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The initial boundary value problem for a class of nonlinear higher-order wave equation with
damping and source term utt + Au + a|ut|p−1ut = b|u|q−1u in a bounded domain is studied,
where A = (−Δ)m, m ≥ 1 is a nature number, and a, b > 0 and p, q > 1 are real numbers. The
existence of global solutions for this problem is proved by constructing the stable sets and shows
the asymptotic stability of the global solutions as time goes to infinity by applying the multiplier
method.

1. Introduction

In this paper we consider the existence and asymptotic behavior of global solutions for
the initial boundary problem of the nonlinear higher-order wave equation with nonlinear
damping and source term:

utt +Au + a|ut|p−1ut = b|u|q−1u, x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

Dαu(x, t) = 0, |α| ≤ m − 1, x ∈ ∂Ω, t ≥ 0, (1.3)

where A = (−Δ)m, m ≥ 1 is a nature number, a, b > 0 and p, q > 1 are real numbers, Ω
is a bounded domain of RN with smooth boundary ∂Ω, Δ is the Laplace operator, and α =
(α1, α2, . . . , αN), |α| = ∑N

i=1 |αi|, Dα =
∏N

i=1(∂
αi/∂xαi

i ), x = (x1, x2, . . . , xN).
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When m = 1, the existence and uniqueness, as well as decay estimates, of global
solutions and blow up of solutions for the initial boundary value problem and Cauchy
problem of (1.1) have been investigated by many people through various approaches and
assumptive conditions [1–8]. Rammaha [9] deals with wave equations that feature two
competing forces and analyzes the influence of these forces on the long-time behavior of
solutions. Barbu et al. [10] study the following initial-boundary value problem:

utt −Δu + |u|kj ′(ut) = |u|p−1u, (x, t) ∈ Ω × (0, T) ≡ QT,

u(x, 0) = u0(x) ∈ H1
0(Ω), ut(x, 0) = u1(x) ∈ L2(Ω),

u = 0, (x, t) ∈ Γ × (0, T),

(1.4)

whereΩ is a bounded domain inRN with a smooth boundary Γ, j(s) is aC1 convex, real value
function defined on R, and j ′ denotes the derivative of j. They prove that every generalized
solution to the above problem and additional regularity blows up in finite time, whenever
the exponent p is greater than the critical value k +m, and the initial energy is negative.

For the following model of semilinear wave equation with a nonlinear boundary
dissipation and nonlinear boundary(interior) sources,

utt = Δu + f(u), (x, t) ∈ Ω × (0,∞),

∂νu + u + g(ut) = h(u), (x, t) ∈ Γ × (0,∞),

u(0) = u0(x) ∈ H1(Ω), ut(0) ∈ u1(x) ∈ L2(Ω),

(1.5)

where the operators f(u), g(ut), and h(u) are Nemytskii operators associated with scalar,
continuous functions f(s), g(s), and h(s) defined for s ∈ R. The function g(s) is assumed
monotone. The paper [11, 12] proves the existence and uniqueness of both local and global
solutions of this system on the finite energy space and derive uniform decay rates of the
energy when t → ∞.

When m = 2, Guesmia [13] considered the equation

utt + Δ2u + q(x)u + g(ut) = 0, x ∈ Ω, t > 0 (1.6)

with initial boundary value conditions (1.2) and (1.3), where g is a continuous and increasing
function with g(0) = 0, and q : Ω → [0,+∞) is a bounded function. He prove a global
existence and a regularity result of the problem (1.6), (1.2), and (1.3). Under suitable growth
conditions on g, he also established decay results for weak and strong solutions. Precisely,
In [13], Guesmia showed that the solution decays exponentially if g behaves like a linear
function, whereas the decay is of a polynomial order otherwise. Results similar to the above
system, coupled with a semilinear wave equation, have been established by Guesmia [14].
As q(x)u + g(ut) in (1.6) is replaced by Δ2ut + Δg(Δu). Aassila and Guesmia [15] have
obtained a exponential decay theorem through the use of an important lemma of Komornik
[16]. Moreover, Messaoudi [17] sets up an existence result of this problem and shows that the
solution continues to exist globally if p ≥ q; however, it blows up in finite time if p < q.
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Nakao [18] has used Galerkin method to present the existence and uniqueness of the
bounded solutions, and periodic and almost periodic solutions to the problem (1.1)–(1.3)
as the dissipative term is a linear function νut. Nakao and Kuwahara [19] studied decay
estimates of global solutions to the problem (1.1)–(1.3) by using a difference inequality when
the dissipative term is a degenerate case a(x)ut. When there is no dissipative term in (1.1),
Brenner and von Wahl [20] proved the existence and uniqueness of classical solutions to the
initial boundary problem for (1.1) in Hilbert space. Pecher [21] investigated the existence and
uniqueness of Cauchy problem for (1.1) by the use of the potential well method due to Payne
and Sattinger [6] and Sattinger [22].

