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Let {Si}Ni=1 be N strict pseudo-contractions defined on a closed and convex subset C of a real
Hilbert space H. We consider the problem of finding a common element of fixed point set
of these mappings and the solution set of a system of equilibrium problems by parallel and
cyclic algorithms. In this paper, new iterative schemes are proposed for solving this problem.
Furthermore, we prove that these schemes converge strongly by hybrid methods. The results
presented in this paper improve and extend some well-known results in the literature.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,
closed, and convex subset of H.

Let {Fk} be a countable family of bifunctions from C × C to R, where R is the set of
real numbers. Combettes and Hirstoaga [1] considered the following system of equilibrium
problems:

finding x ∈ C such that Fk

(
x, y

) ≥ 0, ∀k ∈ Γ, ∀y ∈ C, (1.1)

where Γ is an arbitrary index set. If Γ is a singleton, then problem (1.1) becomes the following
equilibrium problem:

finding x ∈ C such that F
(
x, y

) ≥ 0, ∀y ∈ C. (1.2)

The solution set of (1.2) is denoted by EP(F).
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A mapping S of C is said to be a κ-strict pseudocontraction if there exists a constant
κ ∈ [0, 1) such that

∥
∥Sx − Sy

∥
∥2 ≤ ∥

∥x − y
∥
∥2 + κ

∥
∥(I − S)x − (I − S)y

∥
∥2 (1.3)

for all x, y ∈ C; see [2]. We denote the fixed point set of S by F(S), that is, F(S) = {x ∈
C : Sx = x}.

Note that the class of strict pseudocontractions properly includes the class of
nonexpansive mappings which are mapping S on C such that

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥ (1.4)

for all x, y ∈ C. That is, S is nonexpansive if and only if S is a 0-strict
pseudocontraction.

The problem (1.1) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games, and others; see, for instance, [1, 3, 4] and the references
therein. Some methods have been proposed to solve the equilibrium problem (1.1); related
work can also be found in [5–8].

Recently, Acedo and Xu [9] considered the problem of finding a common fixed point
of a finite family of strict pseudo-contractive mappings by the parallel and cyclic algorithms.
Very recently, Duan and Zhao [10] considered new hybrid methods for equilibrium problems
and strict pseudocontractions. In this paper, motivated by [5, 8–12], applying parallel and
cyclic algorithms, we obtain strong convergence theorems for finding a common element of
the fixed point set of a finite family of strict pseudocontractions and the solution set of the
system of equilibrium problems (1.1) by the hybrid methods.

We will use the following notations:

(1) ⇀ for the weak convergence and → for the strong convergence,

(2) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

We will use the facts and tools in a real Hilbert space H which are listed below.

Lemma 2.1. LetH be a real Hilbert space. Then the following identities hold:

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, for all x, y ∈ H,

(ii) ‖tx+(1−t)y‖2 = t‖x‖2+(1−t)‖y‖2−t(1−t)‖x−y‖2, for all t ∈ [0, 1], for all x, y ∈ H.

Lemma 2.2 (see [6]). Let H be a real Hilbert space. Given a nonempty, closed, and convex subset
C ⊂ H, points x, y, z ∈ H, and a real number a ∈ R, then the set

{
v ∈ C :

∥∥y − v
∥∥2 ≤ ‖x − v‖2 + 〈z, v〉 + a

}
(2.1)

is convex (and closed).



Journal of Inequalities and Applications 3

Recall that given a nonempty, closed, and convex subset C of a real Hilbert space H,
for any x ∈, there exists the unique nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥ (2.2)

for all y ∈ C. Such a PC is called the metric (or the nearest point) projection of H onto C. As
we all know y = PCx if and only if there holds the relation

〈
x − y, y − z

〉 ≥ 0 ∀z ∈ C. (2.3)

Lemma 2.3 (see [13]). Let C be a nonempty, closed, and convex subset ofH. Let {xn} be a sequence
inH and u ∈ H. Let q = PCu. Suppose that {xn} is such that ωw(xn) ⊂ C and satisfies the following
condition:

‖xn − u‖ ≤ ∥∥u − q
∥∥ ∀n. (2.4)

Then xn → q.

