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By the Leray-Schauder’s degree, the existence of solutions for a weighted p(t)-Laplacian
impulsive integro-differential system with multi-point and integral boundary value conditions
is considered. The sufficient results for the existence are given under the resonance and
nonresonance cases, respectively. Moreover, we get the existence of nonnegative solutions at
nonresonance.

1. Introduction

In this paper, we consider the existence of solutions for the following weighted p(t)-Laplacian
integrodifferential system:

−Δp(t)u + f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
= 0, t ∈ (0, 1), t /= ti, (1.1)

where u : [0, 1] → R
N , f(·, ·, ·, ·, ·) : [0, 1] ×R

N ×R
N ×R

N ×R
N → R

N , ti ∈ (0, 1), i = 1, . . . , k,
with the following impulsive boundary value conditions

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = Ai

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k, (1.2)
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lim
t→ t+i

w(t)|u′|p(t)−2u′(t) − lim
t→ t−i

w(t)|u′|p(t)−2u′(t)

= Bi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

(1.3)

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt, (1.4)

where p ∈ C([0, 1],R) and p(t) > 1, −Δp(t)u := −(w(t)|u′|p(t)−2u′)′ is called the weighted
p(t)-Laplacian; 0 < t1 < t2 < · · · < tk < 1, 0 < η1 < · · · < ηm−2 < 1; α� ≥ 0, (� = 1, . . . ,
m − 2) and 0 ≤ ∑m−2

�=1 α� ≤ 1; g ∈ L1[0, 1] is nonnegative,
∫1
0 g(t)dt = σ with σ ∈ [0, 1];

Ai, Bi ∈ C(RN × R
N,RN); T and S are linear operators defined by (Tu)(t) =

∫ t
0 k∗(t, s)u(s)ds,

(Su)(t) =
∫1
0 h∗(t, s)u(s)ds, t ∈ [0, 1], where k∗, h∗ ∈ C([0, 1] × [0, 1],R).

If
∑m−2

�=1 α� < 1 and σ < 1, we say the problem is nonresonant, but if
∑m−2

�=1 α� = 1 and
σ = 1, we say the problem is resonant.

Throughout the paper, o(1) means function which uniformly convergent to 0 (as n →
+∞); for any v ∈ R

N , vj will denote the jth component of v; the inner product in R
N will be

denoted by 〈·, ·〉; | · | will denote the absolute value and the Euclidean norm on R
N . Denote

J = [0, 1], J ′ = (0, 1) \ {t1, . . . , tk}, J0 = [t0, t1], Ji = (ti, ti+1], i = 1, . . . , k, where t0 = 0, tk+1 = 1.
Denote Joi the interior of Ji, i = 0, 1, . . . , k. Let

PC
(
J,RN

)
=

⎧
⎨
⎩x : J −→ R

N

∣∣∣∣∣∣
x ∈ C

(
Ji,R

N
)
, i = 0, 1, . . . , k,

lim
t→ t+i

x(t) exists for i = 1, . . . , k

⎫
⎬
⎭, (1.5)

w ∈ PC(J,R) satisfies 0 < w(t), for all t ∈ (0, 1) \ {t1, . . . , tk}, and (w(t))−1/(p(t)−1) ∈ L1(0, 1);

PC1
(
J,RN

)
=

⎧
⎪⎪⎨
⎪⎪⎩
x ∈ PC

(
J,RN

)
∣∣∣∣∣∣∣∣

x′ ∈ C
(
Joi ,R

N
)
, lim
t→ t+i

(w(t))1/(p(t)−1)x′(t),

lim
t→ t−i+1

(w(t))1/(p(t)−1)x′(t) exists for i = 0, 1, . . . , k

⎫
⎪⎪⎬
⎪⎪⎭
. (1.6)

For any x = (x1, . . . , xN) ∈ PC(J,RN), denote |xi|0 = sup{|xi(t)| | t ∈ J ′}. Obviously,
PC(J,RN) is a Banach space with the norm ‖x‖0 = (

∑N
i=1 |xi|20)1/2, and PC1(J,RN) is a Banach

space with the norm ‖x‖1 = ‖x‖0 + ‖(w(t))1/(p(t)−1)x′‖0. Denote L1 = L1(J,RN) with the norm
‖x‖L1 = (

∑N
i=1 |xi|2

L1)
1/2, for all x ∈ L1, where |xi|L1 =

∫1
0 |xi(t)|dt.

For simplicity, we denote PC(J,RN) and PC1(J,RN) by PC and PC1, respectively, and
denote

u
(
t+i
)
= lim

t→ t+i

u(t), u
(
t−i
)
= lim

t→ t−i
u(t),

w(0)
∣∣u′∣∣p(0)−2u′(0) = lim

t→ 0+
w(t)

∣∣u′∣∣p(t)−2u′(t),

w(1)
∣∣u′∣∣p(1)−2u′(1) = lim

t→ 1−
w(t)

∣∣u′∣∣p(t)−2u′(t),
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Ai = Ai

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

Bi = Bi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k.

(1.7)

In recent years, there has been an increasing interest in the study of differential
equations with nonstandard p(t)-growth conditions. These problems have many interesting
applications (see [1–4]). Many results have been obtained on these kinds of problems, for
example [5–17]. If p(t) ≡ p (a constant), (1.1)–(1.4) becomes the well known p-Laplacian
problem. If p(t) is a general function, one can see easily that −Δp(t)cu/= cp(t)(−Δp(t)u) in gen-
eral, while −Δpcu = cp(−Δpu), so −Δp(t) represents a non-homogeneity and possesses more
nonlinearity, thus −Δp(t) is more complicated than −Δp. For example, we have the following.

(a) In general, the infimum λp(x) of eigenvalues for the p(x)-Laplacian Dirichlet
problems is zero, and λp(x) > 0 only under some special conditions (see [10]). When
Ω ⊂ R (N = 1) is an interval, the results in [10] show that λp(x) > 0 if and only if
p(x) is monotone. But the property of λp > 0 is very important in the study of
p-Laplacian problems, for example, in [18], the authors use this property to deal
with the existence of solutions.

(b) Ifw(t) ≡ 1 and p(t) ≡ p (a constant) and −Δpu > 0, then u is concave, this property is
used extensively in the study of one-dimensional p-Laplacian problems (see [19]),
but it is invalid for −Δp(t). It is another difference between −Δp and −Δp(t).

Recently, there are many works devoted to the existence of solutions to the Laplacian
impulsive differential equation boundary value problems, for example [20–28]. Many
methods had been applied to deal with these problems, for example sub-super-solution
method, fixed point theorem, monotone iterative method, coincidence degree, variational
principles (see [29]), and so forth. Because of the nonlinearity of −Δp, results about
the existence of solutions for p-Laplacian impulsive differential equation boundary value
problems are rare (see [30]). In [31], using coincidence degree method, the present author
investigate the existence of solutions for p(r)-Laplacian impulsive differential equation with
multipoint boundary value conditions. Integral boundary conditions for evolution problems
have various applications in chemical engineering, thermoelasticity, underground water flow
and population dynamics, there are many papers on the differential equations with integral
boundary value problems, for example, [32–35].

In this paper, when p(t) is a general function, we investigate the existence of solutions
and nonnegative solutions for the weighted p(t)-Laplacian impulsive integrodifferential
system with multipoint and integral boundary value conditions. Our results contain both
the cases of resonance and nonresonance, and the method is based upon Leray-Schauder’s
degree. Moreover, this paper will consider the existence of (1.1) with (1.2), (1.4) and the
following impulsive condition:

lim
t→ t+i

(w(t))1/(p(t)−1)u′(t) − lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

= Di

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

(1.8)
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whereDi ∈ C(RN×RN,RN), the impulsive condition (1.8) is called linear impulsive condition
(LI for short), and (1.3) is called nonlinear impulsive condition (NLI for short). In generaly,
p-Laplacian impulsive problems have two kinds of impulsive conditions, that is, LI and NLI.

