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General classes of analytic functions defined by convolution with a fixed analytic function are
introduced. Convolution properties of these classes which include the classical classes of starlike,
convex, close-to-convex, and quasiconvex analytic functions are investigated. These classes are
shown to be closed under convolution with prestarlike functions and the Bernardi-Libera integral
operator. Similar results are also obtained for the classes consisting of meromorphic functions in
the punctured unit disk.

1. Motivation and Definitions

LetH(U) be the set of all analytic functions defined in the unit disk U := {z : |z| < 1}. Denote
by A the class of normalized analytic functions f(z) = z +

∑∞
n=2 anz

n defined in U. For two
functions f and g inA, the convolution or Hadamard product of f and g is the function f ∗g
defined by (f ∗ g)(z) = z +

∑∞
n=2 anbnz

n. A function f is subordinate to an analytic function
g, written f(z) ≺ g(z), if there exists a Schwarz function w, analytic in U with w(0) = 0 and
|w(z)| < 1 satisfying f(z) = g(w(z)). If the function g is univalent in U, then f(z) ≺ g(z) is
equivalent to f(0) = g(0) and f(U) ⊂ g(U).

The classes of starlike and convex analytic functions and other related subclasses of
analytic functions can be put in the form

S∗(g, h
)
:=

{

f ∈ A | z
(
f ∗ g)′(z)

(
f ∗ g)(z) ≺ h(z)

}

, (1.1)
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where g is a fixed function and h is a suitably normalized function with positive real part.
In particular, let S∗(h) := S∗(z/(1 − z), h) and K(h) := S∗(z/(1 − z)2, h). For h(z) = (1 +
(1 − 2α)z)/(1 − z), 0 ≤ α < 1, S∗(h) and K(h) are, respectively, the familiar classes S∗(α) of
starlike functions of order α and K(α) consisting of convex functions of order α. Analogous
to the class S∗(g, h), the class K(g, h) is defined by

K(
g, h

)
:=

{

f ∈ A | 1 + z
(
f ∗ g)′′(z)

(
f ∗ g)′(z)

≺ h(z)

}

. (1.2)

Let f and g ∈ A satisfy

Re
zf ′(z)

f(z) + g(z)
> 0, Re

zg ′(z)
f(z) + g(z)

> 0. (1.3)

By adding the two inequalities, it is evident that the function (f(z) + g(z))/2 is starlike and
hence both f and g are close-to-convex and univalent. This motivates us to consider the
following classes of functions.

It is assumed in the sequel that m ≥ 1 is a fixed integer, g is a fixed function in A, and
h is a convex univalent function with positive real part in U satisfying h(0) = 1.

Definition 1.1. The class S∗
m(h) consists of f̂ := 〈f1, f2, . . . , fm〉, fk ∈ A, 1 ≤ k ≤ m, satisfying

∑m
j=1 fj(z)/z/= 0 in U and the subordination

mzf ′
k(z)∑m

j=1 fj(z)
≺ h(z), k = 1, . . . , m. (1.4)

The class S∗
m(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗ g, . . . , fm ∗ g〉 ∈ S∗

m(h). The
class Km(h) consists of f̂ for which zf̂ ′ ∈ S∗

m(h), where f̂ ′ := 〈f ′
1, f

′
2, . . . , f

′
m〉 and zf̂ ′ :=

〈zf ′
1, zf

′
2, . . . , zf

′
m〉. Equivalently, f̂ ∈ Km(h) if f̂ satisfies the condition

∑m
j=1 f

′
j(z)/= 0 in U

and the subordination

m
(
zf ′

k

)′(z)
∑m

j=1 f
′
j(z)

≺ h(z), k = 1, . . . , m. (1.5)

The class Km(g, h) consists of f̂ for which f̂ ∗ g ∈ Km(h).

Now let f̂ ∈ S∗
m(h) and F(z) =

∑m
j=1 fj(z)/m. From (1.4), it follows that

zf ′
k(z)

F(z)
∈ h(U), k = 1, . . . , m. (1.6)
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The convexity of h(U) implies that

1
m

z
∑m

k=1 f
′
k(z)

F(z)
∈ h(U), (1.7)

which shows that the function F is starlike in U. Thus, it follows from (1.4) that the
component function fk of f̂ is close-to-convex in U, and hence univalent. Similarly, the
component function fk of f̂ ∈ Km(h) is univalent.