Proposition 2.4 (see [9]). Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH.

(i) If T : C → C is a κ-strict pseudocontraction, then T satisfies the Lipschitz condition

∥∥Tx − Ty
∥∥ ≤ 1 + κ

1 − κ

∥∥x − y
∥∥, ∀x, y ∈ C. (2.5)

(ii) If T : C → C is a κ-strict pseudocontraction, then the mapping I − T is demiclosed (at 0).
That is, if {xn} is a sequence in C such that xn ⇀ x and (I −T)xn → 0, then (I −T)x = 0.

(iii) If T : C → C is a κ-strict pseudocontraction, then the fixed point set F(T) of T is closed
and convex. Therefore the projection PF(T) is well defined.

(iv) Given an integer N ≥ 1, assume that, for each 1 ≤ i ≤ N, Ti : C → C is a κi-strict
pseudocontraction for some 0 ≤ κi < 1. Assume that {λi}Ni=1 is a positive sequence such that∑N

i=1 λi = 1. Then
∑N

i=1 λiTi is a κ-strict pseudocontraction, with κ = max{κi : 1 ≤ i ≤
N}.

(v) Let {Ti}Ni=1 and {λi}Ni=1 be given as in item (iv). Suppose that {Ti}Ni=1 has a common fixed
point. Then

F

(
N∑

i=1

λiTi

)

=
N⋂

i=1

F(Ti). (2.6)

Lemma 2.5 (see [2]). Let S : C → H be a κ-strict pseudocontraction. Define T : C → H by
Tx = λx + (1 − λ)Sx for any x ∈ C. Then, for any λ ∈ [κ, 1), T is a nonexpansive mapping with
F(T) = F(S).



4 Journal of Inequalities and Applications

For solving the equilibrium problem, let one assume that the bifunction F satisfies the following
conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for any x, y ∈ C;

(A3) for each x, y, z ∈ C, lim supt→ 0 F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) F(x, ·) is convex and lower semicontinuous for each x ∈ C.

Lemma 2.6 (see [3]). Let C be a nonempty, closed, and convex subset ofH, let F be bifunction from
C × C to R which satisfies conditions (A1)–(A4), and let r > 0 and x ∈ H. Then there exists z ∈ C
such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (2.7)

Lemma 2.7 (see [1]). For r > 0, x ∈ H, define the mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C | F(z, y) + (1/r)

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C
}

(2.8)

for all x ∈ H. Then, the following statements hold:

(i) Tr is single valued;

(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Trx − Try
∥∥2 ≤ 〈

Trx − Try, x − y
〉
; (2.9)

(iii) F(Tr) = EP(F);

(iv) EP(F) is closed and convex.

3. Parallel Algorithm

In this section, we apply the hybrid methods to the parallel algorithm for finding a common
element of the fixed point set of strict pseudocontractions and the solution set of the problem
(1.1) in Hilbert spaces.

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, and let
Fk, k ∈ {1, 2, . . . ,M}, be bifunctions from C × C to R which satisfies conditions (A1)–(A4). Let,
for each 1 ≤ i ≤ N, Si : C → C be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let κ =
max{κi : 1 ≤ i ≤ N}. Assume that Ω = ∩N

i=1F(Si) ∩ (∩M
k=1EP(Fk))/= ∅. Assume also that {η(n)

i }Ni=1 is
a finite sequence of positive numbers such that

∑N
i=1 η

(n)
i = 1 for all n ∈ N and infn≥1η

(n)
i > 0 for all

1 ≤ i ≤ N. Let the mapping An be defined by

An =
N∑

i=1

η
(n)
i Si. (3.1)
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Given x1 ∈ C, let {xn}, {un}, and {yn}, be sequences which are generated by the following algorithm:

un = TFM
rM,n

TFM−1
rM−1,n · · · TF2

r2,nT
F1

r1,n
xn,

Aλn
n = λnI + (1 − λn)An,

yn = αnxn + (1 − αn)A
λn
n un,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx1,

(3.2)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and {rk,n} ⊂ (0,∞)
satisfies lim infn→∞rk,n > 0 for all k ∈ {1, 2, . . . ,M}. Then, {xn} converge strongly to PΩx1.