LetN ≥ 1, the function f : J×RN×RN×RN×RN → R
N is assumed to be Caratheodory,

by this we mean the following:

(i) for almost every t ∈ J the function f(t, ·, ·, ·, ·) is continuous;
(ii) for each (x, y, s, z) ∈ R

N × R
N × R

N × R
N the function f(·, x, y, s, z) is measurable

on J ;

(iii) for each R > 0 there is a αR ∈ L1(J,R) such that, for almost every t ∈ J and every
(x, y, s, z) ∈ R

N × R
N × R

N × R
N with |x| ≤ R, |y| ≤ R, |s| ≤ R, |z| ≤ R, one has

∣∣f(t, x, y, s, z)∣∣ ≤ αR(t). (1.9)

We say a function u : J → R
N is a solution of (1.1) if u ∈ PC1 with w(t)|u′|p(t)−2u′

absolutely continuous on Joi , i = 0, 1, . . . , k, which satisfies (1.1) a.e. on J .
In this paper, we always use Ci to denote positive constants, if it cannot lead to

confusion. Denote

z− = inf
t∈J

z(t), z+ = sup
t∈J

z(t), for any z ∈ PC(J,R). (1.10)

We say f satisfies sub-(p− − 1) growth condition, if f satisfies

lim
|u|+|v|+|s|+|z|→+∞

f(t, u, v, s, z)

(|u| + |v| + |s| + |z|)q(t)−1
= 0, for t ∈ J uniformly, (1.11)

where q(t) ∈ PC(J,R), and 1 < q− ≤ q+ < p−.
This paper is organized as four sections. In Section 2, we present some preliminary and

give the operator equation which has the same solutions of (1.1)–(1.4). In Section 3, we give
the existence of solutions and nonnegative solutions for system (1.1)–(1.4) at nonresonance.
Finally, in Section 4, we give the existence of solutions for system (1.1)–(1.4) at resonance.

2. Preliminary

For any (t, x) ∈ J × R
N , denote ϕ(t, x) = |x|p(t)−2x. Obviously, ϕ has the following properties.

Lemma 2.1 (see [31]). ϕ is a continuous function and satisfies the following.

(i) For any t ∈ [0, 1], ϕ(t, ·) is strictly monotone, satisfying

〈
ϕ(t, x1) − ϕ(t, x2), x1 − x2

〉
> 0, for any x1, x2 ∈ R

N, x1 /=x2. (2.1)

(ii) There exists a function α : [0,+∞) → [0,+∞), α(s) → +∞ as s → +∞, such that

〈
ϕ(t, x), x

〉 ≥ α(|x|)|x|, ∀x ∈ R
N. (2.2)
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It is well known that ϕ(t, ·) is an homeomorphism from R
N to R

N for any fixed t ∈ J .
Denote

ϕ−1(t, x) = |x|(2−p(t))/(p(t)−1)x, for x ∈ R
N \ {0}, ϕ−1(t, 0) = 0, ∀t ∈ J. (2.3)

It is clear that ϕ−1(t, ·) is continuous and sends bounded sets to bounded sets.
In this section, we will do some preparation and give the operator equation which has

the same solutions of (1.1)–(1.4). At first, let us now consider the following simple impulsive
problem with boundary value condition (1.4)

−Δp(t)u + f(t) = 0, t ∈ (0, 1), t /= ti,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = ai, i = 1, . . . , k,

lim
t→ t+i

w(t)
∣∣u′∣∣p(t)−2u′(t) − lim

t→ t−i
w(t)

∣∣u′∣∣p(t)−2u′(t) = bi, i = 1, . . . , k,

(2.4)

where ai, bi ∈ R
N ; f ∈ L1.

We will discuss (2.4) with (1.4) in the cases of resonance and nonresonance,
respectively.

2.1. The Case of Nonresonance

Suppose 0 ≤∑m−2
�=1 α� < 1 and 0 ≤ σ < 1. If u is a solution of (2.4)with (1.4), we have

w(t)ϕ
(
t, u′(t)

)
= w(0)ϕ

(
0, u′(0)

)
+
∑
ti<t

bi +
∫ t

0
f(s)ds, ∀t ∈ J ′. (2.5)

Denote a = (a1, . . . , ak) ∈ R
kN , b = (b1, . . . , bk) ∈ R

kN , ρ1 = w(0)ϕ(0, u′(0)). It is easy to
see that ρ1 is dependent on a, b and f(t). Define operator F : L1 → PC as

F
(
f
)
(t) =

∫ t

0
f(s)ds, ∀t ∈ J, ∀f ∈ L1. (2.6)

By solving for u′ in (2.5) and integrating, we find

u(t) = u(0) +
∑
ti<t

ai + F

{
ϕ−1
[
t, (w(t))−1

(
ρ1 +

∑
ti<t

bi + F
(
f
)
(t)

)]}
(t), ∀t ∈ J, (2.7)

which together with the boundary value condition (1.4) implies

ρ1 =

{∑m−2
�=1 α�

[∑
ti<η�

bi + F
(
f
)(
η�
)]}

1 −∑m−2
�=1 α�

,

u(0) =
1

(1 − σ)

∫1

0
g(t)

{
F

{
ϕ−1
[
t, (w(t))−1

(
ρ1 +

∑
ti<t

bi + F
(
f
)
(t)

)]}
(t) +

∑
ti<t

ai

}
dt.

(2.8)
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Denote W = R
2kN × L1 with the norm ‖ω‖ =

∑k
i=1 |ai| +

∑k
i=1 |bi| + ‖h‖L1 , for all ω =

(a, b, h) ∈ W , thenW is a Banach space.
We define ρ̃1 : W → R

N as

ρ̃1(ω) =

{∑m−2
�=1 α�

[∑
ti<η�

bi + F(h)
(
η�
)]}

1 −∑m−2
�=1 α�

, ∀ω = (a, b, h) ∈ W, (2.9)

then ρ̃1(·) is continuous. Throughout the paper, we denote E =
∫1
0 (w(t))−1/(p(t)−1)dt. It is easy

to see the following.

Lemma 2.2. The function ρ̃1 : W → R
N is continuous and sends bounded sets to bounded sets.

Moreover, for any ω = (a, b, h) ∈ W , we have

∣∣ρ̃1(ω)
∣∣ ≤

∑m−2
�=1 α�

[∑k
i=1|bi| + ‖h‖L1

]

1 −∑m−2
�=1 α�

. (2.10)

We denote Nf(u) : [0, 1] × PC1 → L1 the Nemytskii operator associated to f defined by

Nf(u)(t) = f
(
t, u(t), (w(t))1/(p(t)−1)u′(t), S(u), T(u)

)
, a.e. on J. (2.11)

We define ρ1 : PC1 → R
N as

ρ1(u) = ρ̃1
(
A,B,Nf

)
(u), (2.12)

where A = (A1, . . . , Ak), B = (B1, . . . , Bk).

It is clear that ρ1(·) is continuous and sends bounded sets of PC1 to bounded sets of
R

N , and hence it is compact continuous.
If u is a solution of (2.4) with (1.4), we have

u(t) = u(0) +
∑
ti<t

ai + F

{
ϕ−1
[
t, (w(t))−1

(
ρ̃1(ω) +

∑
ti<t

bi + F
(
f
)
(t)

)]}
(t), ∀t ∈ [0, 1].

(2.13)

For fixed a, b ∈ R
kN , we define K(a,b) : L1 → PC1 as

K (a,b) (h)(t) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ̃1(a, b, h) +

∑
ti<t

bi + F(h)(t)

)]}
(t), ∀t ∈ J. (2.14)
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Define K1 : PC1 → PC1 as

K1(u)(t) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ1(u) +

∑
ti<t

Bi + F
(
Nf(u)

)
(t)

)]}
(t), ∀t ∈ J. (2.15)

Lemma 2.3. (i) The operator K(a,b) is continuous and sends equiintegrable sets in L1 to relatively
compact sets in PC1.

(ii) The operator K1 is continuous and sends bounded sets in PC1 to relatively compact sets
in PC1.

