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We define multiple Norlund-type twisted g-Euler polynomials and numbers and give inter-
polation functions of multiple Norlund-type twisted g-Euler polynomials at negative integers.
Furthermore, we investigate some identities related to these polynomials and interpolation
functions.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q,, and C, will be,
respectively, the ring of p-adic rational integers, the field of p-adic rational numbers, and
the p-adic completion of the algebraic closure of Q. The p-adic absolute value in C, is
normalized so that |p|, = 1/p. When one talks of g-extension, g is variously considered as
an indeterminate, a complex number g € C, or a p-adic number g € C,. If g € C, one normally
assumes |g| < 1. If g € C,, one normally assumes |1 — q|, < p!/(I"P) so that g* = exp(xlogq)
for each x € Z,. We use the notation

1-(-q)"
- (1.1)

xly= =0  lxlg

compared with [1-22], for all x € Z,.
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For a fixed odd positive integer d with (p,d) =1, set
X =Xy =1imZ/dp"Z, X1 =7Zp,

X* = U (a+dpZy,), (1.2)

O<a<dp
(ap)=1

a+dp"Z, = {x € X | x=a(moddp™)},
where a € Z liesin 0 < a < dp”. Forany n € N,

qa

pHq(a+dp"Zy,) = .
q

(1.3)

is known to be a distribution on Z,, compared with [1-22].
The g-factorial is defined as [n],! = [n],[n-1], - [2],[1],, and the Gaussian binomial
coefficient is also defined by

q

n\ _ [m],! _nlgln =11, [n-k+1],
(k)q NI [k],! (1.4)
(see [7, 8]).
Note that
. n\ _ [n\ _ n! _n(n_l)...(n_k+1)
5Ln}<k>q N <k> T (m-k)'k! k! : (1.5)

From (1.4), we note that

SPACORIVENCORO

(see [7, 8]).
The g-binomial formulae are known as

n
i=0

1 1 © /m+i—1 )
= = bl.
(b:q), @A-b)(A-bg) - (1-bg"") %( i >q

(b:q),=1-b)(1-bg)--- <1 - ban) - Z<T:> q(z)(—l)ibi’
q

(1.7)
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The Euler number E, and polynomials E,(x) are defined by the generating function
in the complex number field as

2 OOE E i (|t] < ar)
- n_ ’
et+1 & nl

(1.8)
et” ZE (x)— (t| < ).

The nth g-Euler numbers E,; and the nth g-Euler polynomials E, ;(x) attached to g are
defined by the exponential generating functions as

< kKLt t"
Fy(t) =2sz:)(_1) elkldt = %Ewm,
= n=

(1.9)
[ee] 0 tn

Fq(t,x) — 2;)(_1)ke[k+x]qt = Z()En,q(x)a'
= n=

The nth Euler numbers E{” of higher order and the nth Euler polynomials EY (x) of higher
order attached to g are defined by the exponential generating functions as

e} m
2] ED
(t) = T t) kZ — (1.10)
I
FO (¢ EX (x)— 1.11
0 = e k}; () (111)
1+et)" & e, A

(-r) _ ( xt _ (-7)

F (t,x) = TE = EOEn (X)T? (111 - ].)

Kim [7] defined the nth g-Euler numbers E,(f) of higher order, the Euler polynomials
q q g poly

Egc),(x) of higher order, and the nth Norlund-type g-Euler polynomials of higher order which
are defined by the exponential generating functions as

m+r—1 & i
(r) r [ml b _ (r)
Fy =2 1 =>E,.—,
S (") e S

q

n=0
") r ey (T e 0 112
FO(tx) =27 3 (-1) e ZE,“,( )—, (1.12)
m=0 m q n=0

F{7(t,x) = ZE( D (x

compared with [6-16, 18-21].
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We say that f is uniformly differentiable function at a point a € Z, and denote this
property by f € UD(Z,,) if the difference quotients

Frloy) =— =,

have a limit! = f'(a) as (x,y) — (a,a), compared with [1-22] (23-24). Note that the bosonic
p-adic g-integral of a function f € UD(Z,) was defined by

p'-1
L) = [ Fdy0 = Jim 3 g (114)
Zy e [p ]q x=0
and that the fermionic p-adic g-integral was defined by
1 P .
L) = [ F0de 0 = fim —— 3 f3)(-a) 115)
Zyp nme [P ]—q x=0
(see [1-22] (23-24) ). In (1.15), when g — 1, we can obtain
L_1 (fl) + L_l (f) = Zf(O), (116)

where f1(x) = f(x +1). If we take f(x) = e'¥, then we obtain
ILi(e™) = f e du_1(x) = L (1.17)
z, et+1 :

In this paper, we define multiple Norlund-type twisted g-Euler polynomials and give
interpolation functions of multiple Norlund-type twisted g-Euler polynomials at negative
integers. Furthermore, we investigate some identities related to these polynomials and
interpolation functions.
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2. Norlund-Type Twisted g-Euler Numbers and
Polynomials of Higher Order

