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We show that the function Gα,β(x) = exΓ(x + a)/(x + β)x+β is strictly logarithmically completely
monotonic on (0,∞) if and only if (α, β) ∈ {(α, β) : 0 < α ≤ β} and [Gα,β(x)]

−1 is strictly loga-
rithmically completely monotonic on (0,∞) if and only if (α, β) ∈ {(α, β) : 0 < β ≤ α − 1/2}.

1. Introduction

For real and positive values of x the Euler gamma function Γ and its logarithmic derivative ψ,
the so-called digamma function, are defined as

Γ(x) =
∫+∞

0
tx−1e−tdt, ψ(x) =

Γ′(x)
Γ(x)

. (1.1)

For extension of these functions to complex variables and for basic properties, see [1]. These
functions play central roles in the theory of special functions and have lots of extensive
applications in many branches, for example, statistics, physics, engineering, and other
mathematical sciences. Over the past half century monotonicity properties of these functions
have attracted the attention of many authors (see [2–22]).

Recall that a real-valued function f : I → � is said to be completely monotonic on I if
f has derivatives of all orders on I and

(−1)nf (n)(x) ≥ 0 (1.2)
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for all x ∈ I and n ≥ 0. Moreover, f is said to be strictly completely monotonic if inequality
(1.2) is strict.

Recall also that a positive real-valued function f : I → (0,∞) is said to be loga-
rithmically completely monotonic on I if f has derivatives of all orders on I and its logarithm
log f satisfies

(−1)k[log f(x)](k) ≥ 0 (1.3)

for all x ∈ I and k ∈ �. Moreover, f is said to be strictly logarithmically completely monotonic
if inequality (1.3) is strict.

Recently, the completely monotonic or logarithmically completely monotonic func-
tions have been the subject of intensive research. In particular, many remarkable results for
the complete monotonicity or logarithmically complete monotonicity involving the gamma,
psi and polygamma functions can be found in the literature [18, 19, 23–42].

The Kershaw’s inequality in [21] states that the double inequality

(
x +

s

2

)1−s
<

Γ(x + 1)
Γ(x + s)

<

⎛
⎝x − 1

2
+

√
s +

1
4

⎞
⎠

1−s

(1.4)

holds for 0 < s < 1 and x ≥ 1. In [43], Laforgia extends the both sides of inequality in (1.4) as
follows:

Γ(x + 1)
Γ(x + λ)

>

(
x +

λ

2

)1−λ
(1.5)

for 0 < λ < 1 or λ > 2 and x ≥ 0, and inequality (1.5) is reversed for 1 < λ < 2 and x ≥ 0.
Let us define

zs,t(x) =

⎧⎪⎪⎨
⎪⎪⎩

[
Γ(x + t)
Γ(x + s)

]1/(t−s)
− x, s /= t,

eψ(x+s) − x, s = t

(1.6)

for x ∈ (−α,∞) with α = min{s, t} and s, t ∈ �. In order to establish the best bounds in
Kershaw’s inequality (1.4), the following monotonicity and convexity properties of zs,t(x)
are established in [13, 44, 45]: the function zs,t(x) is either convex and decreasing for |t−s| < 1
or concave and increasing for |t − s| > 1.

This work is motivated by an paper of Guo [46], who proved that the function

g(x) =
exΓ(x + 1)

(x + 1/2)x+1/2
(1.7)

is strictly logarithmically concave and strictly increasing from (−1/2,∞) onto (
√
π/e,√

2π/e). It is natural to ask for an extension of this result: is f−1 logarithmically complete
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monotonic? We will give the positive answer. Actually, we investigate a more general
problem. The goal of this article is to discuss the logarithmically complete monotonicity
properties of the functions

Gα,β(x) =
exΓ(x + α)(
x + β

)x+β (1.8)

on (0,∞) and [Gα,β(x)]−1 for fixed α, β > 0.
Recently Chen et al. [38, Theorem 1] proved the following result: let a ∈ � and b ≥ 0

be real numbers, define for x > −b,

fa,b(x) =
exΓ(x + b)
(x + b)x+a

. (1.9)

Then, the function x �→ fa,b(x) is strictly logarithmically completely monotonic on (−b,∞) if
and only if b − a ≤ 1/2. So is the function x �→ [fa,b(x)]−1 if and only if b − a ≥ 1.