Proof. (i) It is easy to check that K(a,b)(h)(·) ∈ PC1, for all h ∈ L1, for all a, b ∈ R
kN . Since

(w(t))−1/(p(t)−1) ∈ L1 and

K(a,b)(h)
′(t) = ϕ−1

[
t, (w(t))−1

(
ρ̃1(a, b, h) +

∑
ti<t

bi + F(h)

)]
, ∀t ∈ [0, 1], (2.16)

it is easy to check that K(a,b)(·) is a continuous operator from L1 to PC1.
Let U be an equiintegrable set in L1, then there exists τ ∈ L1, such that

|u(t)| ≤ τ(t) a.e. in J, for any u ∈ L1. (2.17)

We want to show that K(a,b)(U) ⊂ PC1 is a compact set.
Let {un} be a sequence in K(a,b)(U), then there exists a sequence {hn} ∈ U such that

un = K(a,b)(hn). For any t1, t2 ∈ J , we have

|F(hn)(t1) − F(hn)(t2)| =
∣∣∣∣∣
∫ t1

0
hn(t)dt −

∫ t2

0
hn(t)dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ t2

t1

hn(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t2

t1

τ(t)dt

∣∣∣∣∣. (2.18)

Hence the sequence {F(hn)} is uniformly bounded and equicontinuous. By Ascoli-
Arzela theorem, there exists a subsequence of {F(hn)} (which we rename the same) which is
convergent in PC. According to the bounded continuous of the operator ρ̃1, we can choose a
subsequence of {ρ̃1(a, b, hn) + F(hn)} (which we still denote by {ρ̃1(a, b, hn) + F(hn)}) which
is convergent in PC, then w(t)1/(p(t)−1)K(a,b)(hn)

′(t) = ϕ−1(t, ρ̃1(a, b, hn) +
∑

ti<t
bi + F(hn)) is

convergent in PC.
Since

K(a,b)(hn)(t) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ̃1(a, b, hn) +

∑
ti<t

bi + F(hn)

)]}
(t), ∀t ∈ [0, 1], (2.19)

it follows from the continuity of ϕ−1 and the integrability ofw(t)−1/(p(t)−1) in L1 thatK(a,b)(hn)
is convergent in PC. Thus {un} is convergent in PC1.

(ii) It is easy to see from (i) and Lemma 2.2.
This completes the proof.
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Let us define P1 : PC1 → PC1 as P1(u) = {∫10 g(t)[K1(u)(t) +
∑

ti<t
Ai]dt}/(1 − σ).

It is easy to see that P1 is compact continuous.

Lemma 2.4. Suppose 0 ≤∑m−2
�=1 α� < 1 and 0 ≤ σ < 1, then u is a solution of (1.1)–(1.4) if and only

if u is a solution of the following abstract operator equation

u = P1(u) +
∑
ti<t

Ai +K1(u). (2.20)

Proof. Suppose u is a solution of (1.1)–(1.4). From the definition of ρ1(·) and P1(·), similar to
the discussion before Lemma 2.2, we know that u is a solution of (2.20).

Conversely, if u is a solution of (2.20), then (1.2) is satisfied.
From (2.20), we have

w(t)ϕ
(
t, u′(t)

)
= ρ1(u) +

∑
ti<t

Bi + F
(
Nf(u)

)
(t), t ∈ (0, 1), t /= ti,

(
w(t)ϕ

(
t, u′))′ = Nf(u)(t), t ∈ (0, 1), t /= ti.

(2.21)

It follows from (2.21) that (1.3) is satisfied.
From (2.21) and the definition of ρ1, we have

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t). (2.22)

From (2.20) and the definition of P1, it is easy to check that

u(0) =
∫1

0
g(t)u(t)dt. (2.23)

It follows from (2.22) and (2.23) that (1.4) is satisfied.
Hence u is a solutions of (1.1)–(1.4). This completes the proof.

2.2. The Case of Resonance

Suppose
∑m−2

�=1 α� = 1 and σ = 1. If u is a solution of (2.4) with (1.4), we have

w(t)ϕ
(
t, u′(t)

)
= w(0)ϕ

(
0, u′(0)

)
+
∑
ti<t

bi +
∫ t

0
f(s)ds, ∀t ∈ J ′. (2.24)

Denote a = (a1, . . . , ak) ∈ R
kN , b = (b1, . . . , bk) ∈ R

kN , ρ2 = w(0)ϕ(0, u′(0)). It is easy to
see that ρ2 is dependent on a, b and f(t).
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The boundary value condition (1.4) implies that

m−2∑
�=1

α�

⎡
⎣∑

ti<η�

bi + F
(
f
)(
η�
)
⎤
⎦ = 0,

∫1

0
g(t)

{
F

{
ϕ−1
[
t, (w(t))−1

(
ρ2 +

∑
ti<t

bi + F
(
f
)
(t)

)]}
(t) +

∑
ti<t

ai

}
dt = 0.

(2.25)

For any ω ∈ W , we denote

Λω

(
ρ2
)
=
∫1

0
g(t)

{
F

{
ϕ−1
[
t, (w(t))−1

(
ρ2 +

∑
ti<t

bi + F(h)(t)

)]}
(t) +

∑
ti<t

ai

}
dt. (2.26)

Lemma 2.5. The function Λω(·) has the following properties.

(i) For any fixed ω ∈ W , the equation

Λω

(
ρ2
)
= 0 (2.27)

has unique solution ρ̃2(ω) ∈ R
N .

(ii) The function ρ̃2 : W → R
N , defined in (i), is continuous and sends bounded sets to

bounded sets. Moreover, for any ω = (a, b, h) ∈ W , we have

∣∣ρ̃2(ω)
∣∣ ≤ 3N

⎡
⎣(2N)p

+

(
k∑
i=1

|ai|
)p#−1

+
k∑
i=1

|bi| + ‖h‖L1

⎤
⎦, (2.28)

where

Mp#−1 =

⎧
⎨
⎩
Mp+−1, M > 1

Mp−−1, M ≤ 1.
(2.29)

Proof. (i) From Lemma 2.1, it is immediate that

〈Λω(x1) −Λω(x2), x1 − x2〉 > 0, for x1 /=x2, ∀x1, x2 ∈ R
N, (2.30)

and hence, if (2.27) has a solution, then it is unique.
Set

R0 = 3N

⎡
⎣(2N)p

+

(
k∑
i=1

|ai|
)p#−1

+
k∑
i=1

|bi| + ‖h‖L1

⎤
⎦. (2.31)
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Suppose |ρ2| > R0, it is easy to see that there exists some j0 ∈ {1, . . . ,N} such that, the
absolute value of the j0th component ρj02 of ρ2 satisfies

∣∣∣ρj02
∣∣∣ ≥ 1

N

∣∣ρ2
∣∣ > 1

N
R0 = 3

⎡
⎣(2N)p

+

(
k∑
i=1

|ai|
)p#−1

+
k∑
i=1

|bi| + ‖h‖L1

⎤
⎦. (2.32)

Thus the j0th component of ρ2 +
∑

ti<t
bi +F(h)(t) keeps sign on J , then it is not hard to

check that the j0th component of Λω(ρ2) keeps the same sign of ρj02 .
Thus Λω(ρ2)/= 0. Let us consider the equation

λΛω

(
ρ2
)
+ (1 − λ)ρ2 = 0, λ ∈ [0, 1]. (2.33)

According to the preceding discussion, all the solutions of (2.33) belong to b(R0 + 1) =
{x ∈ R

N | |x| < R0 + 1}. Therefore

dB

[
Λω

(
ρ2
)
, b(R0 + 1), 0

]
= dB[I, b(R0 + 1), 0]/= 0, (2.34)

it means the existence of solutions of Λω(ρ2) = 0.
In this way, we define a function ρ̃2(ω) : W → R

N , which satisfies Λω(ρ̃2(ω)) = 0.
(ii) By the proof of (i), we also obtain ρ̃2 sends bounded sets to bounded sets, and

∣∣ρ̃2(ω)
∣∣ ≤ 3N

⎡
⎣(2N)p

+

(
k∑
i=1

|ai|
)p#−1

+
k∑
i=1

|bi| + ‖h‖L1

⎤
⎦. (2.35)

It only remains to prove the continuity of ρ̃2. Let {ωn} is a convergent sequence in W
and ωn → ω, as n → +∞. Since {ρ̃2(ωn)} is a bounded sequence, it contains a convergent
subsequence {ρ̃2(ωnj )}. Suppose ρ̃2(ωnj ) → ρ02 as j → +∞. Since Λωnj

(ρ̃2(ωnj )) = 0, letting

j → +∞, we have Λω(ρ02) = 0, which together with (i) implies ρ02 = ρ̃2(ω), it means ρ̃2 is
continuous. This completes the proof.

We define ρ2 : PC1 → R
N as

ρ2(u) = ρ̃2
(
A,B,Nf

)
(u), (2.36)

where A = (A1, . . . , Ak), B = (B1, . . . , Bk).
It is clear that ρ2(·) is continuous and sends bounded sets of PC1 to bounded sets of

R
N , and hence it is a compact continuous mapping.
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Let us define

P2 : PC1 −→ PC1, u −→ u(0); Q : L1 −→ L1, h −→
m−2∑
�=1

α�

⎡
⎣∑

ti<η�

bi + F(h)
(
η�
)
⎤
⎦,

Θ : L1 −→ L1, h −→ h − 1∑m−2
�=1 α�η�

Qh,

(2.37)

and K∗
(a,b) : L

1 → PC1 as

K∗
(a,b)

(h)(t) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ̃2(a, b, h) +

∑
ti<t

bi + F(h)(t)

)]}
(t), ∀t ∈ J. (2.38)

Similar to the proof of Lemma 2.3, we have the following lemma.

