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Let B and C be entire functions of order less than 1 with C/≡ 0 and B transcendental. We prove that
every solution f /≡ 0 of the equation y′′ +Ay′ + By = 0, A(z) = C(z)eαz, α ∈ C \ {0} being has zeros
with infinite exponent of convergence.

1. Introduction

It is assumed that the reader of this paper is familiar with the basic concepts of Nevanlinna
theory [1, 2] such as T(r, f), m(r, f), N(r, f), and S(r, f). Suppose that f is a meromorphic
function, then the order of growth of the function f and the exponent of convergence of the
zeros of f are defined, respectively, as

ρ
(
f
)
= lim sup

r→∞

log T
(
r, f

)

log r
, λ

(
f
)
= lim sup

r→∞

logN
(
r, 1/f

)

log r
. (1.1)

Let E be a measurable subset of [1,+∞). The lower logarithmic density and the upper
logarithmic density of E are defined, respectively, by

log dens(E) = lim inf
r→∞

∫ r
1

(
χ(t)dt/t

)

log r
, log dens(E) = lim sup

r→∞

∫ r
1

(
χ(t)dt/t

)

log r
, (1.2)



2 Journal of Inequalities and Applications

where χ(t) is the characteristic function of E defined as

χ(t) =

⎧
⎨

⎩

1, if t ∈ E,

0, if t /∈E.
(1.3)

Now let us recall some of the previous results on the linear differential equation

y′′ + e−zy′ + B(z)y = 0, (1.4)

where B(z) is an entire function of finite order, When B(z) is polynomial, many authors [3–6]
have studied the properties of the solutions of (1.4). If B(z) is a transcendental entire function
with ρ(B)/= 1, Gundersen [7] proved that every nontrivial solution of (1.4) has infinite order
of growth. In [8], Wang and Laine considered the nonhomogeneous equation of type

y′′ +A1(z)eazy′ +A0(z)ebzy = H(z), (1.5)

where A0(z), A1(z),H(z) are entire functions of order less than one and a, b are complex
numbers. In fact, they have proved the following theorem.

Theorem 1.1. Suppose that A0 /≡ 0, A1 /≡ 0, H are entire functions of order less than one, and
suppose that a, b ∈ C with ab /= 0 and a/= b. Then every nontrivial solution of (1.5) is of infinite
order.

Corollary 1.2. Suppose that B(z) = h(z)ebz, where h is a nonvanishing entire function with ρ(h) <
1 and b ∈ C with b /= 0,−1. Then every nontrivial solution of (1.4) is of infinite order.

2. Results

We observe that all the above results concern the order of growth only. In this paper, we are
going to prove the following theorem which concerns the exponent of convergence.

Theorem 2.1. Let B and C be entire functions of order less than 1 with C/≡ 0 and B being
transcendental. Then every solution f /≡ 0 of the equation

y′′ +Ay′ + By = 0,

A(z) = C(z)eαz, α ∈ C \ {0},
(2.1)

has zeros with infinite exponent of convergence.

The hypothesis that B is transcendental is not redundant since Frei [4] has shown that

y′′ + e−zy′ +Ky = 0 (2.2)

has solutions of finite order, for certain constants K.
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We notice that Theorem 2.1 fails for ρ(B) ≥ 1. For any entire function D the function
f = eD solves (2.1) with

−B =
f ′′

f
+A

f ′

f
= D′′ +D

′2 +AD. (2.3)

3. Some Lemmas

Throughout this paper we need the following lemmas. In 1965, Hayman [9] proved the
following lemma.

Lemma 3.1. Let the function g be meromorphic of finite order ρ in the plane and let 0 < δ < 1. Then

T
(
2r, g

) ≤ C
(
ρ, δ

)
T
(
r, g

)
(3.1)

for all r outside a set E of upper logarithmic density δ, where the positive constant C(ρ, δ) depends
only on ρ and δ.

In 1962, Edrei and Fuchs [10] proved the following lemma.

Lemma 3.2. Let g be a meromorphic function in the complex plane and let I = I(r) ⊆ [0, 2π] have
measure μ = μ(r). Then

1
2π

∫

I

log+
∣∣∣g
(
reiθ

)∣∣∣ dθ ≤ 22μ
(
1 + log+

1
μ

)
T
(
2r, g

)
. (3.2)

In 2007, Bergweiler and Langley [11] proved the following lemma.

Lemma 3.3. Let H be a transcendental entire function of order ρ < ∞. For large r > 0 define θ(r)
to be the length of the longest arc of the circle |z| = r on which |H(z)| > 1, with θ(r) = 2π if the
minimum modulusm0(r,H) = min{|H(z)| : |z| = r} satisfiesm0(r,H) > 1. Then at least one of the
following is true:

(i) there exists a set F ⊆ [1,∞) of positive upper logarithmic density such that m0(r,H) > 1
for r ∈ F;

(ii) for each τ ∈ (0, 1) the set Fr = {r : θ(r) > 2π(1 − τ)} has lower logarithmic density at
least (1 − 2ρ(1 − τ))/τ.

