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We define the M-harmonic conjugate operator K and prove that for 1 < p < ∞, there is a constant
Cp such that

∫
S |Kf |pωdσ ≤ Cp

∫
S |f |pωdσ for all f ∈ Lp(ω) if and only if the nonnegative weight

ω satisfies the Ap-condition. Also, we prove that if there is a constant Cp such that
∫
S |Kf |pvdσ ≤

Cp

∫
S |f |pwdσ for all f ∈ Lp(w), then the pair of weights (v,w) satisfies the Ap-condition.

1. Introduction

Let B be the unit ball of Cn with norm |z| = 〈z, z〉1/2 where 〈, 〉 is the Hermitian inner
product, let S be the unit sphere, and, σ be the rotation-invariant probability measure on S.

In [1], for z ∈ B, ξ ∈ S, we defined the kernel K(z, ξ) by

iK(z, ξ) = 2C(z, ξ) − P(z, ξ) − 1, (1.1)

where C(z, ξ) = (1 − 〈z, ξ〉)−n is the Cauchy kernel and P(z, ξ) = (1 − |z|2)n/|1 − 〈z, ξ〉|2n is
the invariant Poisson kernel. Thus for each ξ ∈ S, the kernel K(, ξ) is M-harmonic. And for
all f ∈ A(B), the ball algebra, such that f(0) is real, the reproducing property of 2C(z, ξ) − 1
(3.2.5 of [2]) gives

∫

S

K(z, ξ)Re f(ξ)dσ(ξ) = −i(f(z) − Re f(z)
)
= Im f(z). (1.2)

For that reason, K(z, ξ) is called theM-harmonic conjugate kernel.
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For f ∈ L1(S), Kf , theM-harmonic conjugate function of f , on S is defined by

(
Kf

)
(ζ) = lim

r→ 1

∫

S

K(rζ, ξ)f(ξ)dσ(ξ), (1.3)

since the limit exists almost everywhere. For n = 1, the definition of Kf is the same as
the classical harmonic conjugate function [3, 4]. Many properties of M-harmonic conjugate
function come from those of Cauchy integral and invariant Poisson integral. Indeed the
following properties of Kf follow directly from Chapters 5 and 6 of [2].

(1) As an operator, K is of weak type (1.5) and bounded on Lp(S) for 1 < p < ∞.

(2) If f ∈ L1(S), then Kf ∈ Lp(S) for all 0 < p < 1 and if f ∈ L logL, then Kf ∈ L1(S).

(3) If f is in the Euclidean Lipschitz space of order α for 0 < α < 1, then so is Kf .

Also, in [1], it is shown that K is bounded on the Euclidean Lipschitz space of order α for
0 < α < 1/2, and bounded on BMO.

In this paper, we focus on the weighted norm inequality for M-harmonic conjugate
functions. In the past, there have been many results on weighted norm inequalities and
related subjects, for which the two books [3, 4] provide good references. Some classical results
include those of M. Riesz in 1924 about the Lp boundedness of harmonic conjugate functions
on the unit circle for 1 < p < ∞ [3, Theorem 2.3 of Chapter 3] and [3, Theorems 6.1 and
6.2 of Chapter 6] about the close relation between Ap-condition of the weight and the Lp

boundedness of the Hardy-Littlewoodmaximal operator andHilbert transform onR. In 1973,
Hunt et al. [5] proved that, for 1 < p < ∞, conjugate functions are bounded on weighted
measured Lebesgue space if and only if the weight satisfies Ap-condition. It should be noted
that in 1986 the boundedness of the Cauchy transform on the Siegel upper half-plane in C

n

was proved by Dorronsoro [6]. Here in this paper, we provide an analogue of that of [5] and
[3, Theorems 6.1 and 6.2 of Chapter 6].