Lemma 2.6. The operator (K∗
(a,b) ◦ Θ)(·) is continuous and sends equiintegrable sets in L1 to

relatively compact sets in PC1.

Denote

QNf (u) =
m−2∑
�=1

α�

⎡
⎣∑

ti<η�

Bi + F
(
Nf(u)

)(
η�
)
⎤
⎦,

Θf(u) = Nf(u) − 1∑m−2
�=1 α�η�

QNf (u),

ρ2(u) = ρ̃2
(
A,B,Θf

)
(u),

K2(u)(t) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ2(u) +

∑
ti<t

Bi + F
(
Θf(u)

)
(t)

)]}
(t), ∀t ∈ J.

(2.39)

Lemma 2.7. Suppose
∑m−2

�=1 α� = 1 and σ = 1, then u is a solution of (1.1)–(1.4) if and only if u is a
solution of the following abstract operator equation

u = P2(u) +
∑
ti<t

Ai +QNf (u) +K2(u). (2.40)

Proof. Suppose u is a solution of (1.1)–(1.4), it is clear that u is a solution of (2.40).
Conversely, if u is a solution of (2.40), then (1.2) is satisfied and

QNf (u) = 0. (2.41)

Thus Θf(u) = Nf(u).
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From (2.40) and (2.41), we have

w(t)ϕ
(
t, u′(t)

)
= ρ2(u) +

∑
ti<t

Bi + F
(
Θf(u)

)
(t), t ∈ (0, 1), t /= ti,

(
w(t)ϕ

(
t, u′))′ = Nf(u)(t), t ∈ (0, 1), t /= ti.

(2.42)

According to (2.42), we get that (1.3) is satisfied. Since QNf (u) = 0, we have

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t). (2.43)

It follows from the definition of ρ2 that

∫1

0
g(t)

{
F

{
ϕ−1
[
t, (w(t))−1

(
ρ2(u) +

∑
ti<t

Bi + F
(
Θf(u)

)
(t)

)]}
(t) +

∑
ti<t

Ai

}
dt = 0, (2.44)

then u(0) =
∫1
0 g(t)u(t)dt.

Hence u is a solutions of (1.1)–(1.4). This completes the proof.

3. Existence of Solutions in the Case of Nonresonance

In this section, we will apply Leray-Schauder’s degree to deal with the existence of solutions
and nonnegative solutions for system (1.1)–(1.4) at nonresonance.

When f satisfies sub-(p− − 1) growth condition, we have the following.

Theorem 3.1. Suppose 0 ≤ ∑m−2
�=1 α� < 1 and 0 ≤ σ < 1,f satisfies sub-(p− − 1) growth condition,

and operators A and B satisfy the following condition

k∑
i=1

|Ai(u, v)| ≤ C1(1 + |u| + |v|)(q+−1)/(p+−1),

k∑
i=1

|Bi(u, v)| ≤ C2(1 + |u| + |v|)q+−1,
∀(u, v) ∈ R

N × R
N, (3.1)

then problem (1.1)−(1.4) has at least one solution.
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Proof. First we consider the following problem:

−Δp(t)u + λNf(u)(t) = 0, t ∈ (0, 1), t /= ti,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = λAi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ t+i

w(t)|u′|p(t)−2u′(t) − lim
t→ t−i

w(t)|u′|p(t)−2u′(t)

= λBi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(S1)

Denote

ρ 1,λ(u) = ρ̃1
(
λA, λB, λNf

)
(u),

K1,λ(u) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ 1,λ(u) + λ

∑
ti<t

Bi + F
(
λNf(u)

)
(t)

)]}
,

P1,λ(u) =
1

(1 − σ)

∫1

0
g(t)

[
K1,λ(u)(t) +

∑
ti<t

λAi

]
dt,

Ψf(u, λ) = P1,λ(u) + λ
∑
ti<t

Ai +K1,λ(u),

(3.2)

where Nf(u) is defined in (2.11).
We know that (S1) has the same solution of the following operator equation when

λ = 1,

u = Ψf(u, λ). (3.3)

It is easy to see that operator ρ1,λ is compact continuous for any λ ∈ [0, 1]. It follows
from Lemmas 2.2 and 2.3 that Ψf(·, λ) is compact continuous from PC1 to PC1 for any λ ∈
[0, 1].

We claim that all the solutions of (3.3) are uniformly bounded for λ ∈ [0, 1]. In fact, if
it is false, we can find a sequence of solutions {(un, λn)} for (3.3) such that ‖un‖1 → +∞ as
n → +∞, and ‖un‖1 > 1 for any n = 1, 2, . . . .

From Lemma 2.2, we have

∣∣ρ1,λ(u)
∣∣ ≤ C3

[
k∑
i=1

|Bi| +
∥∥Nf(u)

∥∥
L1

]
≤ C4

(
1 + ‖u‖q+−11

)
. (3.4)
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Thus

∣∣∣∣∣ρ1,λ(u) +
∑
ti<t

λBi + F
(
λNf

)
∣∣∣∣∣ ≤

∣∣ρ1,λ(u)
∣∣ +
∣∣∣∣∣
∑
ti<t

Bi

∣∣∣∣∣ +
∣∣F(Nf

)∣∣ ≤ C5

(
1 + ‖u‖q+−11

)
. (3.5)

From (S1), we have

w(t)
∣∣u′

n(t)
∣∣p(t)−2u′

n(t) = ρ1,λ(un) +
∑
ti<t

λBi +
∫ t

0
λNf(un)(s)ds, ∀t ∈ J ′. (3.6)

It follows from (2.12) and Lemma 2.2 that

w(t)
∣∣u′

n(t)
∣∣p(t)−1 ≤ ∣∣ρ1,λ(un)

∣∣+
k∑
i=1

|Bi| +
∫1

0

∣∣Nf(un)(s)
∣∣ds ≤ C6 + C7‖un‖q

+−1
1 , ∀t ∈ J ′.

(3.7)

Denote α = (q+ − 1)/(p− − 1). The above inequality holds

∥∥∥(w(t))1/(p(t)−1)u′
n(t)

∥∥∥
0
≤ C8‖un‖α1 , n = 1, 2, . . . . (3.8)

It follows from (3.1) and (3.5) that

|un(0)| ≤ C9‖un‖α1 , where α =
q+ − 1
p− − 1

. (3.9)

For any j = 1, . . . ,N, we have

∣∣∣uj
n(t)

∣∣∣ =
∣∣∣∣∣u

j
n(0) +

∑
ti<t

A
j

i +
∫ t

0

(
u
j
n

)′
(s)ds

∣∣∣∣∣

≤
∣∣∣uj

n(0)
∣∣∣ +
∣∣∣∣∣
∑
ti<t

Ai

∣∣∣∣∣ +
∣∣∣∣∣
∫ t

0
(w(s))−1/(p(s)−1) sup

t∈(0,1)

∣∣∣∣(w(t))1/(p(t)−1)
(
u
j
n

)′
(t)
∣∣∣∣ds

∣∣∣∣∣

≤ ‖un‖α1[C10 + C8E] +

∣∣∣∣∣
∑
ti<t

Ai

∣∣∣∣∣ ≤ C11‖un‖α1 , ∀t ∈ J, n = 1, 2, . . . ,

(3.10)

which implies that |uj
n|0 ≤ C12‖un‖α1 , j = 1, . . . ,N; n = 1, 2, . . .. Thus

‖un‖0 ≤ NC12‖un‖α1 , n = 1, 2, . . . . (3.11)

It follows from (3.8) and (3.11) that {‖un‖1} is uniformly bounded.
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Thus, we can choose a large enough R0 > 0 such that all the solutions of (3.3) belong to
B(R0) = {u ∈ PC1 | ‖u‖1 < R0}. Therefore the Leray-Schauder degree dLS[I−Ψf(·, λ), B(R0), 0]
is well defined for λ ∈ [0, 1], and

dLS
[
I −Ψf(·, 1), B(R0), 0

]
= dLS

[
I −Ψf(·, 0), B(R0), 0

]
. (3.12)

It is easy to see that u is a solution of u = Ψf(u, 0) if and only if u is a solution of the
following usual differential equation

−Δp(t)u = 0, t ∈ (0, 1),

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(S2)

Obviously, system (S2) possesses a unique solution u0. Since u0 ∈ B(R0), we have

dLS
[
I −Ψf(·, 1), B(R0), 0

]
= dLS

[
I −Ψf(·, 0), B(R0), 0

]
/= 0, (3.13)

which implies that (1.1)–(1.4) has at least one solution. This completes the proof.

