotically quadratic.

The following result follows from Corollary 2.4.
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Corollary 3.6. If T : X → Y is quadratic outside a ball and f : X → Y is p-asymptotically close to
T , then f has a p-asymptotical derivative.
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