To define the Ap-condition on S, we let ω be a nonnegative integrable function on S.
For p > 1, we say that ω satisfies the Ap-condition if

sup
Q

1
σ(Q)

∫

Q

ωdσ

(
1

σ(Q)

∫

Q

ω−1/(p−1)dσ

)p−1
< ∞, (1.4)

where Q = Q(ξ, δ) = {η ∈ S : d(ξ, η) = |1 − 〈ξ, η〉|1/2 < δ} is a nonisotropic ball of S.
Here is the first and the main theorem.

Theorem 1.1. Let ω be a nonnegative integrable function on S. Then for 1 < p < ∞, there is a
constant Cp such that

∫

S

∣∣Kf
∣∣pωdσ ≤ Cp

∫

S

∣∣f
∣∣pωdσ ∀f ∈ Lp(ω) (1.5)

if and only if ω satisfies the Ap-condition.

In succession of classical weighted norm inequalities, starting from Muckenhoupt’s
result in 1975 [7], there have been extensive studies on two-weighted norm inequalities. Here,
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we define the Ap-condition for two weights. For a pair (v,w) of two nonnegative integrable
functions, we say that (v,w) satisfies the Ap-condition if

sup
Q

1
σ(Q)

∫

Q

vdσ

(
1

σ(Q)

∫

Q

w−1/(p−1)dσ

)p−1
< ∞, (1.6)

where Q is a nonisotropic ball of S. As mentioned above, in [7], Muckenhoupt derives
a necessary and sufficient condition on two-weighted norm inequalities for the Poisson
integral operator, and then in [8], Muckenhoupt andWheeden provided two-weighted norm
inequalities for the Hardy-Littlewood maximal operator and the Hilbert transform. We admit
that there are, henceforth, numerous splendid results on two-weighted norm inequalities but
left unmentioned here.

In this paper we provide a two-weighted norm inequality for M-harmonic conjugate
operator as our next theorem, by the method somewhat similar to the proof of the main
theorem. For a pair (v,w), the generalization of the necessity in Theorem (1.5) is as follows.

Theorem 1.2. Let (v,w) be a pair of nonnegative integrable functions on S. If for 1 < p < ∞, there
is a constant Cp such that

∫

S

∣∣Kf
∣∣pvdσ ≤ Cp

∫

S

∣∣f
∣∣pwdσ ∀f ∈ Lp(w), (1.7)

then the pair (v,w) satisfies the Ap-condition.

The proofs of Theorems 1.1 and 1.2 will be given in Section 2. We start Section 2 by
introducing the sharp maximal function and a lemma on the sharp maximal function, which
plays an important role in the proof of the main theorem. In the final section, as an appendix,
we introduce John-Nirenberg’s inequality on S and then, as an application, we attach some
properties of Ap weights on S in relation with BMO, which are similar to those on the
Euclidean space.

2. Proofs

Definition 2.1. For f ∈ L1(S) and 0 < p < ∞, the sharp maximal function f#p on S is defined
by

f#p(ξ) = sup
Q

(
1

σ(Q)

∫

Q

∣∣f − fQ
∣∣pdσ

)1/p

, (2.1)

where the supremum is taken over all the nonisotropic ballsQ containing ξ and fQ stands for
the average of f over Q.

The sharp maximal operator f 	→ f#p is an analogue of the Hardy-Littlewood maximal
operatorM, which satisfies f#p(ξ) ≤ 2Mf(ξ). The proof of the following lemma is essentially
the same as that of the Theorem 2.20 of [4]; so we omit its proof.
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Lemma 2.2. Let 0 < p < ∞ and ω satisfy Ap-condition. Then there is a constant Cp such that

∫

S

(
Mf

)p
ωdσ ≤ Cp

∫

S

(
f#1

)p
ωdσ, (2.2)

for all f ∈ Lp(ω).

Now we will prove Theorem 1.1.