Theorem 3.2. Suppose 0 ≤ ∑m−2
�=1 α� < 1 and 0 ≤ σ < 1, f satisfies sub-(p− − 1) growth condition,

and operators A and D satisfy the following

k∑
i=1

|Ai(u, v)| ≤ C1(1 + |u| + |v|)(q+−1)/(p+−1),

k∑
i=1

|Di(u, v)| ≤ C2(1 + |u| + |v|)α+
i ,

∀(u, v) ∈ R
N × R

N, (3.14)

where αi ≤ (q+ − 1)/(p(ri) − 1), and p(ri) − 1 ≤ q+ − αi, i = 1, . . . , k, then problem (1.1) with (1.2),
(1.4), and (1.8) has at least one solution.

Proof. Obviously,

Bi(u, v) = ϕ(ri, v +Di(u, v)) − ϕ(ri, v). (3.15)

From Theorem 3.1, it suffices to show that

k∑
i=1

|Bi(u, v)| ≤ C2(1 + |u| + |v|)q+−1, ∀(u, v) ∈ R
N × R

N. (3.16)
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(a) Suppose |v| ≤ M∗|Di(u, v)|, whereM∗ is a large enough positive constant. From the
definition of D, we have

|Bi(u, v)| ≤ C1|Di(u, v)|p(ri)−1 ≤ C2(1 + |u| + |v|)αi(p(ri)−1). (3.17)

Since αi < (q+ − 1)/(p(ri) − 1), we have αi(p(ri) − 1) ≤ q+ − 1. Thus (3.16) is valid.

(b) Suppose |v| > M∗|Di(u, v)|, we have

|Bi(u, v)| ≤ C3|v|p(ri)−1 |Di(u, v)|
|v| = C4|v|p(ri)−2|Di(u, v)|. (3.18)

There are two cases.

Case 1 (p(ri) − 1 ≥ 1). Since p(ri) − 1 ≤ q+ − αi, we have p(ri) − 2 + αi ≤ q+ − 1, and then

|Bi(u, v)| ≤ C5|v|p(ri)−2|Di(u, v)| ≤ C6(1 + |u| + |v|)p(ri)−2+αi ≤ C6(1 + |u| + |v|)q+−1. (3.19)

Thus (3.16) is valid.

Case 2 (p(ri) − 1 < 1). Since αi < (q+ − 1)/(p(ri) − 1), we have αi(p(ri) − 1) ≤ q+ − 1, and

|Bi(u, v)| ≤ C7|v|p(ri)−2|Di(u, v)| ≤ C8|Di(u, v)|p(ri)−1 ≤ C9(1 + |u| + |v|)αi(p(ri)−1). (3.20)

Thus (3.16) is valid. Thus problem (1.1) with (1.2), (1.4), and (1.8) has at least one
solution. This completes the proof.

Let us consider

−Δp(t)u + φ
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u), δ

)
= 0, t ∈ (0, 1), t /= ti, (3.21)

where δ is a parameter, and

φ
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u), δ

)

= f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
+ δh

(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
,

(3.22)

where h,f : J × R
N × R

N × R
N × R

N → R
N are Caratheodory.
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We have the following.

Theorem 3.3. Suppose 0 ≤ ∑m−2
�=1 α� < 1 and 0 ≤ σ < 1, f satisfies sub-(p− − 1) growth condition,

and we assume that

k∑
i=1

|Ai(u, v)| ≤ C1(1 + |u| + |v|)(q+−1)/(p+−1),

k∑
i=1

|Bi(u, v)| ≤ C2(1 + |u| + |v|)q+−1,
∀(u, v) ∈ R

N × R
N, (3.23)

then problem (3.21) with (1.2)–(1.4) has at least one solution when the parameter δ is small enough.

Proof. Denote

φλ

(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u), δ

)

= f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
+ λδh

(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
.

(3.24)

We consider the existence of solutions of the following equation with (1.2)–(1.4)

−Δp(t)u + φλ

(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u), δ

)
= 0, t ∈ (0, 1), t /= ti. (3.25)

Denote

ρ#1,λ(u, δ) = ρ̃1
(
A,B,Nφλ

)
(u),

K#
1,λ(u, δ) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ#1,λ(u, δ) +

∑
ti<t

Bi + F
(
Nφλ(u)

)
(t)

)]}
,

P #
1,λ(u, δ) =

1
(1 − σ)

∫1

0
g(t)

[
K#

1,λ(u, δ)(t) +
∑
ti<t

Ai

]
dt,

Φδ(u, λ) = P #
1,λ(u, δ) +

∑
ti<t

Ai +K#
1,λ(u, δ),

(3.26)

where Nφλ(u) is defined in (2.11).
We know that (3.25)with (1.2)–(1.4) has the same solution of u = Φδ(u, λ).
Obviously, φ0 = f . So Φδ(u, 0) = Ψf(u, 1). As in the proof of Theorem 3.1, we know

that all the solutions of u = Φδ(u, 0) are uniformly bounded, then there exists a large enough
R0 > 0 such that all the solutions of u = Φδ(u, 0) belong to B(R0) = {u ∈ PC1 | ‖u‖1 < R0}.
Since Φδ(·, 0) is compact continuous from PC1 to PC1, we have

inf
u∈∂B(R0)

‖u −Φδ(u, 0)‖1 > 0. (3.27)
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Since f, h are Caratheodory, we have

∥∥F(Nφλ(u)) − F
(
Nφ0(u)

)∥∥
0 −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0,

∣∣∣ρ#1,λ(u, δ) − ρ#1,0(u, δ)
∣∣∣ −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0,

∥∥∥K#
1,λ(u, δ) −K#

1,0(u, δ)
∥∥∥
1
−→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0,

∣∣∣ρ#1,λ(u, δ) − P #
1,0
(u, δ)

∣∣∣ −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0.

(3.28)

Thus

‖Φδ(u, λ) −Φ0(u, λ)‖1 −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0, (3.29)

Obviously, Φ0(u, λ) = Φδ(u, 0) = Φ0(u, 0). We obtain

‖Φδ(u, λ) −Φδ(u, 0)‖1 −→ 0 for (u, λ) ∈ B(R0) × [0, 1] uniformly, as δ −→ 0. (3.30)

Thus, when δ is small enough, we can conclude that

inf
(u,λ)∈∂B(R0)×[0,1]

‖u −Φδ(u, λ)‖1

≥ inf
u∈∂B(R0)

‖u −Φδ(u, 0)‖1 − sup
(u,λ)∈B(R0)×[0,1]

‖Φδ(u, 0) −Φδ(u, λ)‖1 > 0.
(3.31)

Thus u = Φδ(u, λ) has no solution on ∂B(R0) for any λ ∈ [0, 1], when δ is small enough.
It means that the Leray-Schauder degree dLS[I − Φδ(·, λ), B(R0), 0] is well defined for any
λ ∈ [0, 1], and

dLS[I −Φδ(u, λ), B(R0), 0] = dLS[I −Φδ(u, 0), B(R0), 0]. (3.32)

Since Φδ(u, 0) = Ψf(u, 1), from the proof of Theorem 3.1, we can see that the right
hand side is nonzero. Thus (3.21) with (1.2)–(1.4) has at least one solution. This completes
the proof.

Theorem 3.4. Suppose 0 ≤ ∑m−2
�=1 α� < 1 and 0 ≤ σ < 1,f satisfies sub-(p− − 1) growth condition,

and we assume that

k∑
i=1

|Ai(u, v)| ≤ C1(1 + |u| + |v|)(q+−1)/(p+−1),

k∑
i=1

|Di(u, v)| ≤ C2(1 + |u| + |v|)α+
i ,

∀(u, v) ∈ R
N × R

N, (3.33)
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where αi ≤ (q+ − 1)/(p(ri) − 1), and p(ri) − 1 ≤ q+ − αi, i = 1, . . . , k, then problem (3.21) with (1.2),
(1.4), and (1.8) has at least one solution when the parameter δ is small enough.

Proof. As it is similar to the proof of Theorems 3.2 and 3.3, we omit it here.

In the following, we will consider the existence of nonnegative solutions. For any x =
(x1, . . . , xN) ∈ R

N , the notation x ≥ 0 means xj ≥ 0 for any j = 1, . . . ,N.