We deduce the following.

Lemma 3.4. Let 0 < ε < π/4, let N be a positive integer, and let G ⊆ [1,∞) have logarithmic
density 1. Let F be a transcendental entire function such that |F(z)| ≤ |z|N on a path γ tending to
infinity and for all z with |z| ∈ G and | arg z| ≤ π/2 − ε. Then F has order at least π/(π + 2ε).

Proof. Assume that ρ(F) = ρ < ∞ and choose a polynomial P of degree at most N − 1 such
that

H(z) =
F(z) − P(z)

2zN
(3.3)
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is transcendental entire. Then we have |H(z)| ≤ 1 for all z ∈ γ and for all z with |z| ∈ G and
| arg z| ≤ π/2−ε. With the notation of Lemma 3.3, we see thatm0(r,H) ≤ 1 for all large r, and
so we must have case (ii), as well as θ(r) ≤ π + 2ε for r ∈ G. Define τ by

2π(1 − τ) = π + 2ε. (3.4)

Since G has logarithmic density 1 this gives

2ρ(1 − τ) ≥ 1, ρ ≥ 1
2(1 − τ)

=
π

π + 2ε
. (3.5)

4. Proof of Theorem 2.1

LetA, B and C be as in the hypotheses. We can assume that α = 1. Suppose that f is a solution
of (2.1) having zeros with finite exponent of convergence. Then we can write

f = Πeh, (4.1)

where Π and h are entire functions with ρ(Π) < ∞. We can assume that h′ /≡ 0, since if h is
constant we can replace h(z) by h(z) + z and Π(z) by Π(z)e−z. Using (2.1) and (4.1), we get

Π′′

Π
+ 2

Π′

Π
h′ + h′′ + h

′2 +A

(
Π′

Π
+ h′

)
+ B = 0. (4.2)

Lemma 4.1. One has ρ(h) ≤ 1.

Proof. Suppose that |h′(z)| ≥ 1. Dividing (4.2) by h′, we get

∣∣h′(z)
∣∣ ≤

∣∣∣∣
Π′′(z)
Π(z)

∣∣∣∣ + 2
∣∣∣∣
Π′(z)
Π(z)

∣∣∣∣ +
∣∣∣∣
h′′(z)
h′(z)

∣∣∣∣ + |A(z)|
(∣∣∣∣

Π′(z)
Π(z)

∣∣∣∣ + 1
)
+ |B(z)|. (4.3)

Hence, provided r lies outside a set of finite measure,

T
(
r, h′) = m

(
r, h′) ≤ O

(
log r

)
+ T(r,A) + T(r, B) + o

(
T
(
r, h′)), (4.4)

and so, using the fact that B and C have order less than 1, we obtain

T
(
r, h′) = O(r). (4.5)

This holds outside a set E0 of finite measure and so for all large r, since we may take s /∈E0
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with r ≤ s ≤ 2r so that

T
(
r, h′) ≤ T

(
s, h′) = O(s) = O(r). (4.6)

Lemma 4.1 is proved.

Let M1,M2, . . . denote large positive constants. Choose σ with

max
{
ρ(B), ρ(C)

}
< σ < 1. (4.7)

There exists an R-set U [2, page 84] such that for all large z outside U, we have

∣
∣∣∣
Π′′(z)
Π(z)

∣
∣∣∣ +

∣
∣∣∣
Π′(z)
Π(z)

∣
∣∣∣ +

∣
∣∣∣
h′′(z)
h′(z)

∣
∣∣∣ ≤ |z|M1 , (4.8)

and using the Poisson-Jensen formula,

∣∣log
∣∣|C(z)| ≤ |z|σ. (4.9)

Moreover, there exists a set G ⊆ [1,∞) of logarithmic density 1 such that for r ∈ G the circle
|z| = r does not meet the R-set U.

Lemma 4.2. The functions h′ and h′ +A are both transcendental.

Proof. Let ε be small and positive and suppose that h′ or h′ +A is a polynomial. Let z be large
with z/∈U and | arg z − π | ≤ π/2 − ε. Since A(z) is small it follows from (4.2) and (4.8) that
B(z) = O(|z|M2). Choose θ with |θ−π | < ε such that the intersection ofUwith the ray L given
by arg z = θ is bounded. Applying Lemma 3.4 to the function B(−z), with γ a subpath of L,
gives ρ(B) ≥ π/(π + 2ε), but εmay be chosen arbitrarily small, and this contradicts (4.7).

The next step is to estimate h′ in the right half-plane.