When a = 0, for the semilinear higher-order wave equation (1.1), Wang [23] shows
that the scattering operators map a band in Hs into Hs if the nonlinearities have critical or
subcritical powers in Hs. Miao [24] obtains the scattering theory at low energy using time-
space estimates and nonlinear estimates. Meanwhile, he also gives the global existence and
uniqueness of solutions under the condition of low energy.

The proof of global existence for problem (1.1)–(1.3) is based on the use of the potential
well theory [6, 22]. See also Todorova [7, 25] for more recent work. And we study the
asymptotic behavior of global solutions by applying the lemma of Komornik [16].

We adopt the usual notation and convention. LetHk(Ω) denote the Sobolev space with

the norm ‖u‖Hk(Ω) = (
∑

|α|≤k ‖Dαu‖2L2(Ω))
1/2

, letHk
0 (Ω) denote the closure inHk(Ω) of C∞

0 (Ω).
For simplicity of notation, hereafter we denote by ‖ · ‖r the Lebesgue space Lr(Ω) norm and
‖·‖ denotes L2(Ω) norm, wewrite equivalent norm ‖A1/2 ·‖ instead ofHm

0 (Ω) norm ‖ · ‖Hm
0 (Ω).

Moreover,M denotes various positive constants depending on the known constants andmay
be different at each appearance.

This paper is organized as follows. In the next section, we will study the existence
of global solutions of problem (1.1)–(1.3). Then in Section 3, we are devoted to the proof of
decay estimate.

We conclude this introduction by stating a local existence result, which is known as a
standard one (see [17]).

Theorem 1.1. Suppose that p, q > 1 satisfies

1 < q < +∞, N ≤ 2m; 1 < q ≤ N

N − 2m
, N > 2m, (1.7)

1 < p < +∞, N ≤ 2m; 1 < p ≤ N + 2m
N − 2m

, N > 2m, (1.8)

and (u0, u1) ∈ Hm
0 (Ω) × L2(Ω), then there exists T > 0 such that the problem (1.1)–(1.3) has a

unique local solution u(t) in the class

u ∈ C
(
[0, T);Hm

0 (Ω)
)
, ut ∈ C

(
[0, T);L2(Ω)

)
∩ Lp+1(Ω × [0, T)). (1.9)

Theorem 1.2. Under the assumptions in Theorem 1.1, if

sup
0≤t≤Tmax

(

‖ut(t)‖2 +
∥
∥
∥A1/2u(t)

∥
∥
∥
2
)

< +∞, (1.10)
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then Tmax = +∞, where [0, Tmax] is the maximum time interval on which the solution u(x, t) of
problem (1.1)–(1.3) exists.

Please notice that in [17], we can also construct the following space XT in proving the
existence of local solution by using contraction mapping principle:

XT =
{
u ∈ C

(
[0, T];Hm

0 (Ω)
)
, ut ∈ C

(
[0, T];L2(Ω)

)}
, (1.11)

which is equipment with norm

‖u(t)‖XT
= sup

0≤t≤T

1
2

(

‖ut(t)‖2 +
∥
∥
∥A1/2u(t)

∥
∥
∥
2
)

. (1.12)

Let ε > 0, and

Xε,T =
{
u ∈ XT : ‖u‖XT

≤ ε
}
. (1.13)

We define a distance d(u, v) = ‖u − v‖XT
on Xε,T , and then Xε,T is a complete distance space.

This show that, for small enough ε, there exists an unique fixed point on Xε,T and T only
depends on ε. Therefore, with the standard extension method of solution, we obtain Tmax =
+∞ for

sup
0≤t≤Tmax

(

‖ut(t)‖2 +
∥
∥
∥A1/2u(t)

∥
∥
∥
2
)

< +∞. (1.14)

Here we omit the detailed proof of extension.