Proof. Denote Θk
n = TFk

rk,n · · · TF2
r2,nT

F1
r1,n for every k ∈ {1, 2, . . . ,M} and Θ0

n = I for all n ∈ N.
Therefore un = ΘM

n xn. The proof is divided into six steps.

Step 1. The sequence {xn} is well defined.
It is obvious that Cn is closed and Qn is closed and convex for every n ∈ N. From

Lemma 2.2, we also get that Cn is convex.
Take p ∈ Ω, since for each k ∈ {1, 2, . . . ,M}, TFk

rk,n is nonexpansive, p = TFk
rk,np, and

un = ΘM
n xn, we have

∥∥un − p
∥∥ =

∥∥∥ΘM
n xn −ΘM

n p
∥∥∥ ≤ ∥∥xn − p

∥∥ (3.3)

for all n ∈ N. From Proposition 2.4, Lemma 2.5, and (3.3), we get

∥∥yn − p
∥∥ =

∥∥∥αnxn + (1 − αn)A
λn
n un − p

∥∥∥ ≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥∥Aλn
n un − p

∥∥∥ ≤ ∥∥xn − p
∥∥.

(3.4)

So p ∈ Cn for all n ∈ N. Thus Ω ⊂ Cn. Next we will show by induction that Ω ⊂ Qn for
all n ∈ N. For n = 1, we have Ω ⊂ C = Q1. Assume that Ω ⊂ Qn for some n ≥ 1. Since
xn+1 = PCn∩Qnx1, we obtain

〈xn+1 − z, x1 − xn+1〉 ≥ 0, ∀z ∈ Cn ∩Qn. (3.5)

As Ω ⊂ Cn ∩ Qn by induction assumption, the inequality holds, in particular, for all z ∈ Ω.
This together with the definition of Qn+1 implies that Ω ⊂ Qn+1. Hence Ω ⊂ Qn holds for all
n ≥ 1. Thus Ω ⊂ Cn ∩Qn, and therefore the sequence {xn} is well defined.

Step 2.

If q = PΩx1, then ‖xn − x1‖ ≤ ∥∥x1 − q
∥∥. (3.6)
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From the definition of Qn we imply that xn = PQnx1. This together with the fact that
Ω ⊂ Qn further implies that

‖xn − x1‖ ≤ ∥
∥x1 − p

∥
∥ ∀p ∈ Ω. (3.7)

Then {xn} is bounded and (3.6) holds. From (3.3), (3.4), and Proposition 2.4 (i), we also obtain
that {un}, {yn},and {Sixn} are bounded.

Step 3. The following limit holds:

lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)

From xn = PQnx1 and xn+1 ∈ Qn, we get 〈xn+1 −xn, xn −x1〉 ≥ 0. This together with Lemma 2.1
(i) implies that

‖xn+1 − xn‖2 = ‖xn+1 − x1 − (xn − x1)‖2

= ‖xn+1 − x1‖2 − ‖xn − x1‖2 − 2〈xn+1 − xn, xn − x1〉

≤ ‖xn+1 − x1‖2 − ‖xn − x1‖2.

(3.9)

Then ‖xn−x1‖ ≤ ‖xn+1−x1‖, that is, the sequence {‖xn−x1‖} is nondecreasing. Since {‖xn−x1‖}
is bounded, limn→∞‖xn − x1‖ exists. Then (3.8) holds.