Theorem 3.5. Suppose 0 ≤∑m−2
�=1 α� < 1, 0 ≤ σ < 1, we also assume

(10) f(t, x, y, s, z) ≥ 0, for all (t, x, y, s, z) ∈ J × R
N × R

N × R
N × R

N ;

(20) for any i = 1, . . . , k, Bi(u, v) ≥ 0, for all (u, v) ∈ R
N × R

N .

Then every solution of (1.1)–(1.4) is nonnegative.

Proof. Let u be a solution of (1.1)–(1.4), integrating (1.1) from 0 to t, we have

w(t)ϕ
(
t, u′(t)

)
= ρ1(u) +

∑
ti<t

Bi + F
(
Nf(u)

)
(t), ∀t ∈ (0, 1), t /= t1, . . . , tk, (3.34)

where ρ1 = w(0)ϕ(0, u′(0)). The boundary value condition holds

ρ1 =

{∑m−2
�=1 α�

[∑
ti<η�

Bi + F
(
Nf(u)

)(
η�
)]}

1 −∑m−2
�=1 α�

. (3.35)

Conditions (10)-(20)mean ρ1(u) ≥ 0. Obviously, for any for all t ∈ J ′, we have

w(t)ϕ
(
t, u′(t)

)
= ρ1(u) +

∑
ti<t

Bi + F
(
Nf(u)

)
(t) ≥ 0. (3.36)

It follows from conditions (10)-(20) and (3.36) that u(t) is increasing on J , namely
u(t′) − u(t′′) ≥ 0, for all t′, t′′ ∈ J with t′ ≥ t′′. Thus the boundary value condition holds
u(0) =

∫1
0 g(t)u(t)dt ≥

∫1
0 g(t)u(0)dt = σu(0), then u(0) ≥ 0.

Since u(t) is increasing and u(0) ≥ 0, we have u(t) ≥ 0, for all t ∈ J .
Thus every solution of (1.1)–(1.4) is nonnegative. The proof is completed.

Corollary 3.6. Under the conditions of Theorem 3.1, we also assume

(10) f(t, x, y, s, z) ≥ 0, for all (t, x, y, s, z) ∈ J × R
N × R

N × R
N × R

N with x, s, z ≥ 0;

(20) for any i = 1, . . . , k, Bi(u, v) ≥ 0, for all (u, v) ∈ R
N × R

N with u ≥ 0;

(30) for any t ∈ [0, 1] and s ∈ [0, 1], k∗(t, s) ≥ 0, h∗(t, s) ≥ 0.

Then (1.1)–(1.4) has a nonnegative solution.

Proof. Define M(u) = (M∗(u1), . . . ,M∗(uN)), where

M∗(u) =

⎧
⎨
⎩
u, u ≥ 0,

0, u < 0.
(3.37)
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Denote

f̃(t, u, v, S(u), T(u)) = f(t,M(u), v, S(M(u)), T(M(u))), ∀(t, u, v) ∈ J × R
N × R

N,

(3.38)

then f̃(t, u, v, S(u), T(u)) satisfies Caratheodory condition, and f̃(t, u, v, S(u), T(u)) ≥ 0 for
any (t, u, v) ∈ J × R

N × R
N .

For any i = 1, . . . , k, we denote

Ãi(u, v) = Ai(M(u), v), B̃i(u, v) = Bi(M(u), v), ∀(u, v) ∈ R
N × R

N, (3.39)

then Ãi and B̃i are continuous, and satisfy

B̃i(u, v) ≥ 0, ∀(u, v) ∈ R
N × R

N for any i = 1, . . . , k. (3.40)

It is not hard to check that

(20)′ lim|u|+|v|→+∞(f̃(t, u, v, S(u), T(u))/(|u| + |v|)q(t)−1) = 0, for t ∈ J uniformly, where
q(t) ∈ C(J,R), and 1 < q− ≤ q+ < p−;

(30)′
∑k

i=1 |Ãi(u, v)| ≤ C1(1 + |u| + |v|)(q+−1)/(p+−1), for all (u, v) ∈ R
N × R

N ;

(40)′
∑k

i=1 |B̃i(u, v)| ≤ C2(1 + |u| + |v|)q+−1, for all (u, v) ∈ R
N × R

N .

Let us consider

−Δp(t)u + f̃
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
= 0, t ∈ J ′,

lim
t→ t+i

u(t) − lim
t→ t−i

u(ti) = Ãi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ t+i

w(t)ϕ(t, u′(t)) − lim
t→ t−i

w(t)ϕ(t, u′(t))

= B̃i

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(3.41)

It follows from Theorems 3.1 and 3.5 that (3.41) have a nonnegative solution u. Since
u ≥ 0, we have M(u) = u. Thus u is a nonnegative solution of (1.1)−(1.4). This completes the
proof.

4. Existence of Solutions in the Case of Resonance

In the following, we will consider the existence of solutions for system (1.1)–(1.4) at
resonance.
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Theorem 4.1. Suppose
∑m−2

�=1 α� = 1 and σ = 1, Ω is an open bounded set in PC1 such that the
following conditions hold.

(10) For each λ ∈ (0, 1) the problem

−Δp(t)u + λNf(u)(t) = 0, t ∈ (0, 1), t /= ti,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = λAi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ t+i

w(t)|u′|p(t)−2u′(t) − lim
t→ t−i

w(t)|u′|p(t)−2u′(t)

= λBi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(4.1)

has no solution on ∂Ω.

(20) The equation

ω(l) :=

⎧
⎨
⎩

m−2∑
�=1

α�

⎡
⎣∑

ti<η�

Bi(l, 0) +
∫η�

0
f(t, l, 0, S(l), T(l))dt

⎤
⎦
⎫
⎬
⎭ = 0, (4.2)

has no solution on ∂Ω ∩ R
N .

(30) The Brouwer degree dB[ω,Ω ∩ R
N, 0]/= 0.

Then problem (1.1)–(1.4) have a solution on Ω.

Proof. Let us consider the following impulsive equation

−Δp(t)u + λNf(u)(t) +
(1 − λ)

[
QNf (u)

]

∑m−2
�=1 α�η�

= 0, t ∈ (0, 1), t /= ti,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = λAi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ t+i

w(t)|u′|p(t)−2u′(t) − lim
t→ t−i

w(t)|u′|p(t)−2u′(t)

= λBi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(4.3)
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For any λ ∈ (0, 1], if u is a solution to (4.1) or u is a solution to (4.3), we have necessarily

QNf (u) = 0. (4.4)

It means that (4.1) and (4.3) have the same solutions for λ ∈ (0, 1].
We denote N(·, ·) : PC1 × [0, 1] → L1 defined by

N(u, λ) = λNf(u) +
(1 − λ)

[
QNf (u)

]

∑m−2
�=1 α�η�

, (4.5)

where Nf(u) is defined by (2.11). Denote

Qλ : L1 −→ L1, u −→
m−2∑
�=1

α�

⎡
⎣λ
∑
ti<η�

Bi + F(N(u, λ))
(
η�
)
⎤
⎦,

Θλ : L1 −→ L1, u −→ N(u, λ) − Qλ(u)∑m−2
�=1 α�η�

,

ρ2,λ(u) = ρ̃2(λA, λB,Θλ),

K2,λ(u)(t) = F

{
ϕ−1
[
t, (w(t))−1

(
ρ2,λ(u) + λ

∑
ti<t

Bi + F(Θλ(u))(t)

)]}
(t), ∀t ∈ J.