Our main results are summarized as follows.

Theorem 1.1. Let α > 0, β > 0, and Gα,β(x) is defined as (1.8), then

(1) Gα,β(x) is strictly logarithmically completely monotonic on (0,∞) if and only if (α, β) ∈
{(α, β) : 0 < α ≤ β};

(2) [Gα,β(x)]
−1 is strictly logarithmically completely monotonic on (0,∞) if and only if

(α, β) ∈ {(α, β) : 0 < β ≤ α − 1/2}.

As applications of Theorem 1.1, one has the following corollaries.

Corollary 1.2. For α > 0 and 0 < x < y, one has the double inequalities for the ratio of the gamma
functions

ey−x(x + α + 1/2)x+α+1/2(
y + α + 1/2

)y+α+1/2 <
Γ(x + α + 1/2)
Γ
(
y + α + 1/2

) <
ey−x(x + α)x+α(

y + α
)y+α . (1.10)

In particular, one has

es−1(x + 1/2)x+1/2

(x + s − 1/2)x+s−1/2
<
Γ(x + 1)
Γ(x + s)

<
es−1(x + 1)x+1

(x + s)x+s
(1.11)

for x ≥ 1 and 0 < s < 1, and

es−1(x + 1)x+1

(x + s)x+s
<
Γ(x + 1)
Γ(x + s)

<
es−1(x + 1/2)x+1/2

(x + s − 1/2)x+s−1/2
(1.12)

for x ≥ 0 and s > 1.
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Corollary 1.3. For α > 0 and (x, y) ∈ (0,∞) × (0,∞), one has the following double inequality

M

(
x + α +

1
2
, y + α +

1
2

)
<
Γ(x + α + 1/2)Γ

(
y + α + 1/2

)
Γ2
((
x + y + 1

)
/2 + α

) < M
(
x + α, y + α

)
, (1.13)

whereM(u, v) = 2u+vuuvv/(u + v)u+v .

2. Lemmas

In order to prove our Theorem 1.1, we need serval lemmas which we collect in this section.
In our second lemma we present the area of (α, β) to determine positive (or negative) for a
function, which plays a crucial role in the proof of our result Theorem 1.1 given in Section 3.

Let μ(x, y) be a function defined on (0,∞) × (0,∞) as

μ
(
x, y

)
= −3y2 + (4x − 3)y − (x − 1)2. (2.1)

We will discuss the properties for this function and refer to view Figure 1 more clearly.
The function μ(x, y) can be interpreted as a quadric equation with respect to y, that is

μ
(
x, y

)
= a(x)y2 + b(x)y + c(x), (2.2)

where a(x) = −3, b(x) = 4x − 3, c(x) = −(x − 1)2 and its discriminant function

Δ(x) =
√
b2(x) − 4a(x)c(x) = 4x2 − 3. (2.3)

Obviously, if 0 < x <
√
3/2, then Δ(x) < 0. It follows from a(x) = −3 that μ(x) < 0.

If x ≥ √
3/2, then Δ(x) ≥ 0. We can solve two roots of the equation μ(x, y) = 0,

which are

y1(x) =
4x − 3 −

√
4x2 − 3

6
, y2(x) =

4x − 3 +
√
4x2 − 3

6
. (2.4)

It follows from the properties of the quadratic equation that μ(x, y) > 0 for y1(x) < y < y2(x)
and μ(x, y) < 0 for 0 < y < y1(x) or y > y2(x).

Differentiating y1(x) with respect to x, one has

dy1(x)
dx

=
2
3

(
1 − x√

4x2 − 3

)
,

d2y1(x)
dx2 =

3

(4x2 − 3)3/2
> 0.