Step 4. The following limit holds:

lim
n→∞

‖Anxn − xn‖ = 0. (3.10)

From xn+1 ∈ Cn, we have

∥∥yn − xn

∥∥ ≤ ‖xn+1 − xn‖ +
∥∥yn − xn+1

∥∥ ≤ 2‖xn+1 − xn‖. (3.11)

By (3.6), we obtain

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.12)

Next we will show that

lim
n→∞

∥∥∥Θk
nxn −Θk−1

n xn

∥∥∥ = 0, k = 1, 2, . . . ,M. (3.13)



Journal of Inequalities and Applications 7

Indeed, for p ∈ Ω, it follows from the firm nonexpansivity of TFk
rk,n that for each k ∈

{1, 2, . . . ,M}, we have

∥
∥
∥Θk

nxn − p
∥
∥
∥
2
=
∥
∥
∥TFk

rk,nΘ
k−1
n xn − TFk

rk,np
∥
∥
∥
2

≤
〈
Θk

nxn − p,Θk−1
n xn − p

〉

=
1
2

(∥
∥
∥Θk

nxn − p
∥
∥
∥
2
+
∥
∥
∥Θk−1

n xn − p
∥
∥
∥
2 −

∥
∥
∥Θk

nxn −Θk−1
n xn

∥
∥
∥
2
)
.

(3.14)

Thus we get

∥
∥
∥Θk

nxn − p
∥
∥
∥
2 ≤

∥
∥
∥Θk−1

n xn − p
∥
∥
∥
2 −

∥
∥
∥Θk

nxn −Θk−1
n xn

∥
∥
∥
2
, k = 1, 2, . . . ,M, (3.15)

which implies that, for each k ∈ {1, 2, . . . ,M},
∥∥∥Θk

nxn − p
∥∥∥
2 ≤

∥∥∥Θ0
nxn − p

∥∥∥
2 −

∥∥∥Θk
nxn −Θk−1

n xn

∥∥∥
2 −

∥∥∥Θk−1
n xn −Θk−2

n xn

∥∥∥
2

− · · · −
∥∥∥Θ2

nxn −Θ1
nxn

∥∥∥
2 −

∥∥∥Θ1
nxn −Θ0

nxn

∥∥∥
2

≤ ∥∥xn − p
∥∥2 −

∥∥∥Θk
nxn −Θk−1

n xn

∥∥∥
2
.

(3.16)

Therefore, by the convexity of ‖ · ‖2 and Lemma 2.5, we get

∥∥yn − p
∥∥2 ≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥∥Aλn
n un − p

∥∥∥
2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥un − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥∥Θk
nxn − p

∥∥∥
2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

(∥∥xn − p
∥∥2 −

∥∥∥Θk
nxn −Θk−1

n xn

∥∥∥
2
)

=
∥∥xn − p

∥∥2 − (1 − αn)
∥∥∥Θk

nxn −Θk−1
n xn

∥∥∥
2
.

(3.17)

It follows that

(1 − αn)
∥∥∥Θk

nxn −Θk−1
n xn

∥∥∥
2 ≤ ∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2 ≤ ∥∥xn − yn

∥∥(∥∥xn − p
∥∥ +

∥∥yn − p
∥∥).

(3.18)

Since {αn} ⊂ [0, a], we get from (3.12) that (3.13) holds; then we have

‖un − xn‖ ≤
∥∥∥un −ΘM−1

n xn

∥∥∥ +
∥∥∥ΘM−1

n xn −ΘM−2
n xn

∥∥∥ + · · · +
∥∥∥Θ1

nxn − xn

∥∥∥ → 0. (3.19)
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Observe that ‖yn − un‖ ≤ ‖yn − xn‖ + ‖xn − un‖; we also have ‖yn − un‖ → 0 as n → ∞. On
the other hand, from yn = αnxn + (1 − αn)A

λn
n un, we observe that

(1 − αn)
∥
∥
∥Aλn

n un − un

∥
∥
∥ =

∥
∥
∥(1 − αn)

(
Aλn

n un − un

)∥∥
∥

=
∥
∥yn − un − αn(xn − un)

∥
∥

≤ ∥
∥yn − un

∥
∥ + αn‖xn − un‖.

(3.20)

From {αn} ⊂ [0, a], (3.19), and ‖yn − un‖ → 0, we obtain ‖Aλn
n un − un‖ → 0 as n → ∞. It is

easy to see that

∥
∥
∥Aλn

n xn − xn

∥
∥
∥ ≤

∥
∥
∥Aλn

n xn −Aλn
n un

∥
∥
∥ +

∥
∥
∥Aλn

n un − un

∥
∥
∥ + ‖un − xn‖ ≤ 2‖un − xn‖ +

∥
∥
∥Aλn

n un − un

∥
∥
∥.