In this section, we assume that g € C, with |1 —g|, < 1. Let Cp» = |J,;5; Cpr = lim,, . ,Cpn be
the locally constant space, when Cp» = {¢ € X | ¢7" = 1} is the cyclic group of order p". Let
¢ € Cp. We define the twisted g-Euler polynomials (see [1-5, 18-21]) as follows:

Ei,rl,)q,‘;(x) = j "'IZ [x 4200+ + 20, g8 dp () -+ dpa (xr)
ZP P

R LA VIR 1 '
- (1—q)"l§;<l>( Va <1+ql§’> 1)

_ zri <m +r— 1> (=1)" [m + X1y,

where [a], . = (1-4%¢)/(1-q). Let FO(t,x) = 32, EY) (x)(#"/n!). Then we have

a8 nq,4
) < /mar—1 .
Féwm={;K )t 22)

In this special case x = 0, E,(:; :(0) = Eflr,;,g are called the twisted g-Euler numbers of

order r. In the sense of the twisted in (1.11 — 1), we consider the Norlund-type twisted g-Euler
polynomials as follows:

_ 1 & /r (e "
Gz(qtg (t,x) = F;/g”)(t, x) = FZ( >e[m+x]q,§ t_ Z]_::fqur/)‘g(x)m (2.3)

m=0 m n=0

By (2.3), we have

_r 1 & "
Ey 7 (x) = EZ <;1> [m+x]" . (2.4)

m=0

From (2.1) and (2.4), we can obtain the following theorem.

Theorem 2.1. Forr € N, n >0, and ¢ € Ty, let

< (m+r—1 < £
TZ( m )@%Wﬂw=§ﬁ%mm (2.5)
n=

m=0



Then
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" oy = N\, el 1Y
B0 = e (1) V' <1+ql§,>

= zri (m ‘:; - 1)(—1) [m + X1,

m=0

B = o3 () (1+4)’

2r(1 ‘7) =0

— 1 - r
=5 \m [m+x]q§m
m=

E( " g(O) = E( ; are called the twisted g-Euler numbers of higher order. For h € Z,
reN, let us define the twisted g-Euler polynomials of higher order as follows:

(hr)
E"'ié

Then

Let

(hr)
Enqé

(x) = fz f gz DX AN [ ey e+ xp]gdp-1(x1) -+ dpa (xr). (2.7)
n I _Ix
E® (x (1(Dq
nat ™) = {1 q) 1203(1/(1+q§’))
n ( )( 1)1 Ix
(1 q) Z ( qh L+l —1) (2.8)
< [m+r- (h-r)m m n
q (D" [x +m] on-
25" ). g
F(h Dt,x) = 3%, Eflhqrg (x1)(t"/n!). By (2.7), we easily see that
(x) = J; f gz DX RN [ ey e+ xplgdp-i (1) - dp (7). (2.9)

Thus, we obtain the following theorem.

Theorem 2.2. Forh € Z, v € N,n >0, and ¢ € Ty, let

- +r-1 _ = t"
2fzo<m i > g =1y el Hlunt = %Em (). (2.10)
m= q n=
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Then

hr) (- 1)’ &
Enqé(x) (1 q) IZ(;( qhh r+l

rOo —r)m m +r-1
zzéq(h m(-1) <m n: > (D)™ [m +x] gn-

q

(2.11)

Now, we define the Norlund-type twisted g-Euler polynomials of higher order as
follows:

) : (HED'q™
Enge’ ) 1- "Z I( ) 251 (h=1)x; #1( ) '
7 X144 Xy j=1 Xj xl(oq+--+x,
K 4> 5y, o gy g E N ey () - dp (o)
(2.12)
Let F;fg‘”(t,x) =3%, fj’q D (x1)(£"/n!). By (212), we have
(h-) Lo ) rm (T x],
F it x) = 5 30420 <m> elmeyent, (2.13)
m=0 q
Thus, we obtain the following theorem.
Theorem 2.3. Forhe€ Z,r e N,n>0,and e € T, let
1< m h-rym( 7 X, em
o 2,420 <m> St ZEnqg )t (2.14)
m=0 q
Then
ph") 1 N <n> gl (gl
Evad 0= 3 aral) D' (~a"eq)
(2.15)

1 <& m . r
=5 249" ”"‘<m> [+ x]
m=0 q
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For h = r, we have

r no(n I _Ix
E0) () = 2 Z(z)(—l) q
4 1-g)"< (—ghl;
(1-9)" 15 (-qh’q), 216
r < m(M+7T— 1 m n
=2 mzzo(—l) < " )q(—l) [+ X3 e,
(1) N _ < (1 x .
EDC) = 5 _q)nlé(l)(—l)’q’ (-d'2q).
(2.17)

1 <& m 8 r
LS geon(7Y e
m=0 q

Thus, it is easy to see that

quzr

W:f f g IR Yy (1) - i ()
- ;q), A z,

f f ([x+xl+...+xr]q(q_1)+1>mq2]r':1xj§z;:lx]'d‘u_l(xl)...d‘u_l(xr)
Z Z

P P

(q- 1)’ IZ f [x 421+ + xr];quzlegzkl 5dp_y (x1) - dpy (xy)

> p Ly
m m : y
-3 (T)a- '@
1=0
(2.18)
Equation (2.18) implies that
quzr m m I (O,r)
(=g q) - Z i (9-1) E (x). (2.19)
7Ar 1=0

From (1.16), we derive
7 fz fz [+ 1420y o 10 Mg Sy () < dpaa ()
P P
) _JZ fZ [+ 1oy o 2, 7 O OER N dp () - dpa ()
p p

+2J‘ J‘ [x+1+x1 +...+xr];nqzjr';}(h—l_j)xfﬂéz;;}x]'+1d#_1(x1)...d‘u_l(xr).
ZP Zp

(2.20)
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By (2.20), we have

g E (e + 1) + B (x) = 2E5 7 ().