(4.6)

Set

Ψ∗
f(u, λ) = P2(u) + λ

∑
ti<t

Ai +Qλ(u) +K2,λ(u), (4.7)

then the fixed point of Ψ∗
f
(u, 1) is a solution for (1.1)–(1.4). Also problem (4.3) can be

rewritten in the equivalent form

u = Ψ∗
f(u, λ). (4.8)

Since f is Caratheodory, it is easy to see that N(·, ·) is continuous and sends bounded
sets into equiintegrable sets. It is easy to see that P2 is compact continuous. From Lemma 2.6,
we can conclude that Ψ∗

f(u, λ) is continuous and compact for any λ ∈ [0, 1]. We assume that
(4.8) does not have a solution on ∂Ω for λ = 1, otherwise we complete the proof. Now from
hypothesis (10) it follows that (4.8) has no solutions for (u, λ) ∈ ∂Ω × (0, 1]. For λ = 0, (4.3) is
equivalent to the following usual problem

−Δp(t)u +

[
QNf(u)

]
∑m−2

�=1 α�η�
= 0, t ∈ (0, 1),

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(4.9)
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If u is a solution to this problem, we must have

0 =
m−2∑
�=1

α�

⎡
⎣∑

ti<η�

Bi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
+
∫η�

0
Nf(u)dt

⎤
⎦. (4.10)

As this problem is a usual differential equation, we have

w(t)
∣∣u′∣∣p(t)−2u′ ≡ ρ2, (4.11)

where ρ2 ∈ R
N is a constant. Therefore (ui)′ keeps the same sign of ρ i

2 . From u(0) =∫1
0 g(t)u(t)dt, we have

∫1
0 g(t)[u(0)−u(t)]dt = 0. From the continuity of u, there exist ti ∈ (0, 1),

such that (ui)′(ti) = 0, i = 1, . . . ,N. Hence u′ ≡ 0, it holds u ≡ d, a constant. Thus (4.10) holds

m−2∑
�=1

α�

⎡
⎣∑

ti<η�

Bi(l, 0) +
∫η�

0
f(t, l, 0, S(l), T(l))dt

⎤
⎦ = 0, (4.12)

which together with hypothesis (20) implies that u = d /∈ ∂Ω. Thus we have proved that
(4.8) has no solution (u, λ) on ∂Ω × [0, 1]. Therefore the Leray-Schauder degree dLS[I −
Ψ∗

f
(·, λ),Ω, 0] is well defined for λ ∈ [0, 1], and from the homotopy invariant property of

that degree we have

dLS

[
I −Ψ∗

f(·, 1),Ω, 0
]
= dLS

[
I −Ψ∗

f(·, 0),Ω, 0
]
. (4.13)

Now it is clear that the problem

u = Ψ∗
f(u, 1) (4.14)

is equivalent to problem (1.1)–(1.4), and (4.13) tells us that problem (4.14)will have a solution
if we can show that

dLS

[
I −Ψ∗

f(·, 0),Ω, 0
]
/= 0. (4.15)

It is not hard to check that K2,0(·) ≡ 0. Thus

Ψ∗
f(u, 0) = P2u +QNf(u) +K2,0(u) = P2u +QNf(u),

u −Ψ∗
f(u, 0) = u − P2u −QNf(u) = −QNf(u), on Ω.

(4.16)

By the properties of the Leray-Schauder degree, we have

dLS

[
I −Ψ∗

f(·, 0),Ω, 0
]
= (−1)NdB

[
ω,Ω ∩ R

N, 0
]
, (4.17)
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where the function ω is defined in (4.2) and dB denotes the Brouwer degree. By hypothesis
(30), this last degree is different from zero. This completes the proof.

Our next theorem is a consequence of Theorem 4.1. As an application of Theorem 4.1,
let us consider the following system

−Δp(t)u+γ
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
+e
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
=0, t∈J ′,

(4.18)

with (1.2), (1.3), and (1.4), where e : J × R
N × R

N × R
N × R

N → R
N is Caratheodory, γ =

(γ1, . . . , γN) : J × R
N × R

N × R
N × R

N → R
N is continuous, and for any fixed y0 ∈ R

N , yi
0 /= 0

holds γi(t, y0, 0, S(y0), T(y0))/= 0, for all t ∈ J , i = 1, . . . ,N.

Theorem 4.2. Suppose that the following conditions hold

(10) γ(t, kx, ky, ks, kz) = kq(t)−1γ(t, x, y, s, z) for all k > 0 and all (t, x, y, s, z) ∈ J × R
N ×

R
N × R

N × R
N , where q(t) ∈ C(J,R) satisfies 1 < q− ≤ q+ < p−;

(20) lim|u|+|v|+|s|+|z|→+∞(e(t, u, v, s, z)/(|u| + |v| + |s| + |z|)q(t)−1) = 0, for t ∈ J uniformly;

(30)
∑k

i=1 |Ai(u, v)| ≤ C1(1+ |u|+ |v|)θ, for all (u, v) ∈ R
N ×RN , where 0 < θ < (p−−1)/(p+−

1);

(40)
∑k

i=1 |Bi(u, v)| ≤ C2(1 + |u| + |v|)β−1, for all (u, v) ∈ R
N × R

N , where 1 ≤ β < q+;

(50) for large enough R0 > 0, the equation

ωγ(l) :=

⎧
⎨
⎩

m−2∑
�=1

α�

⎡
⎣∑

ti<η�

Bi(l, 0) +
∫η�

0
γ(t, l, 0, S(l), T(l))dt

⎤
⎦
⎫
⎬
⎭ = 0, (4.19)

has no solution on ∂B(R0) ∩ R
N , where B(R0) = {u ∈ PC1 | ‖u‖1 < R0};

(60) the Brouwer degree dB[ωγ, b(R0), 0]/= 0 for large enough R0 > 0, where b(R0) = {x ∈
R

N | |x| < R0}.

Then problem (4.18) with (1.2), (1.3), and (1.4) has at least one solution.

Proof. For any u ∈ PC1 and λ ∈ [0, 1], we denote

Nfλ(u) = γ
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
+ λe

(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
.

(4.20)
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At first, we consider the following problem

−Δp(t)u +Nfλ(u)(t) = 0, t ∈ (0, 1), t /= ti,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = Ai

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ t+i

w(t)|u′|p(t)−2u′(t) − lim
t→ t−i

w(t)|u′|p(t)−2u′(t)

= Bi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt.

(4.21)

As in the proof of Theorem 4.1, we know that (4.21) has the same solutions of

u = Ψ∗
f(u, λ) = P2(u) +

∑
ti<t

Ai +QNfλ(u) +K2
(
Θfλ(u)

)
, (4.22)

where Θfλ is defined in (2.39).
We claim that all the solutions of (4.21) are uniformly bounded for λ ∈ [0, 1]. In fact, if

it is false, we can find a sequence of solutions {(un, λn)} for (4.21) such that ‖un‖1 → +∞ as
n → +∞, and ‖un‖1 > 1 for any n = 1, 2, . . ..

Since (un, λn) are solutions of (4.21), we have

w(t)ϕ
(
t, u′

n(t)
)
= ρ2(un) +

∑
ti<t

Bi + F
(
Nfλn (un)

)
(t), (4.23)

un(t) = un(0)+
∑
ti<t

Ai+F{ϕ−1[t, (w(t))−1(ρ2(un)+
∑
ti<t

Bi+F(Nfλn (un))(t))]}(t).Since un(0) =
∫1
0 g(t)un(t)dt, we have

∫1

0
g(t)

(
F

{
ϕ−1
[
t, (w(t))−1

(
ρ2(un) +

∑
ti<t

Bi + F
(
Nfλn (un)

)
(t)

)]}
(t) +

∑
ti<t

Ai

)
dt = 0.

(4.24)

It follows from Lemma 2.5 that

∣∣ρ2(un)
∣∣ ≤ 3NC

(
1 + ‖un‖θ(p

+−1)
1 + ‖un‖q

+−1
1

)
. (4.25)

From (30), (40), (4.23) and (4.25), we can see that

∥∥∥(w(t))1/(p(t)−1)u′
n(t)

∥∥∥
0
≤ o(1)‖un‖1. (4.26)
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From (4.26), we have

lim
n→+∞

‖un‖0
‖un‖1

= 1. (4.27)

Denote δn = (|u1
n|0/‖un‖0, |u2

n|0/‖un‖0, . . . , |uN
n |0/‖un‖0), then δn ∈ R

N and |δn| = 1 (n =
1, 2, . . .). Thus {δn} possesses a convergent subsequence (which still denoted by δn), then
there exists a vector δ0 = (δ1

0 , δ
2
0 , . . . , δ

N
0 ) ∈ R

N such that |δ0| = 1 and limn→+∞δn = δ0.
Without loss of generality, we assume that δ1

0 > 0. Since un ∈ PC1, there exist ηi
n ∈ J such that

∣∣∣ui
n

(
ηi
n

)∣∣∣ ≥
(
1 − 1

n

)∣∣∣ui
n

∣∣∣
0
, i = 1, 2, . . . ,N; n = 1, 2, . . . . (4.28)

Obviously

∣∣∣u1
n(t) − u1

n

(
η1
n

)∣∣∣ =
∣∣∣∣∣∣

∫ t

η1
n

(
u1
n

)′
(t)dt +

∑
η1
n<ti<t

A1
i

∣∣∣∣∣∣
≤ o(1)‖un‖1

∫1

0
(w(t))−1/(p(t)−1)dt+

k∑
i=1

∣∣∣A1
i

∣∣∣.