Proof of Theorem 1.1. First, we prove that (1.5) implies that ω satisfies the Ap-condition.
If ξ, η ∈ S, then by a direct calculation we get

K
(
ξ, η

)
=

(
1 − 〈

η, ξ
〉)n(2 − (

1 − 〈
ξ, η

〉)n)

∣
∣1 − 〈

ξ, η
〉∣∣2n

. (2.3)

If ξ /= −η and (1− 〈η, ξ〉)n (2− (1− 〈ξ, η〉)n) = 0, then we get ξ = η. Thus if ξ /=η, then for ξ ≈ η,
we have (ReK(ξ, η))(ImK(ξ, η))/= 0. Hence there exist positive constants δ and C̃ such that

∣∣∣∣∣

∫

0<d(ξ,η)<δ
K
(
ξ, η

)
f
(
η
)
dσ

(
η
)
∣∣∣∣∣
≥
∫

0<d(ξ,η)<δ

C̃
∣∣1 − 〈

ξ, η
〉∣∣2n

f
(
η
)
dσ

(
η
)

(2.4)

for any nonnegative function f , where C̃ depends only on the distance between ξ and η.
Suppose that Q1 and Q2 are nonintersecting with positive distance nonisotropic balls with
radius sufficiently small δ, and that they are contained in another small nonisotropic ball, for
example, with radius 3δ. Choose a nonnegative function f supported in Q1. Then from (2.4),
for almost all ξ ∈ Q2 we have

∣∣Kf(ξ)
∣∣ =

∣∣∣∣∣

∫

Q1

K
(
ξ, η

)
f
(
η
)
dσ

(
η
)
∣∣∣∣∣
≥
∫

Q1

C̃
∣∣1 − 〈

ξ, η
〉∣∣2n

f
(
η
)
dσ

(
η
)
:= C̃I. (2.5)

Since σ(Q1) ≈ δ2n, there is a constantC > 0 such that I ≥ C(1/σ(Q1)
∫
Q1

fdσ). Thus for almost
all ξ ∈ Q2, we get

∣∣Kf(ξ)
∣∣p ≥ CpC̃p

(
1

σ(Q1)

∫

Q1

fdσ

)p

. (2.6)

Putting f = χQ1 and integrating (2.6) over Q2 after being multiplied by ω, we get

∫

Q2

ωdσ ≤ 1

CpC̃p

∫

Q2

∣∣Kf(ξ)
∣∣pω dσ. (2.7)

However by (1.5) there exists a number Cp such that

∫

Q2

∣∣Kf
∣∣pω dσ ≤

∫

S

∣∣Kf
∣∣pω dσ ≤ Cp

∫

S

∣∣f
∣∣pω dσ = Cp

∫

Q1

ωdσ. (2.8)
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Thus we get

∫

Q2

ωdσ ≤ Cp

CpC̃p

∫

Q1

ωdσ. (2.9)

Similarly, putting f = χQ2 and integrating (2.6) over Q1 after being multiplied by ω and then
using (1.5), we also have

∫

Q1

ωdσ ≤ Cp

CpC̃p

∫

Q2

ωdσ. (2.10)

Therefore, the integrals of ω over Q1 and Q2 are equivalent.
Now for a given constant α, put f = ωαχQ1 in (2.6) and integrate over Q2. We have

∫

Q2

∣∣Kf(ξ)
∣∣pω dσ ≥ CpC̃p

(
1

σ(Q1)

∫

Q1

ωαdσ

)p ∫

Q2

ωdσ. (2.11)

Thus we get

(
1

σ(Q1)

∫

Q1

ωαdσ

)p ∫

Q2

ωdσ ≤ Cp

CpC̃p

∫

Q1

ωαp+1dσ. (2.12)

Finally take α = −1/(p − 1) and apply (2.10) to (2.12), then we have the inequality

1
σ(Q1)

∫

Q1

ωdσ

(
1

σ(Q1)

∫

Q1

ω−1/(p−1)dσ

)p−1
≤
(

Cp

CpC̃p

)2

, (2.13)

for every ball Q1 with radius less than or equal to δ at any point of S. (Here, note that the
right hand side of the above is independent ofQ1 and particularly δ because C̃ depends only
on the distance between Q1 and Q2.) Therefore,

1
σ(Q)

∫

Q

ωdσ

(
1

σ(Q)

∫

Q

ω−1/(p−1)dσ

)p−1
≤ Mp, (2.14)

where the constantMp is independent ofQ. Consequently, we have the desiredAp-condition.
And this proves the necessity of the Ap-condition for (1.5).