2. The Global Existence

In order to state and prove our main results, we first define the following functionals:

I(u) = I(u(t)) =
∥
∥
∥A1/2u(t)

∥
∥
∥
2 − b‖u(t)‖q+1q+1,

J(u) = J(u(t)) =
1
2

∥
∥
∥A1/2u(t)

∥
∥
∥
2 − b

q + 1
‖u(t)‖q+1q+1,

(2.1)

and according to paper [18, 24] we put

d = inf

{

sup
λ>0

J(λu), u ∈ Hm
0 (Ω)/{0}

}

. (2.2)

Then, for the problem (1.1)–(1.3), we are able to define the stable set

W =
{
u ∈ Hm

0 (Ω), I(u) > 0
} ∪ {0}. (2.3)
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We denote the total energy related to (1.1) by

E(u(t)) =
1
2
‖ut(t)‖2 + 1

2

∥
∥
∥A1/2u(t)

∥
∥
∥
2 − b

q + 1
‖u(t)‖q+1q+1 =

1
2
‖ut(t)‖2 + J(u(t)) (2.4)

for u ∈ Hm
0 (Ω), t ≥ 0, and E(u(0)) = (1/2)‖u1‖2 + J(u0) is the total energy of the initial data.

Lemma 2.1. Let r be a number with 2 ≤ r < +∞,N ≤ 2m or 2 ≤ r ≤ 2N/(N −2m),N > 2m. Then
there is a constant C depending on Ω and r such that

‖u‖r ≤ C
∥
∥
∥A1/2u

∥
∥
∥, ∀u ∈ Hm

0 (Ω). (2.5)

Lemma 2.2. Assume that u ∈ Hm
0 (Ω); if (1.7) holds, then

d =
q − 1

2
(
q + 1

)
1

(
bC

q+1
∗

)2/(q−1) (2.6)

is a positive constant, where C∗ is the most optimal constant in Lemma 2.1, namely, C∗ =
sup(‖u‖q+1/‖A1/2u‖).

Proof. Since

J(λu) =
λ2

2

∥
∥
∥A1/2u

∥
∥
∥
2 − bλq+1

q + 1
‖u‖q+1q+1, (2.7)

so, we get

d

dλ
J(λu) = λ

∥
∥
∥A1/2u

∥
∥
∥
2 − bλq‖u‖q+1q+1. (2.8)

Let (d/dλ)J(λu) = 0, which implies that

λ1 = b−1/(q−1)

⎛

⎝
‖u‖q+1q+1

∥
∥A1/2u

∥
∥2

⎞

⎠

−1/(q−1)

. (2.9)

As λ = λ1, an elementary calculation shows that

d2

dλ2
J(λu) < 0. (2.10)
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Thus, we have from Lemma 2.1 that

sup
λ≥0

J(λu) = J(λ1u) =
q − 1

2
(
q + 1

)b−2/(q−1)
( ‖u‖q+1

∥
∥A1/2u

∥
∥

)−2(q+1)/(q−1)

≥ q − 1
2
(
q + 1

)
1

b2/(q−1)
C2(q+1)/(q−1) > 0.

(2.11)

We get from the definition of d

d =
q − 1

2
(
q + 1

)
1

(
bC

q+1
∗

)2/(q−1) > 0. (2.12)

Lemma 2.3. Let u(t) be a solution of the problem (1.1)–(1.3). Then E(u(t)) is a nonincreasing
function for t > 0 and

d

dt
E(u(t)) = −a‖ut(t)‖p+1p+1. (2.13)

Proof. By multiplying (1.1) by ut and integrating over Ω, we get

d

dt
E(u(t)) = −a‖ut(t)‖p+1p+1 ≤ 0. (2.14)

Therefore, E(u(t)) is a nonincreasing function on t.

Theorem 2.4. Suppose that (1.7) holds. If u0 ∈ W,u1 ∈ L2(Ω) and the initial energy satisfies
E(u(0)) < d, then u ∈ W , for each t ∈ [0, T).