(3.21)

Combining the above arguments and (3.2), we have

∥∥∥Aλn
n xn − xn

∥∥∥ = ‖λnxn + (1 − λn)Anxn − xn‖ = (1 − λn)‖Anxn − xn‖. (3.22)

Now, it follows from {λn} ⊂ [κ, b] that ‖Anxn − xn‖ → 0 as n → ∞.

Step 5. The following implication holds:

ωw(xn) ⊂ Ω. (3.23)

We first show thatωw(xn) ⊂ ∩N
i=1F(Si). To this end, we takeω∈w(xn) and assume that xnj ⇀ ω

as j → ∞ for some subsequence {xnj} of xn.Without loss of generality, we may assume that

η
(nj )
i → ηi

(
as j → ∞)

, ∀1 ≤ i ≤ N. (3.24)

It is easily seen that each ηi > 0 and
∑N

i=1 ηi = 1. We also have

Anjx → Ax
(
as j → ∞) ∀x ∈ C, (3.25)

where A =
∑N

i=1 ηiSi. Note that, by Proposition 2.4, A is a κ-strict pseudocontraction and
F(A) = ∩N

i=1F(Si). Since

∥∥∥Axnj − xnj

∥∥∥ ≤
∥∥∥Anjxnj −Axnj

∥∥∥ +
∥∥∥Anjxnj − xnj

∥∥∥

≤
N∑

i=1

∣∣∣η
(nj )
i − ηi

∣∣∣
∥∥∥Sixnj

∥∥∥ +
∥∥∥Anjxnj − xnj

∥∥∥,
(3.26)
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we obtain by virtue of (3.10) and (3.24) that

lim
n→∞

∥
∥
∥Axnj − xnj

∥
∥
∥ = 0. (3.27)

So by the demiclosedness principle (Proposition 2.4 (ii)), it follows thatω ∈ F(A) = ∩N
i=1F(Si),

and hence ωw(xn) ⊂ ∩N
i=1F(Si).

Next we will show that ω ∈ ∩M
k=1EP(Fk). Indeed, by Lemma 2.6, we have that, for each

k = 1, 2, . . . ,M,

Fk

(
Θk

nxn, y
)
+

1
rn

〈
y −Θk

nxn,Θk
nxn −Θk−1

n xn

〉
≥ 0, ∀y ∈ C. (3.28)

From (A2), we get

1
rn

〈
y −Θk

nxn,Θk
nxn −Θk−1

n xn

〉
≥ Fk

(
y,Θk

nxn

)
, ∀y ∈ C. (3.29)

Hence,

〈

y −Θk
nj
xnj ,

Θk
nj
xnj −Θk−1

nj
xnj

rnj

〉

≥ Fk

(
y,Θk

nj
xnj

)
, ∀y ∈ C. (3.30)

From (3.13), we obtain that Θk
nj
xnj ⇀ ω as j → ∞ for each k = 1, 2, . . . ,M (especially,

unj = ΘM
nj
xnj ). Together with (3.13) and (A4) we have, for each k = 1, 2, . . . ,M, that

0 ≥ Fk

(
y,ω

)
, ∀y ∈ C. (3.31)

For any 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)ω. Since y ∈ C and ω ∈ C, we obtain that
yt ∈ C, and hence Fk(yt, ω) ≤ 0. So, we have

0 = Fk

(
yt, yt

) ≤ tFk

(
yt, y

)
+ (1 − t)Fk

(
yt, ω

) ≤ tFk

(
yt, y

)
. (3.32)

Dividing by t, we get, for each k = 1, 2, . . . ,M, that

Fk

(
yt, y

) ≥ 0, ∀y ∈ C. (3.33)

Letting t → 0 and from (A3), we get

Fk

(
ω, y

) ≥ 0 (3.34)

for all y ∈ C and ω ∈ EP(Fk) for each k = 1, 2, . . . ,M, that is, ω ∈ ∩M
k=1EP(Fk). Hence (3.23)

holds.
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Step 6. From (3.6) and Lemma 2.3, we conclude that xn → q, where q = PΩx1.