If m = 1, then the classes S∗
m(g, h) and Km(g, h) are reduced, respectively, to S∗(g, h)

and K(g, h) introduced and investigated in [1]; these classes were denoted there by Sg(h)
and Kg(h), respectively. If g = ka, where

ka(z) :=
z

(1 − z)a
, a > 0, (1.8)

then the class S∗
m(g, h) coincides with the class studied in [2], which there was denoted by

Sa(h), and Km(g, h) reduces to a class introduced in [3] which there was denoted by Ka(h).
It is evident that the classes S∗

m(g, h) andKm(g, h) extend the classical classes of starlike and
convex functions, respectively.

Definition 1.2. The class Cm(h) consists of f̂ := 〈f1, f2, . . . , fm〉, fk ∈ A, 1 ≤ k ≤ m, satisfying
the subordination

mzf ′
k(z)∑m

j=1 ψj(z)
≺ h(z), k = 1, . . . , m, (1.9)

for some ψ̂ ∈ S∗
m(h). In this case, we say that f̂ ∈ Cm(h) with respect to ψ̂ ∈ S∗

m(h). The class
Cm(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗ g, . . . , fm ∗ g〉 ∈ Cm(h). The class Qm(h)
consists of f̂ for which zf̂ ′ ∈ Cm(h) or equivalently satisfying the subordination

m
(
zf ′

k

)′(z)
∑m

j=1 ϕ
′
j(z)

≺ h(z), k = 1, . . . , m, (1.10)

for some ϕ̂ ∈ Km(h)with zϕ̂′ = ψ̂, ψ̂ ∈ S∗
m(h). In this case, we say that f̂ ∈ Qm(h)with respect

to ϕ̂ ∈ Km(h). The class Qm(g, h) consists of f̂ for which f̂ ∗ g ∈ Qm(h).

Whenm = 1, the classesCm(g, h) andQm(g, h) reduce, respectively, toCg(h) andQg(h)
introduced and investigated in [1]. If g = ka, where ka is defined by (1.8), then the class
Cm(g, h) coincides with Ca(h) studied in [2]. Clearly the classes Cm(g, h) andQm(g, h) extend
the classical classes of close-to-convex and quasiconvex functions, respectively.
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For α < 1, the class Rα of prestarlike functions of order α is defined by

Rα :=

{

f ∈ A | f ∗ z

(1 − z)2−2α
∈ S∗(α)

}

, (1.11)

while R1 consists of f ∈ A satisfying Re f(z)/z > 1/2.
The well-known result that the classes of starlike functions of order α and convex

functions of order α are closed under convolution with prestarlike functions of order α
follows from the following.

Theorem 1.3 (see [4, Theorem 2.4]). Let α ≤ 1, φ ∈ Rα, and f ∈ S∗(α). Then

φ ∗ (Hf
)

φ ∗ f (U) ⊂ co(H(U)), (1.12)

for any analytic functionH ∈ H(U), where co(H(U)) denotes the closed convex hull ofH(U).

In the following section, by using the methods of convex hull and differential
subordination, convolution properties of functions belonging to the four classes S∗

m(g, h),
Km(g, h), Cm(g, h) and Qm(g, h), are investigated. It would be evident that various earlier
works, see, for example, [5–10], are special instances of our work.

In Section 3, new subclasses of meromorphic functions are introduced. These
subclasses extend the classical subclasses of meromorphic starlike, convex, close-to-convex,
and quasiconvex functions. Convolution properties of these newly defined subclasses will be
investigated. Simple consequences of the results obtained will include the work of Bharati
and Rajagopal [6] involving the function ka(z) := 1/(z(1 − z)a), a > 0, as well as the work of
Al-Oboudi and Al-Zkeri [5] on the modified Salagean operator.

2. Convolution of Analytic Functions

Our first result shows that the classes S∗
m(g, h) and Km(g, h) are closed under convolution

with prestarlike functions.

Theorem 2.1. Let m ≥ 1 be a fixed integer and g a fixed function in A. Let h be a convex univalent
function satisfying Reh(z) > α, 0 ≤ α < 1, and φ ∈ Rα.

(1) If f̂ ∈ S∗
m(g, h), then f̂ ∗ φ ∈ S∗

m(g, h).

(2) If f̂ ∈ Km(g, h), then f̂ ∗ φ ∈ Km(g, h).