(4.29)

Note that ‖un‖1 → +∞ (as n → +∞) and δ1
0 > 0, it follows from (4.27), (4.28), and

(30) that

lim
n→+∞

{
o(1)‖un‖1

∫1
0 (w(t))−1/(p(t)−1)dt +

∑k
i=1

∣∣A1
i

∣∣}
∣∣u1

n

(
η1
n

)∣∣ = 0. (4.30)

By (4.27), (4.29), and (4.30) we have limn→+∞u1
n(t)/u

1
n(η

1
n) = 1 for t ∈ J uniformly,

which implies

lim
n→+∞

un(t)
‖un‖1

= δ∗, lim
n→+∞

(w(t))1/(p(t)−1)u′
n(t)

‖un‖1
= 0, for t ∈ J uniformly, (4.31)

where δ∗ ∈ R
N , satisfies |δ∗| = 1, |δi

∗| = δi
0.

From (1.4), we have

0 =
m−2∑
�=1

α�

⎧
⎨
⎩
∑
ti<η�

Bi +
∫η�

0

[
γ
(
t, un, (w(t))1/(p(t)−1)u′

n, S(un), T(un)
)

+e
(
t, un, (w(t))1/(p(t)−1)u′

n, S(un), T(un)
)]

dt

⎫
⎬
⎭.

(4.32)
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Note that γ1(t, δ∗, 0, S(δ∗), T(δ∗))/= 0, it follows from (4.31), (40) and the continuity of
γ1 that

m−2∑
�=1

α�

⎧
⎨
⎩
∑
ti<η�

B1
i +

∫η�

0
‖un‖q(t)−11

{
γ1[t, δ∗, 0, S(δ∗), T(δ∗)] + o(1)

}
dt

⎫
⎬
⎭/= 0, (4.33)

which contradicts to (4.32). This implies that there exists a big enough R0 > 0 such that all the
solutions of (4.21) belong to B(R0), then we have

dLS

[
I −Ψ∗

f(·, 1), B(R0), 0
]
= dLS

[
I −Ψ∗

f(·, 0), B(R0), 0
]
. (4.34)

In order to obtaining the existence of solutions (4.18) with (1.2), (1.3), and (1.4), we
only need to prove that dLS[I −Ψ∗

f
(·, 0), B(R0), 0]/= 0.

Now we consider the following equation

−Δp(t)u + λNγ(u)(t) +
(1 − λ)

[
QNγ (u)

]

∑m−2
�=1 α�η�

= 0, t ∈ (0, 1), t /= ti,

lim
t→ t+i

u(t) − lim
t→ t−i

u(t) = λAi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ t+i

w(t)|u′|p(t)−2u′(t) − lim
t→ t−i

w(t)|u′|p(t)−2u′(t)

= λBi

(
lim
t→ t−i

u(t), lim
t→ t−i

(w(t))1/(p(t)−1)u′(t)

)
, i = 1, . . . , k,

lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) =

m−2∑
�=1

α� lim
t→η−

�

w(t)
∣∣u′∣∣p(t)−2u′(t), u(0) =

∫1

0
g(t)u(t)dt,

(4.35)

where Nγ(u) = γ(t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)).
Similar to the preceding discussion, for any λ ∈ (0, 1], all the solutions of (4.35) are

uniformly bounded.
If u is a solution of the following usual equation with (1.4)

(
w(t)

∣∣u′∣∣p(t)−2u′
)′

=

[
QNγ (u)

]

∑m−2
�=1 α�η�

, t ∈ (0, 1), (4.36)

we have

QNγ (u) = 0, w(t)
∣∣u′∣∣p(t)−2u′ ≡ c. (4.37)
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As u(0) =
∫1
0 g(t)u(t)dt, we have w(t)|u′|p(t)−2u′ ≡ 0, it means that u is a solution of

ωγ(l) =

⎧
⎨
⎩

m−2∑
�=1

α�

⎡
⎣∑

ti<η�

Bi(l, 0) +
∫η�

0
γ(t, l, 0, S(l), T(l))dt

⎤
⎦
⎫
⎬
⎭ = 0. (4.38)

By hypothesis (50), (4.35) has no solutions on ∂B(R0) × [0, 1], from Theorem 4.1, we
obtain that (4.18) with (1.2), (1.3), and (1.4) has at least one solution. This completes the
proof.

Corollary 4.3. If e : J ×R
N ×R

N ×R
N ×R

N → R
N is Caratheodory, conditions (20), (30) and (40)

of Theorem 4.2 are satisfied, condition (30) of Corollary 3.6 is also satisfied, γ(t, u, v, S(u), T(u)) =
β(t)(|u|q(t)−2u+|v|q(t)−2v+|S(u)|q(t)−2S(u)+|T(u)|q(t)−2T(u)), where β(t), q(t) ∈ C(J,R) are positive
functions satisfying 1 < q− ≤ q+ < p−; then (4.18) with (1.2), (1.3), and (1.4) has at least one
solution.

Proof. Denote

G(l, λ) =

⎧
⎨
⎩

m−2∑
�=1

α�

⎡
⎣∑

ti<η�

λBi(l, 0) +
∫η�

0
γ(t, l, 0, S(l), T(l))dt

⎤
⎦
⎫
⎬
⎭. (4.39)

From condition (40), we have

|Bi(l, 0)| ≤ C(1 + |l|)β−1, 1 ≤ β < q+. (4.40)

Note that k∗ and h∗ are nonnegative. From the above inequality, we can see that all the
solutions of G(l, λ) = 0 are uniformly bounded for λ ∈ [0, 1]. Thus dB[G(l, λ), b(R0), 0] is well
defined for λ ∈ [0, 1] and

dB

[
ωγ , b(R0), 0

]
= dB[G(l, 1), b(R0), 0] = dB[G(l, 0), b(R0), 0],

G(l, 0) =

{
m−2∑
�=1

α�

(∫η�

0
β(t)

[
|l|q(t)−2l + |S(l)|q(t)−2S(l) + |T(l)|q(t)−2T(l)

]
dt

)}
,

(4.41)

and it is easy to see that G(l, 0) = 0 has a unique solution in R
N and

dB

[
ωγ , b(R0), 0

]
= dB[I, b(R0), 0]/= 0. (4.42)

According to Theorem 4.2, we get that (4.18) with (1.2), (1.3), and (1.4) has at least a
solution. This completes the proof.

Let us consider

−Δp(t)u + f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u), δ

)
= 0, t ∈ (0, 1), t /= ti, (4.43)
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where δ is a parameter, and

f
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u), δ

)

= ς
(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
+ δh

(
t, u, (w(t))1/(p(t)−1)u′, S(u), T(u)

)
,

(4.44)

where h, ς : J × R
N × R

N × R
N × R

N → R
N are Caratheodory.

From Theorem 4.2, similar to the proof of Theorem 3.3, we have the following.

Theorem 4.4. If conditions of (10) and (30)–(60) of Theorem 4.2 are satisfied, then problem (4.43)
with (1.2), (1.3), and (1.4) has at least one solution when the parameter δ is small enough.

Theorem 4.5. If conditions of (10)–(30) and (50)-(60) of Theorem 4.2 are satisfied, and D satisfy

k∑
i=1

|Di(u, v)| ≤ C(1 + |u| + |v|)α+
i , ∀(u, v) ∈ R

N × R
N, (4.45)

where

αi ≤
q+ − 1

p(ri) − 1
, p(ri) − 1 ≤ q+ − αi, i = 1, . . . , k, (4.46)

then problem (4.18) with (1.2), (1.3), and (1.8) has at least one solution.

Proof. Similar to the proof of Theorem 3.2, the condition (40) of Theorem 4.2 is satisfied. Thus
problem (4.18) with (1.2), (1.3) and (1.8) has at least a solution.

Similar to the proof of Theorem 3.2 and Corollary 4.3, we have the following.

Corollary 4.6. If e : J × R
N × R

N × R
N × R

N → R
N is Caratheodory, (4.45), (4.46) and

conditions (20) and (30) of Theorem 4.2 are satisfied, condition (30) of Corollary 3.6 is also satisfied,
γ(t, u, v, S(u), T(u)) = β(t)(|u|q(t)−2u + |v|q(t)−2v + |S(u)|q(t)−2S(u) + |T(u)|q(t)−2T(u)), where
β(t), q(t) ∈ C(J,R) are positive functions satisfying 1 < q− ≤ q+ < p−; then (4.43) with (1.2),
(1.3), and (1.8) has at least one solution when the parameter δ is small enough.
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[29] A. Kristály, V. Rădulescu, and C. Varga, Variational Principles in Mathematical Physics, Geometry,
and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of
Mathematics and its Applications, No. 136, Cambridge University Press, Cambridge, UK, 2010.
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