Proof. Assume that there exists a number t∗ ∈ [0, T) such that u(t) ∈ W on [0, t∗) and
u(t∗)/∈W . Then we have

I(u(t∗)) = 0, u(t∗)/= 0. (2.15)

Since u(t) ∈ W on [0, t∗), so it holds that

J(u(t)) =
1
2

∥
∥
∥A1/2u(t)

∥
∥
∥
2 − b

q + 1
‖u(t)‖q+1q+1

≥ 1
2

∥
∥
∥A1/2u(t)

∥
∥
∥
2 − 1

q + 1

∥
∥
∥A1/2u(t)

∥
∥
∥
2
=

q − 1
2
(
q + 1

)
∥
∥
∥A1/2u(t)

∥
∥
∥
2
,

(2.16)

it follows from I(u(t∗)) = 0 that

J(u(t∗)) =
1
2

∥
∥
∥A1/2u(t∗)

∥
∥
∥
2 − b

q + 1
‖u(t∗)‖q+1q+1 =

q − 1
2
(
q + 1

)
∥
∥
∥A1/2u(t∗)

∥
∥
∥
2
, (2.17)
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and therefore, we have from (2.16) and (2.17) that

∥
∥
∥A1/2u(t)

∥
∥
∥
2 ≤ 2

(
q + 1

)

q − 1
J(u(t)) ≤ 2

(
q + 1

)

q − 1
E(u(t)) ≤ 2

(
q + 1

)

q − 1
E(u(0)) (2.18)

for all t ∈ [0, t∗].
We obtain from Lemma 2.2 and E(u(0)) < d that

E(u(0)) <
q − 1

2
(
q + 1

)
1

(
bC

q+1
∗

)2/(q−1) , (2.19)

which implies that

bC
q+1
∗

(
2
(
q + 1

)

q − 1
E(u(0))

)(q−1)/2
< 1. (2.20)

By exploiting Lemma 2.1, (2.18), and (2.20), we easily arrive at

b‖u‖q+1q+1 ≤ bCq+1
∥
∥
∥A1/2u

∥
∥
∥
q+1

= bCq+1
∥
∥
∥A1/2u

∥
∥
∥
q−1∥∥

∥A1/2u
∥
∥
∥
2

≤ bC
q+1
∗

⎛

⎝

(
2
(
q + 1

)

q − 1
E(u(0))

)(q−1)/2⎞

⎠
∥
∥
∥A1/2u

∥
∥
∥
2
<
∥
∥
∥A1/2u

∥
∥
∥
2

(2.21)

for all t ∈ [0, t∗]. Therefore, we obtain

I(u(t∗)) =
∥
∥
∥A1/2u(t∗)

∥
∥
∥
2 − b‖u(t∗)‖q+1q+1 > 0, (2.22)

which contradicts (2.15). Thus, we conclude that u(t) ∈ W on [0, T).

Theorem 2.5. Assume that (1.7) and (1.8) hold, u(t) is a local solution of problem (1.1)–(1.3). If
u0 ∈ W, u1 ∈ L2(Ω), and E(u(0)) < d, then the solution u(t) is a global solution of problem (1.1)–
(1.3).

Proof. We obtain from (2.18) that

d > E(u(0)) ≥ E(u(t)) =
1
2
‖ut(t)‖2 + J(u(t))

≥ 1
2
‖ut(t)‖2 +

q − 1
2
(
q + 1

)
∥
∥
∥A1/2u

∥
∥
∥
2 ≥ q − 1

2
(
q + 1

)

(

‖ut(t)‖2 +
∥
∥
∥A1/2u

∥
∥
∥
2
) (2.23)
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Therefore,

‖ut(t)‖2 +
∥
∥
∥A1/2u

∥
∥
∥
2 ≤ 2

(
q + 1

)

q − 1
d < +∞. (2.24)

It follows from Theorem 1.2 that u(x, t) is the global solution of problem (1.1)–(1.3).

3. Decay Estimate

The following two lemmas play an important role in studying the decay estimate of global
solutions for the problem (1.1)–(1.3).

Lemma 3.1 (see [16]). Let F : R+ → R+ be a nonincreasing function and assume that there are two
constants β ≥ 1 and A > 0 such that

∫+∞

S

F(t)(β+1)/2dt ≤ AF(S), 0 ≤ S < +∞, (3.1)

then F(t) ≤ CF(0)(1 + t)−2/(β−1), for all t ≥ 0, if β > 1, and F(t) ≤ CF(0)e−ωt, for all t ≥ 0, if
β = 1, where C and ω are positive constants independent of F(0).