Conversely, we suppose that 1 < p < ∞ and ω satisfies the Ap-condition and then
we will prove that (1.5) holds. To do this we will first prove the following. Claim (i). Let
f ∈ L1(S). Then for q > 1, there is a constant Cq > 0 such that (Kf)#

1
(ξ) ≤ Cqf

#q(ξ), for almost
all ξ.
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To prove Claim (i), for a fixedQ = Q(ξQ, δ), it suffices to show that for each q > 1 there
are constants λ = λ(Q, f) and Cq depending only on q such that

1
σ(Q)

∫

Q

∣
∣Kf

(
η
) − λ

∣
∣dσ ≤ Cqf

#q(ξQ
)
. (2.15)

Now, we write

f
(
η
)
=
(
f
(
η
) − fQ

)
χ2Q

(
η
)
+
(
f
(
η
) − fQ

)
χS\2Q

(
η
)
+ fQ = f1

(
η
)
+ f2

(
η
)
+ fQ. (2.16)

Since KfQ = 0, we have Kf = Kf1 +Kf2.
Define

g(z) =
∫

S

(2C(z, ξ) − 1)f2(ξ)dσ(ξ). (2.17)

Then g is continuous on B∪Q. By setting λ = −ig(ξQ) in (2.15), we shall prove the Claim. The
integral in (2.15) is estimated as

∫

Q

∣∣Kf
(
η
)
+ ig

(
ξQ

)∣∣dσ
(
η
) ≤

∫

Q

∣∣Kf1
∣∣dσ +

∫

Q

∣∣Kf2 + ig
(
ξQ

)∣∣dσ = I1 + I2. (2.18)

Estimate of I1. By Hölder’s inequality we get

1
σ(Q)

∫

Q

∣∣Kf1
∣∣dσ ≤

(
1

σ(Q)

∫

Q

∣∣Kf1
∣∣qdσ

)1/q

≤
(

1
σ(Q)

∫

S

∣∣Kf1
∣∣qdσ

)1/q

≤ C

σ(Q)1/q
∥∥f1

∥∥
q,

(2.19)

since K is bounded on Lq(S). (Here, throughout the proof for notational simplicity, the letter
C alone will denote a positive constant, independent of δ, whose value may change from line
to line.) Now by replacing f1 by f − fQ, we get

∥∥f1
∥∥
q =

(∫

2Q

∣∣f − fQ
∣∣qdσ

)1/q

≤
(∫

2Q

∣∣f − f2Q
∣∣qdσ

)1/q

+ σ(2Q)1/q
∣∣f2Q − fQ

∣∣. (2.20)

Thus by applying Hölder’s inequality in the last term of the above, we see that there is a
constant Cq such that

1
σ(Q)

∫

Q

∣∣Kf1
∣∣dσ ≤ Cqf

#q(ξQ
)
. (2.21)
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Now we estimate I2. Since f2 ≡ 0 on 2Q, we have

I2 =
∫

Q

∣
∣f2 + iKf2 − g

(
ξQ

)∣∣dσ ≤
∫

S\2Q
2
∣
∣f2

(
η
)∣∣

∫

Q

∣
∣C

(
ξ, η

) − C
(
ξQ, η

)∣∣dσ(ξ)dσ
(
η
)
. (2.22)

By Lemma 6.6.1 of [2], we get an upper bound such that

I2 ≤ Cδσ(Q)
∫

S\2Q

∣
∣f2

(
η
)∣∣

∣
∣1 − 〈

η, ξQ
〉∣∣n+1/2

dσ
(
η
)
, (2.23)

where C is an absolute constant.
Write S \ 2Q =

⋃∞
k=1 2

k+1Q \ 2kQ. Then the integral of (2.23) is equal to

∞∑

k=1

∫

2k+1Q\2kQ

∣
∣f
(
η
) − fQ

∣
∣

∣∣1 − 〈
η, ξQ

〉∣∣n+1/2
dσ

(
η
)