Remark 3.2. In 2007, Acedo and Xu studied the following CQ method [9]:

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Anxn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥2 ≤ ‖xn − z‖2 − (1 − αn)(αn − κ)‖xn −Anxn‖2

}
,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0.

(3.35)

In this paper, we first turn the strict pseudocontractionAn into nonexpansive mapping
Aλn

n then replace Cn with a more simple form in the iterative algorithm.

Remark 3.3. If Fk(x, y) = 0, N = 1, and λn = δ, we can obtain [14, Theorem 1].

Remark 3.4. If M = 1, N = 1, κ = 0, and λn = 0 and we use 1 − αn to replace αn, we can get
the result that has been studied by Tada and Takahashi in [8] for nonexpansive mappings. If
Fk(x, y) = 0, N = 1, κ = 0, and λn = 0, we can get [7, Theorem 3.1].

Theorem 3.5. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, and let
Fk, k ∈ {1, 2, . . .}, be bifunctions from C × C to R which satisfies conditions (A1)–(A4). Let, for each
1 ≤ i ≤ N, Si : C → C be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let κ = max{κi :
1 ≤ i ≤ N}. Assume that Ω = ∩N

i=1F(Si) ∩ (∩M
k=1EP(Fk))/= ∅. Assume also that {η(n)

i }Ni=1 is a finite
sequence of positive numbers such that

∑N
i=1 η

(n)
i = 1 for all n and infn≥1η

(n)
i > 0 for all 1 ≤ i ≤ N.

Let the mapping An be defined by

An =
N∑

i=1

η
(n)
i Si. (3.36)

Given x1 ∈ C = C1, let xn, un, and yn be sequences which are generated by the following algorithm:

un = TFM
rM,n

TFM−1
rM−1,n · · · TF2

r2,nT
F1
r1,nxn,

Aλn
n = λnI + (1 − λn)An,

yn = αnxn + (1 − αn)A
λn
n un,

Cn+1 =
{
z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x1,

(3.37)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and, {rk,n} ⊂ (0,∞)
satisfies lim infn→∞rk,n > 0 for all k ∈ {1, 2, . . . ,M}. Then, {xn} converge strongly to PΩx1.
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Proof. The proof of this theorem is similar to that of Theorem 3.1.

Step 1. The sequence {xn} is well defined. We will show by induction that Cn is closed and
convex for all n. For n = 1, we have C = C1 which is closed and convex. Assume that Cn

for some n ≥ 1 is closed and convex; from Lemma 2.2, we have that Cn+1 is also closed and
convex; The proof of Ω ⊂ Cn is similar to the one in Step 1 of Theorem 3.1.

Step 2. ‖xn − x1‖ ≤ ‖q − x1‖ for all n, where q = PΩx1.

Step 3. ‖xn+1 − xn‖ → 0 as n → ∞.

Step 4. ‖Anxn − xn‖ → 0 as n → ∞.

Step 5. ωw(xn) ⊂ Ω.

Step 6. xn → q.

The proof of Step 2–Step 6 is similar to that of Theorem 3.1.

Remark 3.6. IfM = 1, we can obtain the two corresponding theorems in [10].

4. Cyclic Algorithm

Let C be a closed, and convex subset of a Hilbert space H, and let {Si}N−1
i=0 be Nκi-strict

pseudocontractions on C such that the common fixed point set

N−1⋂

i=0

F(Si)/= ∅. (4.1)

Let x0 ∈ C, and let {αn}∞n=0 be a sequence in (0, 1). The cyclic algorithm generates a sequence
{xn}∞n=1 in the following way:

x1 = α0x0 + (1 − α0)S0x0,

x2 = α1x1 + (1 − α1)S1x1,

. . .

xN = αN−1xN−1 + (1 − αN−1)SN−1xN−1,

xN+1 = αNxN + (1 − αN)S0xN,

· · ·.