(2.5)

By (2.5) we know that the minimal value of y1(x) can be attained at x = 1, that is y1(x) ≥
y1(1) = 0. Moreover, y1(x) is strictly decreasing on (

√
3/2, 1) and strictly increasing on (1,∞).
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Obviously, y2(x) is strictly increasing on (
√
3/2,∞). Note that

y2(x) −
(
x − 1

2

)
= − 1

2
(√

4x2 − 3 + 2x
) −→ 0 (2.6)

as x → +∞. In other words, y2(x) < x − 1/2 and y2(x) has the asymptotic line y = x − 1/2.

Lemma 2.1. The psi or digamma function, the logarithmic derivative of the gamma function, and the
polygamma functions can be expressed as

ψ(x) =
Γ′(x)
Γ(x)

= −γ +
∫∞

0

e−t − e−xt

1 − e−t
dt, (2.7)

ψ(n)(x) = (−1)n+1
∫∞

0

tn

1 − e−t
e−xtdt (2.8)

for x > 0 and n ∈ � := {1, 2, . . .}, where γ = 0.5772 · · · is Euler’s constant.

Lemma 2.2. Let α, β ∈ (0,∞) and g(t) = te−αt−(1−e−t)e−βt. Then the following statements are true:

(1) if 0 < α ≤ β, then g(t) > 0 for t ∈ (0,∞);

(2) if 0 < β ≤ α − 1/2, then g(t) < 0 for t ∈ (0,∞);

(3) if β > 0 and α − 1/2 < β < α, then there exist δ2 > δ1 > 0 such that g(t) > 0 for t ∈ (0, δ1)
and g(t) < 0 for t ∈ (δ2,∞).

Proof. Let g1(t) = eαtg ′(t) and g2(t) = e(β−α+1)tg ′′
1(t). Then simple computations lead to

g(0) = 0, lim
t→∞

g(t) = 0, (2.9)

g ′(t) = (1 − αt)e−αt + βe−βt − (β + 1
)
e−(β+1)t,

g1(0) = g ′(0) = 0,
(2.10)

g1(t) = βe(α−β)t − (β + 1
)
e(α−β−1)t + 1 − αt, (2.11)

g ′
1(t) = β

(
α − β

)
e(α−β)t +

(
β + 1

)(
β − α + 1

)
e(α−β−1)t − α,

g ′
1(0) = 2

(
β − α

)
+ 1,

(2.12)

g ′′
1(t) = β

(
α − β

)2
e(α−β)t − (β + 1

)(
β − α + 1

)2
e(α−β−1)t,

g2(0) = μ
(
α, β

)
,

(2.13)

g2(t) = β
(
α − β

)2
et − (β + 1

)(
β − α + 1

)2 (2.14)

g ′
2(t) = β

(
α − β

)2
et. (2.15)
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(1) If 0 < α ≤ β, then we divide the proof into two cases.

Case 1. If α = β, then g ′
1(t) = (α + 1)e−t − α implies that g ′

1(t) > 0 for t ∈ (0, log(1 + 1/α)) and
g ′
1(t) < 0 for t ∈ (log(1 + 1/α),∞). Thus g1(t) is strictly increasing on (0, log(1 + 1/α)) and

strictly decreasing on (log(1 + 1/α),∞). From (2.10) and limt→+∞ g1(t) = −∞ we clearly see
that there exists ζ1 > log(1 + 1/α) > 0 such that g1(t) > 0 for t ∈ (0, ζ1) and g1(t) < 0 for
t ∈ (ζ1,∞), which implies that g(t) is strictly increasing on (0, ζ1) and strictly decreasing on
(ζ1,∞). It follows from (2.9) that

g(t) > min
{
g(0), lim

t→+∞
g(t)

}
= 0 (2.16)

for t ∈ (0,∞).

Case 2. If 0 < α < β, then we know μ(α, β) < 0 since β > α − 1/2 > y2(α). It follows from (2.13)
and (2.15) that

g2(0) < 0,

g ′
2(t) > 0.