Lemma 4.3. LetN be a large positive integer and let 0 < ε < 1/2. Then for large z with

∣∣arg z
∣∣ ≤ π

2
− ε, z /∈U (4.10)

one has, either

∣∣h′(z)
∣∣ ≤ |z|N (4.11)

or

∣∣h′(z) +A(z)
∣∣ ≤ |z|N. (4.12)
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Proof. Let z be large and satisfy (4.10), and assume that (4.11) does not hold. Then (4.8)
implies that

∣∣
∣
∣
Π′(z)
Π(z)

+ h′(z)
∣∣
∣
∣ ≥ 1. (4.13)

Also, (4.7), and (4.9) give

log|B(z)| ≤ |z|σ, log|A(z)| ≥ Re(z) − |z|σ ≥ |z|
2

cos
(π
2
− ε

)
= c1|z|. (4.14)

Here c1, c2, . . . denote positive constants which may depend on ε but not on z. Using (4.8),
(4.12) and (4.14) we get, from (4.2),

log
∣∣h′(z)

∣∣ ≥ c2|z|. (4.15)

Now divide (4.2) by h′(z). We obtain, using (4.15),

h′(z) +A(z)

⎛

⎜
⎝1 +

O
(
|z|M1

)

h′(z)

⎞

⎟
⎠ +O

(
|z|M1

)
= 0 (4.16)

which gives |h′(z)| ∼ |A(z)| and (4.12). This proves Lemma 4.3.

Lemma 4.4. LetN and ε be as in Lemma 4.3. Choose θ0 ∈ (−π/4, π/4) such that the ray arg z = θ0
has bounded intersection with the R-set U. Let V be the union of the ray arg z = θ0 and the arcs
|z| = r, r ∈ G, | arg z| ≤ π/2 − ε, where G ⊆ [1,∞) is the set chosen following (4.9). Then one of
the following holds:

(i) one has (4.11) for all large z in V ;

(ii) one has (4.12) for all large z in V .

Proof. This follows simply from continuity. For each large z in V we have (4.11) or (4.12), but
we cannot have both because of (4.14). This proves Lemma 4.4.

Lemma 4.5. Let 0 < ε < 1/2. Then for large z/∈U with | arg z − π | ≤ π/2 − ε, one has

log+
∣∣h′(z)

∣∣ = O
(|z|σ), log+

∣∣h′(z) +A(z)
∣∣ = O

(|z|σ). (4.17)

Proof. Let z be as in the hypotheses. SinceA(z) = o(1)we only need to prove (4.17) for |h′(z)|.
Assume that |h′(z)| ≥ 1. Then dividing (4.2) by h′ gives

∣∣h′(z)
∣∣ ≤ |B(z)| +O

(
|z|M1

)
(4.18)

by (4.8), and so (4.17) follows using (4.7). This proves Lemma 4.5.
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Lemma 4.6. If conclusion (i) of Lemma 4.4 holds then ρ(h′) < 1, while if conclusion (ii) of Lemma 4.4
holds then ρ(h′ +A) < 1.

Proof. Suppose that conclusion (i) of Lemma 4.4 holds. Choose δ1 > 0 such that

σ(1 + δ1) < 1 (4.19)

and let δ > 0 be small compared to δ1. Assume that ε in Lemma 4.4 is small compared to δ,
in particular so small that

88ε
(
1 + log

1
4ε

)
C
(
ρ(h), δ

) ≤ 1
2
, (4.20)

where C(ρ(h), δ) is the positive constant from Lemma 3.1. Let

I(r) =
[π
2
− ε,

π

2
+ ε

]
∪
[
3π
2

− ε,
3π
2

+ ε

]
, (4.21)

and let E be the exceptional set of Lemma 3.1, with g = h′. Then for large r ∈ G \ E we have,
using (4.20) and Lemmas 3.1, 3.2, and 4.5,

T
(
r, h′) = m

(
r, h′) ≤ O(rσ) +O

(
log r

)
+

1
2π

∫

I(r)
log+

∣∣∣h′
(
reiθ

)∣∣∣ dθ

≤ O(rσ) + 88ε
(
1 + log

1
4ε

)
T
(
2r, h′)

≤ O(rσ) + 88ε
(
1 + log

1
4ε

)
C
(
ρ(h), δ

)
T
(
r, h′)

≤ O(rσ) +
1
2
T
(
r, h′).

(4.22)

We then have

T
(
r, h′) = O(rσ) (4.23)

for large r ∈ G\E. Now take any large r. SinceG has logarithmic density 1, while E has upper
logarithmic density at most δ, and since δ/δ1 is small, there exists swith

r ≤ s ≤ r1+δ1 , s ∈ G \ E, T
(
r, h′) ≤ T

(
s, h′) = O(sσ) = O

(
rσ(1+δ1)

)
, (4.24)

which proves Lemma 4.6 in this case. The alternative case, in which we have conclusion (ii)
in Lemma 4.4, is proved the same way, using h′ +A in place of h′.
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To finish the proof suppose first that conclusion (ii) of Lemma 4.4 holds. Then
Lemma 3.4 implies that h′ has order at least π/(π + 2ε). Since ε may be chosen arbitrarily
small, this contradicts Lemma 4.6. The same contradiction, with h′ replaced by h′ +A, arises
if conclusion (i) of Lemma 4.4 holds, and the proof of the theorem is complete.
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