Lemma 3.2. If the hypotheses in Theorem 2.4 hold, then

b‖u(t)‖q+1q+1 ≤ (1 − θ)
∥
∥
∥A1/2u(t)

∥
∥
∥
2
, ∀t ∈ [0,+∞), (3.2)

where

θ = 1 − bC
q+1
∗

(
2
(
q + 1

)

q − 1
E(u(0))

)(q−1)/2
> 0. (3.3)

Moreover, one has

I(u(t)) ≥ θ
∥
∥
∥A1/2u(t)

∥
∥
∥
2 ≥ θ

1 − θ
b‖u(t)‖q+1q+1, ∀t ∈ [0,+∞). (3.4)

Proof. We get from Lemma 2.1 and (2.23) that

b‖u‖q+1q+1 ≤ bCq+1
∥
∥A1/2u

∥
∥q+1 = bCq+1

∥
∥A1/2u

∥
∥q−1∥∥A1/2u

∥
∥2

≤ bC
q+1
∗

(
2
(
q + 1

)

q − 1
E(u(0))

)(q−1)/2
∥
∥A1/2u

∥
∥2

.

(3.5)
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Let

θ = 1 − bC
q+1
∗

(
2
(
q + 1

)

p
E(u(0))

)(q−1)/2
, (3.6)

then we have from (2.20) that 0 < θ < 1. Thus, it follows that from (3.5)

b‖u‖q+1q+1 ≤ (1 − θ)
∥
∥
∥A1/2u

∥
∥
∥
2
. (3.7)

Meanwhile, we conclude from (3.7) that

I(u) =
∥
∥
∥A1/2u

∥
∥
∥
2 − b‖u‖q+1q+1 ≥

∥
∥
∥A1/2u

∥
∥
∥
2 − (1 − θ)

∥
∥
∥A1/2u

∥
∥
∥
2
= θ

∥
∥
∥A1/2u

∥
∥
∥
2 ≥ θb

1 − θ
‖u‖q+1q+1.

(3.8)

This complete the proof of Lemma 3.2.

Theorem 3.3. If the hypotheses in Theorem 2.5 are valid, then the global solutions of problem (1.1)–
(1.3) have the following asymptotic behavior:

lim
t→+∞

‖ut(t)‖ = 0, lim
t→+∞

∥
∥
∥A1/2u(t)

∥
∥
∥ = 0. (3.9)

Let E(t) = E(u(t)). If one can prove that the energy of the global solution satisfies the estimate

∫T

S

E(t)(p+1)/2dt ≤ ME(S) (3.10)

for all 0 ≤ S < T < +∞, then Theorem 3.3 will be proved by Lemma 3.1. The proof of Theorem 3.3 is
composed of the following propositions.

Proposition 3.4. Suppose that u(x, t) is the global solutions of (1.1)–(1.3), then one has

∫T

S

∫

Ω
E(t)(p−1)/2

(

|ut|2 +
∣
∣
∣A1/2u

∣
∣
∣
2 − b|u|q+1

)

dx dt

≤
∫T

S

∫

Ω
E(t)(p−1)/2

[
2|ut|2 − a|ut|p−1utu

]
dx dt

+
p − 1
2

∫T

S

∫

Ω
E(t)(p−3)/2E′(t)uutdxdt +ME(S)(p+1)/2

(3.11)

for all 0 ≤ S < T < +∞.
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Proof. Multiplying by E(t)(p−1)/2u on both sides of (1.1) and integrating over Ω × [S, T], we
obtain that

∫T

S

∫

Ω
E(t)(p−1)/2u

[
utt +Au + a|ut|p−1ut − bu|u|q−1

]
dx dt = 0, (3.12)

where 0 ≤ S < T < +∞.
Since

∫T

S

∫

Ω
E(t)(p−1)/2uuttdx dt =

∫

Ω
E(t)(p−1)/2uutdx

∣
∣
∣
∣
∣

T

S

−
∫T

S

∫

Ω
E(t)(p−1)/2|ut|2dx dt − p − 1

2

∫T

S

∫

Ω
E(t)(p−3)/2E′(t)uutdx dt,

(3.13)

so, substituting (3.13) into the left-hand side of (3.12), we get that

∫T

S

∫

Ω
E(t)(p−1)/2

(

|ut|2 +
∣
∣
∣A1/2u

∣
∣
∣
2 − b|u|q+1

)

dx dt

=
∫T

S

∫

Ω
E(t)(p−1)/2

[
2|ut|2 − a|ut|p−1utu

]
dx dt

+
p − 1
2

∫T

S

∫

Ω
E(t)(p−3)/2E′(t)uutdx dt −

∫

Ω
E(t)(p−1)/2uutdx

∣
∣
∣
∣
∣

T

S

.