≤
∞∑

k=1

1
2(2n+1)kδ2n+1

∫

2k+1Q\2kQ

∣∣f − fQ
∣∣dσ

≤
∞∑

k=1

1
2(2n+1)kδ2n+1

⎛

⎝
∫

2k+1Q

∣∣f − f2k+1Q
∣∣dσ +

k∑

j=0

∫

2k+1Q

∣∣f2j+1Q − f2jQ
∣∣dσ

⎞

⎠.

(2.24)

Thus there exist C and Cq such that

1
σ(Q)

∫

Q

∣∣Kf2 + ig
(
ξQ

)∣∣dσ ≤ C
∞∑

k=1

k

2k
f#1(ξQ

) ≤ Cqf
#q(ξQ

)
, (2.25)

as we complete the proof of the claim.
Next, we fix p > 1 and let f ∈ Lp. Then by Lemma maximal inequality there is a

constant Cp such that

∫

S

∣∣Kf
∣∣pω dσ ≤

∫

S

∣∣M
(
Kf

)∣∣pω dσ ≤ Cp

∫

S

∣∣∣
(
Kf

)#1∣∣∣
p
ω dσ. (2.26)

Take q > 0 such that p/q > 1. By the above Claim (i), the last term of the above inequalities is
bounded by some constant (depending on p and q) times

∫

S

∣∣∣f#q
∣∣∣
p
ω dσ ≤ C

∫

S

(
M

∣∣f
∣∣q)p/qω dσ ≤ C′

∫

S

∣∣f
∣∣pω dσ, (2.27)

where two constants C and C′ depend on p and q, which proves (1.5) and this completes the
proof of Theorem 1.1.

Now, we will prove Theorem 1.2 by taking slightly a roundabout way from the proof
of Theorem 1.1.
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Proof of Theorem 1.2. Assume the inequality (1.7). Let Q1 and Q2 be nonintersecting non-
isotropic balls with positive distance, and with radius sufficiently small δ.

Let f be supported in Q1. Then from (2.4), there is a positive constant C̃ such that for
all ξ ∈ Q2,

∣
∣Kf(ξ)

∣
∣ ≥ C̃

∫

Q1

1
∣
∣1 − 〈

ξ, η
〉∣∣2n

f
(
η
)
dσ

(
η
)
, (2.28)

where C̃ depends only on the distance between ξ and η. Also from the fact that σ(Q1) ≈ δ2n,
for some constant C > 0 depending only on n, the integral of (2.28) has the lower bound such
as

C

(
1

σ(Q1)

∫

Q1

fdσ

)

. (2.29)

Thus for almost all ξ ∈ Q2, we get

∣∣Kf(ξ)
∣∣p ≥ CpC̃p

(
1

σ(Q1)

∫

Q1

fdσ

)p

. (2.30)

Putting f = χQ1 and integrating (2.30) over Q2 after being multiplied by v, we get

∫

Q2

v dσ ≤ 1

CpC̃p

∫

Q2

∣∣Kf(ξ)
∣∣pv dσ. (2.31)

However, by (1.7) there exists a number Cp such that

∫

Q2

∣∣Kf
∣∣pv dσ ≤

∫

S

∣∣Kf
∣∣pv dσ ≤ Cp

∫

S

∣∣f
∣∣pw dσ = Cp

∫

Q1

wdσ. (2.32)

Thus,

∫

Q2

v dσ ≤ Cp

CpC̃p

∫

Q1

wdσ. (2.33)

For a constant α which will be chosen later, put f = wαχQ1 in (2.30), multiply v on
both sides, and integrate over Q2. We have

∫

Q2

∣∣Kf(ξ)
∣∣pv dσ ≥ CpC̃p

(
1

σ(Q1)