By simple calculation, we see that

qxf J‘ [xl + Xy +x]ZqZ/r'zl(h_jH)x@Z;:lxfd‘u,1(x1)-~-d,lL1(xr)
=(q-1) f f [x1 4+ +x, + x]rqwlqz,’-:l(h—j)x;éz,’-:l Yidpu g (x1) - dpo (xr)
Z. Z

+J‘ ...j [xl + 4 X, +x];’tqz;ﬂ(h_j)xfgzjr':lxjd#_l(xl)~..dl,[_1(xr)-
Z Z

By (2.22), we see that

xE(h+1 r) (x) (q _ 1)E(h,T) (x) + E(h,r) (x)

n,q,¢ n+l,q,¢ n,q,¢

Therefore, we obtain the following theorem.

Theorem 2.4. Forh € Z, v € N,n >0, and € € Ty,

q

PEM) (e +1) + EM)(x) = 2E01 D (),

nqé nqé 4,4

gEL " (x) = (- 1)EST (x) + ES7) ().

Moreover,

(-q""&q9), =

n,q,¢ n+l,q, n,q,¢

quzr

-3 (7)a-'ER .

From (2.16), we note that

E(r )

In the case x = r, we obtain

(r=x) =

or n (7)(_1)1ql(r—x)
(1—q‘1)"§ (-a'&q™),

(g 2 (DED

(1-9)" 5 (-9'%9),

_( l)n n+ 2)E(rré(x)

EYD, (0) = (-1)"q" D EL (1),

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
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From (2.21) with h = r, we derive

i 1E<”> Lx+1) +1—j<” L(x) = 2E(T U (). (2.28)

3. Further Remarks on Norlund-Type Twisted g-Euler Polynomials

In the case h = 0, let us consider the polynomials E, (0 ") (x) and E, (O r) (x) as follows:

E(x )—’[ J‘ q 2jer 55 5 [ + X1 + -+ c+x]pdpa () - dp (xy),

nqé
n A1
(7)n'a™ ey
J' J’ ql(x1+ +x,)q j= 1].xf§1(x1+"'+xr)d‘u71 (x1) -~ d#& (xr) .

(0,-1)
Enq§ (x) Z

Then we have

or I _Ix
E©) (1)(=1)q
nat) = (1-9)" Z( -4"7&q),

=2rz<m+n2‘1>qqu(—1) [x+m]! .,

(3.2)
(0,-7) _ 1 & N l-rgl.
Emﬂ@—§a§7§<J(DQ<Q§ﬂL
m( T
=5 2.4 29" <m> [+ x]
m=0 q
Let us consider the following polynomials:
n I Ix
(hl) x1(h=1) ¢, 2 1)( 1)
") (x) = fq el n) = SR 6
By the simple calculation of fermionic p-adic invariant integral, we see that
qxj qxl(h—l)éxl [x + xl];‘d,u_l(xﬂ = (q - 1) j qxl(h—2)§x1 [x + x1]2+1d#-1(x1)
z z
' ' (3.4)
+ J g2 x4+ xajdpa ().
ZP
Thus
FEy () = (-1 Ey () + By (x). (3.5)
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It is easy to see that

f gD [x + x ]y (xr) = Z() q]"f [alig" M dpa (). (3.6)

i=1 Z,
By (2.20), we can obtain that

(hl
E"qé

M:

=S (gL = (R + )" n20, 67)
j=0

. . . h1 h
where we use the technique method notation by replacing (Efm hn by E (1)

nq,es Symbolically.

From (1.14), we can also derive

qPEEDEH [ 4oy + 1] dp (1) + f [x +x1]5q" Vg dp () = 2[x]). (3.8)

Z, z,
Thus, we obtain that
g 1E£lhq1§ (x+1) + Efihqlé) (x) =2[x]5. (3.9)
For x = 0, we have
(ED +1)" + B =26, (3.10)

where 6, is the Kronecker symbol. It is easy to see that

2 2
phD _ J' D g gy () = _ . 311
04t = ), q P = T e 2] (3.11)
By (3.3), we see that
B =x) = [ 1wl g Vg dyes (o)
ZP
_ (cayrgrent 2 Z (1) (-1)'g™ (3.12)
(1-q)" & 1+gh1g
= (-1)"g""E() ().
In particular, for x = 1, we obtain that
Epe(0) = ((1)"q" " E (1) = (-1)"'q"E,7 ). (313)
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