(2.17)

Therefore, there exists ζ2 > 0 such that g2(t) < 0 for t ∈ (0, ζ2) and g2(t) > 0 for t ∈ (ζ2,∞)
follows from (2.17), which implies that g ′

1(t) is strictly decreasing on (0, ζ2) and strictly
increasing on (ζ2,∞). It follows from (2.12) and limt→+∞ g ′

1(t) = −α < 0 that there exists
ζ3 > ζ2 > 0 such that g ′

1(t) > 0 for t ∈ (0, ζ3) and g ′
1(t) < 0 for t ∈ (ζ3,∞). By the same

argument, it follows from (2.10) and limt→+∞ g1(t) = −∞ that there exists ζ4 > ζ3 such that
g1(t) > 0 for t ∈ (0, ζ4) and g1(t) < 0 for t ∈ (ζ4,∞).

Therefore, g(t) > 0 for t ∈ (0,∞) follows from (2.9).

(2) If 0 < β ≤ α − 1/2, then from Figure 1 we know that μ(x, y) could be positive or
negative. We divide the proof into two cases.

Case 1. If μ(α, β) ≥ 0, then from (2.13) and (2.15)we clearly know that g2(t) > 0 for t ∈ (0,∞),
which implies that g ′

1(t) is strictly increasing on (0,∞). Then the properties of μ(x, y) and
μ(α, β) ≥ 0 lead to

β < y2(α) < α − 1
2
. (2.18)

It follows from (2.12) and (2.18) that there exists ζ5 > 0 such that g ′
1(t) < 0 for t ∈ (0, ζ5) and

g ′
1(t) > 0 for t ∈ (ζ5,∞) since g ′

1(t) → +∞ as t → +∞. Hence g1(t) is strictly decreasing on
(0, ζ5) and strictly increasing on (ζ5,∞). From (2.10) and limt→+∞ g1(t) = +∞ we know that
there exists ζ6 > ζ5 such that g1(t) < 0 for t ∈ (0, ζ6) and g1(t) > 0 for t ∈ (ζ6,∞).Therefore, it
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Figure 1: The shading area is denoted by μ(x, y) > 0. Otherwise, μ(x, y) < 0. The red curve is the graph of
μ(x, y) = 0 with an asymptotic line y = x − 1/2.

follows from (2.9) that

g(t) < max
{
g(0), lim

t→+∞
g(t)

}
= 0 (2.19)

for t ∈ (0,∞).

Case 2. If μ(α, β) < 0, then from (2.13) and (2.15) we know that there exists ζ7 > 0 such that
g2(t) < 0 for t ∈ (0, ζ7) and g2(t) > 0 for t ∈ (ζ7,∞). Thus g ′

1(t) is strictly decreasing on (0, ζ7)
and strictly increasing on (ζ7,∞). It follows from (2.12) and limt→+∞ g ′

1(t) = +∞ that there
exists ζ8 > 0 such that g ′

1(t) < 0 for t ∈ (0, ζ8) and g ′
1(t) > 0 for t ∈ (ζ8,∞). By the same

argument as Case 1, g(t) < 0 for t ∈ (0,∞) follows from (2.9) and (2.10).

(3) If β > 0 and α − 1/2 < β < α, then from (2.12) we clearly know that g ′
1(0) > 0.

Thus there exists δ1 > 0 such that g ′
1(t) > 0 for t ∈ (0, δ1). It follows from (2.10) that g1(t) > 0,

t ∈ (0, δ1). Since g1(t) → +∞ as t → +∞, we know that there exists δ2 > δ1 such that g1(t) > 0
for t ∈ (δ2,∞), which implies that g(t) is strictly increasing on (0, δ1) and (δ2,∞). Therefore,
g(t) > g(0) = 0 for t ∈ (0, δ1) and g(t) < limt→+∞ g(t) = 0 for t ∈ (δ2,∞).

We state a simple lemma as the results of [12, 47].