(4.2)

In general, xn+1 is defined by

xn+1 = αnxn + (1 − αn)S[n]xn, (4.3)

where S[n] = Si, with i = n (mod)N, 0 ≤ i ≤ N − 1.
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Theorem 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, and let
Fk, k ∈ {1, 2, . . . ,M}, be bifunctions from C × C to R which satisfies conditions (A1)–(A4). Let,
for each 0 ≤ i ≤ N − 1, Si : C → C be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let
κ = max{κi : 0 ≤ i ≤ N − 1}. Assume that Ω = ∩N−1

i=0 F(Si) ∩ (∩M
k=1EP(Fk))/= ∅. Given x0 ∈ C, let

xn, un, and yn be sequences which are generated by the following algorithm:

un = TFM
rM,n

TFM−1
rM−1,n · · · TF2

r2,nT
F1
r1,nxn,

Sλn
[n] = λnI + (1 − λn)S[n],

yn = αnxn + (1 − αn)S
λn
[n]un,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(4.4)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and {rk,n} ⊂ (0,∞)
satisfies lim infn→∞rk,n > 0 for all k ∈ {1, 2, . . . ,M}. Then, {xn} converge strongly to PFx0.

Proof. The proof of this theorem is similar to that of Theorem 3.1. The main points are the
following.

Step 1. The sequence {xn} is well defined.

Step 2. ‖xn − x0‖ ≤ ‖q − x0‖ for all n, where q = PΩx0.

Step 3. ‖xn+1 − xn‖ → 0.

Step 4. ‖S[n]xn − xn‖ → 0. To prove the above steps, one simply replaces An with S[n] in the
proof of Theorem 3.1.

Step 5. ωw(xn) ⊂ Ω. Indeed, let ω ∈ ωw(xn) and xnm ⇀ ω for some subsequence {xnm} of
{xn}. We may assume that l = nm (mod N) for all m. Since, by ‖xn+1 − xn‖ → 0, we also
have xnm+j ⇀ ω for all j ≥ 0, we deduce that

∥∥xnm+j − S[l+j]xnm+j
∥∥ =

∥∥xnm+j − S[nm+j]xnm+j
∥∥ → 0. (4.5)

Then the demiclosedness principle implies that ω ∈ F(S[l+j]) for all j. This ensures that ω ∈
∩N
i=1F(Si).The Proof of ω ∈ ∩M

k=1EP(Fk) is similar to that of Theorem 3.1.

Step 6. The sequence xn converges strongly to q.
The strong convergence to q of {xn} is a consequence of Step 2, Step 5, and Lemma 2.3.

Theorem 4.2. Let C be a nonempty, closed, and convex subset of a real Hilbert space H, and let
Fk, k ∈ {1, 2, . . . ,M}, be bifunctions from C × C to R which satisfies conditions (A1)–(A4). Let,
for each 0 ≤ i ≤ N − 1, Si : C → C be a κi-strict pseudocontraction for some 0 ≤ κi < 1. Let
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κ = max{κi : 0 ≤ i ≤ N − 1}. Assume thatΩ = ∩N−1
i=0 F(Si) ∩ (∩M

k=1EP(Fk))/= ∅. Given x0 ∈ C = C0,
let xn, un, and yn be sequences whic are generated by the following algorithm:

un = TFM
rM,n

TFM−1
rM−1,n · · · TF2

r2,nT
F1
r1,nxn,

Sλn
[n] = λnI + (1 − λn)S[n],

yn = αnxn + (1 − αn)S
λn
[n]un,

Cn+1 =
{
z ∈ Cn :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0,

(4.6)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {λn} ⊂ [κ, b] for some b ∈ [κ, 1), and {rk,n} ⊂ (0,∞)
satisfies lim infn→∞rk,n > 0 for all k ∈ {1, 2, . . .}. Then, {xn} converge strongly to PΩx0.

Proof. The proof of this theorem is similar to that of Step 1 in Theorem 3.5 and Step 2–Step 6
in Theorem 4.1.

Remark 4.3. IfM = 1, we can obtain the two corresponding theorems in [10].
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