∫

Q1

wαdσ

)p ∫

Q2

v dσ. (2.34)
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By (1.7), we arrive at

(
1

σ(Q1)

∫

Q1

wαdσ

)p ∫

Q2

v dσ ≤ Cp

CpC̃p

∫

Q1

wαp+1dσ. (2.35)

Taking α = −1/(p − 1) in (2.35), we have the inequality

1
σ(Q1)

∫

Q2

v dσ

(
1

σ(Q1)

∫

Q1

w−1/(p−1)dσ

)p−1
≤
(

Cp

CpC̃p

)2

, (2.36)

for all balls Q1, Q2 with radius less than or equal to δ and the distance between two balls
greater then δ at any point of S.

Here, unlike the proof of Theorem 1.1, we can not derive the equivalence between∫
Qi
v dσ and

∫
Qj

w dσ in a straightforward method, for i /= j (i, j = 1, 2). For this reason, it is
not allowed to replace Q1 by Q2 directly in (2.36). However, such difficulty can be overcome
using the following method. By the symmetric process of the proof, we can interchange Q1

with Q2 in (2.36). Thus, for all such balls,

1
σ(Q2)

∫

Q1

v dσ

(
1

σ(Q2)

∫

Q2

w−1/(p−1)dσ

)p−1
≤
(

Cp

CpC̃p

)2

. (2.37)

Now multiply two equations (2.36) and (2.37) by side. Since σ(Q1) = σ(Q2), we have

1
σ(Q1)

∫

Q1

v dσ

(
1

σ(Q2)

∫

Q2

w−1/(p−1)dσ

)p−1

× 1
σ(Q2)

∫

Q2

v dσ

(
1

σ(Q1)

∫

Q1

w−1/(p−1)dσ

)p−1
≤
(

Cp

CpC̃p

)4

.

(2.38)

Let us note that C̃ depends on the distance between Q1 and Q2. Taking supremum over all
δ-balls, we get

⎛

⎝sup
Q

1
σ(Q)

∫

Q

v dσ

(
1

σ(Q)

∫

Q

w−1/(p−1)dσ

)p−1⎞

⎠

2

≤
(

Cp

CpC̃p

)4

, (2.39)

and the proof of Theorem 1.2 is complete.
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Appendix

Ap-Condition and BMO

Let Q be a nonisotropic ball of S. The space BMO consists of all f ∈ L1(S) satisfying

sup
Q

1
σ(Q)

∫

Q

∣
∣f − fQ

∣
∣dσ =

∥
∥f

∥
∥
BMO < ∞, (A.1)

where fQ is the average of f over Q. BMO becomes a Banach space provided that we
identify functions which differ by a constant. Since both definitions of Ap-condition and
BMO are concerned about the local average of a function, it is natural for us to mention
the relation between these concepts. In this section, we show that an Ap weight on S is
indeed closely related to the BMO. Proposition A.4 and Lemma A.3 tell about it. The proof
of Proposition A.4 comes from John-Nirenberg’s inequality (Lemma A.3) which states as
follows.

LemmaA.3 (John-Nirenberg’s inequality). Let f ∈ BMO and E ⊂ S be not intersecting the north
pole. Then there exist positive constants C1 and C2, independent of f and E, such that

σ
({

η ∈ E :
∣∣f
(
η
) − fE

∣∣ > λ
}) ≤ C1e

−C2λ/‖f‖BMOσ(E) (A.2)

for every λ > 0.

The proof of Lemma A.3 is parallel to the proof of the classical John-Nirenberg’s
inequality on R [3, Theorem 2.1 of Chapter 6]. However, it is somewhat more complicated,
and moreover, the details of the proof run off our aim of the paper. So we decide to omit the
proof of Lemma A.3.

The next proposition is about the Ap weight and BMO on S. Likewise, on the
Euclidean space, by Jensen’s inequality and the classical John-Nirenberg’s inequality, we can
see that the Euclidean analogue of Proposition A.4 is also true.