Lemma 2.3. Inequality

log x − 1
2x

− 1
12x2 < ψ(x) < log x − 1

2x
(2.20)

holds for x > 0.
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. Taking the logarithm of (1.8) and differentiating, then we have

−[logGα,β(x)
]′ = log

(
x + β

) − ψ(x + α). (3.1)

For n ≥ 1, it follows from (2.8) that

(−1)n+1[logGα,β(x)
](n+1) = (−1)n+1

[
ψ(n)(x + α) − (−1)n−1 (n − 1)!(

x + β
)n
]

=
∫∞

0

tn

1 − e−t
e−(x+α)tdt −

∫∞

0
tn−1e−(x+β)tdt (3.2)

=
∫∞

0

tn−1e−xt

1 − e−t
g(t)dt,

where

g(t) = te−αt − (1 − e−t
)
e−βt. (3.3)

(1) If 0 < α ≤ β, then it follows from (3.1) and (2.20) that

−[logGα,β(x)
]′
> log

(
x + β

) − log(x + α) +
1

2(x + α)
> 0. (3.4)

From (3.2) and (3.3) together with Lemma 2.2(1) we clearly see that

(−1)n+1[logGα,β(x)
](n+1)

> 0 (3.5)

holds for n ≥ 1. Therefore, Gα,β(x) is strictly logarithmically completely monotonic on (0,∞)
that follows from (3.4) and (3.5).

Conversely, if 0 < β < α, then we can divide the set {(α, β) : 0 < β < α} into two subsets:
Ω1 = {(α, β) : 0 < β ≤ α − 1/2} and Ω2 = {(α, β) : β > 0, α − 1/2 < β < α}. Therefore, it follows
from Lemma 2.2(2) and (3) that Gα,β(x) is not strictly logarithmically completely monotonic
on (0,∞) for (α, β) ∈ Ω1 ∪Ω2.

(2) If 0 < β ≤ α − 1/2, then from (3.1) and (2.20) we get

−
{
log

[
Gα,β(x)

]−1}′
> log

x + α

x + β
− 1
2(x + α)

− 1

12(x + α)2

≥ log
x + α

x + α − 1/2
− 1
2(x + α)

− 1

12(x + α)2

� η(x) > 0,

(3.6)
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since

lim
x→+∞

η(x) = 0,
dη(x)
dx

= − x + α + 1

6(x + α)3(2x + 2α − 1)
< 0. (3.7)

For n ≥ 1, it follows from (3.2) that

(−1)n+1
{
log

[
Gα,β(x)

]−1}(n+1) = −
∫∞

0

tn−1e−xt

1 − e−t
g(t)dt, (3.8)

where g(t) is defined as (3.3).
Therefore, [Gα,β(x)]−1 is strictly logarithmically completely monotonic on (0,∞) that

follows from (3.6), (3.8), and Lemma 2.2(2).
Conversely, if β > 0 and β > α − 1/2, then we can divide the set {(α, β) : β > 0, β >

α − 1/2} into two subsets: Ω
′
1 = {(α, β) : 0 < α ≤ β} andΩ

′
2 = {(α, β) : β > 0, α − 1/2 < β < α}.

Therefore, it follows from Lemma 2.2(1) and (3) that [Gα,β(x)]−1 is not strictly logarithmically
completely monotonic on (0,∞) for (α, β) ∈ Ω

′
1 ∪Ω

′
2.

Remark 1. Although the upper and lower bounds of Kershaw’s inequalities given in (1.11)
and (1.12) are not better than those of inequalities in (1.4) and (1.5), the difference between
them is close to zero as x is large enough. For example,

log

⎡
⎢⎣es−1(x + 1)x+1

(x + s)x+s

/⎛⎝x − 1
2
+

√
s +

1
4

⎞
⎠

1−s⎤
⎥⎦

= s − 1 + (1 − s) log
(
1 +

1 − s

x + s

)(x+s)/(1−s)
+ (1 − s) log

x + 1

x − 1/2 +
√
s + 1/4

=⇒ s − 1 + 1 − s = 0 (x −→ ∞).

(3.9)

Furthermore, the advantage of our inequalities is to give the upper and lower bounds
of Kershaw’s inequality for s > 1 and x ≥ 0 while Laforgia established only one side of
Kershaw’s inequality.
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