(3.14)

Next we observe from (2.23) that

∣
∣
∣
∣
∣
−
∫

Ω
E(t)(p−1)/2uutdx

∣
∣
∣
∣

T

S

∣
∣
∣
∣
∣
≤ E(t)(p−1)/2

(
1
2
‖u‖2 + 1

2
‖ut‖2

)∣
∣
∣
∣

T

S

≤ E(t)(p−1)/2
(

C2

2

∥
∥
∥A1/2u

∥
∥
∥
2
+
1
2
‖ut‖2

)∣
∣
∣
∣
∣

T

S

≤ E(t)(p−1)/2
((

q + 1
)
C2

q − 1
q − 1

2
(
q + 1

)
∥
∥
∥A1/2u

∥
∥
∥
2
+
1
2
‖ut‖2

)∣
∣
∣
∣
∣

T

S

≤ max

((
q + 1

)
C2

q − 1
, 1

)

E(t)(p+1)/2
∣
∣
∣
∣
∣

T

S

≤ ME(S)(p+1)/2.

(3.15)

Therefore we conclude from (3.14) and (3.15) that the estimate (3.11) holds.
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Proposition 3.5. If u(x, t) is the global solutions of the problem (1.1)–(1.3), then one has the
following estimate:

∫T

S

E(t)(p+1)/2dt ≤ M

∫T

S

∫

Ω
E(t)(p−1)/2

[
2|ut|2 − a|ut|p−1utu

]
dx dt +ME(S)(p+1)/2. (3.16)

Proof. It follows from Lemma 3.2 and 0 < θ < 1 that

∫T

S

∫

Ω
E(t)(p−1)/2

(

|ut|2 +
∣
∣
∣A1/2u

∣
∣
∣
2 − b|u|q+1

)

dx dt

=
∫T

S

E(t)(p−1)/2
(
‖ut‖2 + I(u(t))

)
dt ≥

∫T

S

E(t)(p−1)/2
(

‖ut‖2 + θ
∥
∥
∥A1/2u

∥
∥
∥
2
)

dt

≥ 2θ
∫T

S

E(t)(p−1)/2
(
1
2
‖ut‖2 + 1

2

∥
∥
∥A1/2u

∥
∥
∥
2
)

dt ≥ 2θ
∫T

S

E(t)(p+1)/2dt.

(3.17)

We have from Lemma 2.1 and (2.23) that

∣
∣
∣
∣
∣

p − 1
2

∫T

S

∫

Ω
E(t)(p−3)/2E′(t)uutdx dt

∣
∣
∣
∣
∣

≤ p − 1
2

∫T

S

E(t)(p−3)/2
∣
∣E′(t)

∣
∣
(
1
2
‖u‖2 + 1

2
‖ut‖2

)

dt

≤ −p − 1
2

∫T

S

E(t)(p−3)/2E′(t)

(
C2

2

∥
∥
∥A1/2u

∥
∥
∥
2
+
1
2
‖ut‖2

)

dt

≤ −p − 1
2

∫T

S

E(t)(p−3)/2E′(t)

((
q + 1

)
C2

q − 1
q − 1

2
(
q + 1

)
∥
∥
∥A1/2u

∥
∥
∥
2
+
1
2
‖ut‖2

)

dt

≤ −p − 1
2

max

((
q + 1

)
C2

q − 1
, 1

)∫T

S

E(t)(p−1)/2E′(t)dt

= −p − 1
p + 1

max

((
q + 1

)
C2

q − 1
, 1

)

E(t)(p+1)/2
∣
∣
∣
∣
∣

T

S

≤ ME(S)(p+1)/2.