Proposition A.4. Let ω be a nonnegative integrable function on S. Then logω ∈ BMO if and only
if ωα satisfies the A2-condition for some α > 0.

Proof. We prove the necessity first. Suppose logω ∈ BMO. Let Q denote a nonisotropic ball,
and α > 0. Now consider integral

1
σ(Q)

∫

Q

eα| logω−(logω)Q |dσ, (A.3)

which is less than or equal to

1 +
1

σ(Q)

∫∞

1
σ
({

η ∈ Q : eα| logω(η)−(logω)Q | > λ
})

dλ. (A.4)
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By change of variables, the integral term of the above is equal to

α

σ(Q)

∫∞

0
σ
({

η ∈ Q :
∣
∣
∣logω

(
η
) − (

logω
)
Q

∣
∣
∣ > λ

})
eαλdλ. (A.5)

John-Nirenberg’s inequality implies that there exist positive constants C1 and C2, indepen-
dent of Q, such that

σ
({

η ∈ Q :
∣
∣
∣logω

(
η
) − (

logω
)
Q

∣
∣
∣ > λ

})
≤ C1e

−C2λ/‖ logω‖BMOσ(Q). (A.6)

Now we take α < C2/‖ logω‖BMO, and then we define

M =
C1C2

C2 − α
∥∥logω

∥∥
BMO

. (A.7)

By the above choice of α and M, for each nonisotropic ball Q, we have the inequality

1
σ(Q)

∫

Q

e±α(logω−(logω)Q)dσ ≤ M + 1. (A.8)

Therefore we have

sup
Q

1
σ(Q)

∫

Q

eα logωdσ

(
1

σ(Q)

∫

Q

e−α logωdσ

)

≤ (M + 1)2, (A.9)

which means that ωα satisfies the A2-condition.
Conversely, suppose that there is α > 0 such that ωα satisfies the A2-condition. Then

by Jensen’s inequality it suffices to show that

sup
Q

1
σ(Q)

∫

Q

eα| logω−(logω)Q |dσ < ∞. (A.10)

Let us note that

1
σ(Q)

∫

Q

eα| logω−(logω)Q |dσ ≤ 1
σ(Q)

∫

Q

eα logωdσ e−α(logω)Q +
1

σ(Q)

∫

Q

e−α logωdσ eα(logω)Q

= I + II.

(A.11)
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Since both integrals I and II are bounded in essentially the same way, we only do I. From
Jensen’s inequality once more, we have

I =

(
1

σ(Q)

∫

Q

eα logωdσ

)

eσ(Q)−1
∫
Q logω−αdσ ≤

(
1

σ(Q)

∫

Q

ωαdσ

)(
1

σ(Q)

∫

Q

ω−αdσ

)

.

(A.12)

Since ωα satisfies the A2-condition, we finish the sufficiency and this completes the proof of
the proposition.

Let ω satisfy the Ap-condition and r > p. Then, since 1/(r − 1) < 1/(p − 1), Hölder’s
inequality implies that

(
1

σ(Q)

∫

Q

ω−1/(r−1)dσ

)1/(r−1)
≤
(

1
σ(Q)

∫

Q

ω−1/(p−1)dσ

)1/(p−1)
. (A.13)

This means that ω satisfies theAr-condition. Also we can easily see that ω−1/(p−1) satisfies the
Aq-condition for q = p/(p − 1). From this and Proposition A.4, we get the following corollary.

Corollary A.5. Let p > 1 and let ω be a nonnegative integrable function on S such that ωα satisfies
the Ap-condition for some α > 0. Then logω ∈ BMO.

Proof. If p ≤ 2, then ωα satisfies the A2-condition. Thus Proposition A.4 implies logω ∈
BMO. If p > 2, then ω−α/(p−1) satisfies the Aq-condition for q = p/(p − 1) < 2, which implies
that ω−α/(p−1) satisfies the A2-condition. Thus by Proposition A.4, we get logω−α/(p−1) ∈
BMO, consequently logω ∈ BMO.
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