(3.18)

We get from (3.11), (3.17), and (3.18) that

2θ
∫T

S

E(t)(p+1)/2dt ≤
∫T

S

∫

Ω
E(t)(p−1)/2

[
2|ut|2 − a|ut|p−1utu

]
dx dt +ME(S)(p+1)/2. (3.19)

Therefore we conclude the estimate (3.16) from (3.19).
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Proposition 3.6. Let u(x, t) be the global solutions of the initial boundary problem (1.1)–(1.3), then
the following estimate holds:

∫T

S

E(t)(p+1)/2dt ≤ M(1 + E(0))(p−1)/2E(S). (3.20)

Proof. We get from Young inequality and (2.13) that

2
∫T

S

∫

Ω
E(t)(p−1)/2|ut|2dx dt ≤

∫T

S

∫

Ω

(
ε1E(t)(p+1)/2 +M(ε1)|ut|p+1

)
dx dt

≤ Mε1

∫T

S

E(t)(p+1)/2dt +M(ε1)
∫T

S

‖ut‖p+1p+1dt

= Mε1

∫T

S

E(t)(p+1)/2dt − M(ε1)
a

(E(T) − E(S))

≤ Mε1

∫T

S

E(t)(p+1)/2dt +ME(S).

(3.21)

We receive from Young inequality, Lemma 2.1, (2.13), and (2.23) that

− a

∫T

S

∫

Ω
E(t)(p−1)/2uut|ut|p−1dxdt

≤ a

∫T

S

E(t)(p−1)/2
(
ε2‖u‖p+1p+1 +M(ε2)‖ut‖p+1p+1

)
dt

≤ aCp+1ε2E(0)(p−1)/2
∫T

S

∥
∥
∥A1/2u

∥
∥
∥
p+1

dt + aM(ε2)E(S)(p−1)/2
∫T

S

‖ut‖p+1p+1dt

= aCp+1ε2E(0)(p−1)/2
∫T

S

(
2
(
q + 1

)

q − 1
E(t)

)(p+1)/2

dt +M(ε2)E(S)(p−1)/2(E(S) − E(T))

≤ aCp+1ε2E(0)(p−1)/2
(

2
(
q + 1

)

q − 1

)(p+1)/2∫T

S

E(t)(p+1)/2dt +M(ε2)E(S)(p+1)/2,

(3.22)

where M(ε1) andM(ε2) are positive constants depending on ε1 and ε2.
ε1 and ε2 are small enough such that

Mε1 + aE(0)(p−1)/2
(

2
(
q + 1

)

q − 1
C2

)(p+1)/2

ε2 < 1, (3.23)
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and then, substituting (3.21) and (3.22) into (3.16), we get

∫T

S

E(t)(p+1)/2dt ≤ ME(S) +ME(S)(p+1)/2 ≤ M(1 + E(0))(p−1)/2E(S). (3.24)

Therefore, we have from Lemma 3.1 and Proposition 3.6 that

E(t) ≤ M(E(0))(1 + t)−(p−1)/2, t ∈ [0,+∞). (3.25)

Here M(E(0)) > 0 is a constant depending on E(0).
It follows from (2.23) and (3.25) that

lim
t→+∞

‖ut(t)‖ = lim
t→+∞

∥
∥
∥A1/2u(t)

∥
∥
∥ = 0. (3.26)

The proof of Theorem 3.3 is thus finished.
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[21] H. Pecher, “Die existenz regulärer Lösungen für Cauchy- und anfangs-randwert-probleme nichtlin-
earer wellengleichungen,”Mathematische Zeitschrift, vol. 140, pp. 263–279, 1974.

[22] D. H. Sattinger, “On global solution of nonlinear hyperbolic equations,” Archive for Rational Mechanics
and Analysis, vol. 30, pp. 148–172, 1968.

[23] B. Wang, “Nonlinear scattering theory for a class of wave equations in Hs,” Journal of Mathematical
Analysis and Applications, vol. 296, no. 1, pp. 74–96, 2004.

[24] C. X. Miao, “Time-space estimates and scattering at low energy for higher-order wave equations,”
Acta Mathematica Sinica. Series A, vol. 38, no. 5, pp. 708–717, 1995.

[25] G. Todorova, “Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with
nonlinear damping and source terms,” Journal of Mathematical Analysis and Applications, vol. 239, no.
2, pp. 213–226, 1999.


	1. Introduction
	2. The Global Existence
	3. Decay Estimate
	Acknowledgments
	References