Proof. (1) It is sufficient to prove that f̂ ∗ φ ∈ S∗
m(h) whenever f̂ ∈ S∗

m(h). Once this is
established, the general result for f̂ ∈ S∗

m(g, h) follows from the fact that

f̂ ∈ S∗
m

(
g, h

) ⇐⇒ f̂ ∗ g ∈ S∗
m(h). (2.1)
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For k = 1, 2, . . . , m, define the functions F and Hk by

F(z) =
1
m

m∑

j=1

fj(z), Hk(z) =
zf ′

k(z)
F(z)

. (2.2)

It will first be proved that F belongs to S∗(α). For f̂ ∈ S∗
m(h) and z ∈ U, clearly

zf ′
k(z)

F(z)
∈ h(U), k = 1, . . . , m. (2.3)

Since h(U) is a convex domain, it follows that

1
m

m∑

k=1

zf ′
k(z)

F(z)
∈ h(U), (2.4)

or

zF ′(z)
F(z)

≺ h(z). (2.5)

Since Reh(z) > α, the subordination (2.5) yields

Re
(
zF ′(z)
F(z)

)

> α, (2.6)

and hence F ∈ S∗(α).
A computation shows that

z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ fj

)
(z)

=

(
φ ∗ zf ′

k

)
(z)

(
φ ∗ (1/m)

∑m
j=1 fj

)
(z)

=

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) . (2.7)

Since φ ∈ Rα and F ∈ S∗(α), Theorem 1.3 yields

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) ∈ co(Hk(U)), (2.8)

and because Hk(z) ≺ h(z), we deduce that

z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ fj

)
(z)

≺ h(z), k = 1, . . . , m. (2.9)

Thus f̂ ∗ φ ∈ S∗
m(h).
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(2) The function f̂ is in Km(g, h) if and only if zf̂ ′ is in S∗
m(g, h) and by the first part

above, it follows that φ ∗ zf̂ ′ = z(φ ∗ f̂)′ ∈ S∗
m(g, h). Hence φ ∗ f̂ ∈ Km(g, h).

Remark 2.2. The above theorem can be expressed in the following equivalent forms:

S∗
m

(
g, h

) ⊂ S∗
m

(
φ ∗ g, h), Km

(
g, h

) ⊂ Km

(
φ ∗ g, h). (2.10)

When m = 1, various known results are easily obtained as special cases of Theorem 2.1.
For instance, [1, Theorem 3.3, page 336] is easily deduced from Theorem 2.1(1), while [1,
Corollary 3.1, page 336] follows from Theorem 2.1(2). If g(z) = ka is defined by (1.8), then [3,
Theorem 4, page 110] follows from Theorem 2.1(1), and [3, Corollary 4.1, page 111] follows
from Theorem 2.1(2).

Corollary 2.3. Let m ≥ 1 be a fixed integer and g a fixed function in A. Let h be a convex univalent
function satisfying Reh(z) > α, 0 ≤ α < 1. Define

Fk(z) =
γ + 1
zγ

∫z

0
tγ−1fk(t)dt

(
γ ∈ C, Re γ ≥ 0, k = 1, . . . , m

)
. (2.11)

If f̂ ∈ S∗
m(g, h), then F̂ = 〈F1, . . . , Fm〉 ∈ S∗

m(g, h). Similarly, if f̂ ∈ Km(g, h), then F̂ ∈ Km(g, h).

Proof. Define the function φ by

φ(z) = z +
∞∑

n=2

γ + 1
γ + n

zn. (2.12)

For Re γ ≥ 0, the function φ is a convex function [11], and hence φ ∈ Rα ([4, Theorem 2.1,
page 49]). It is clear from the definition of Fk that

Fk(z) = fk(z) ∗
(

z +
∞∑

n=2

γ + 1
γ + n

zn
)

=
(
fk ∗ φ

)
(z), (2.13)

so that F̂ = f̂ ∗ φ. By Theorem 2.1(1), it follows that F̂ = f̂ ∗ φ ∈ S∗
m(g, h).

The second result is proved in a similar manner.

Remark 2.4. If g(z) = ka(z) is defined by (1.8), then Corollary 2.3 reduces to [2, Theorem 2,
page 324].

Theorem 2.5. Let m ≥ 1 be a fixed integer and g a fixed function in A. Let h be a convex univalent
function satisfying Reh(z) > α, 0 ≤ α < 1, and φ ∈ Rα.

(1) If f̂ ∈ Cm(g, h) with respect to ψ̂ ∈ S∗
m(g, h), then f̂ ∗ φ ∈ Cm(g, h) with respect to

ψ̂ ∗ φ ∈ S∗
m(g, h).

(2) If f̂ ∈ Qm(g, h) with respect to ϕ̂ ∈ Km(g, h), then f̂ ∗ φ ∈ Qm(g, h) with respect to
ϕ̂ ∗ φ ∈ Km(g, h).
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Proof. (1) In view of the fact that

f̂ ∈ Cm

(
g, h

) ⇐⇒ f̂ ∗ g ∈ Cm(h), (2.14)

we well only prove that f̂ ∗ φ ∈ Cm(h) when f̂ ∈ Cm(h). Let f̂ ∈ Cm(h). For k = 1, 2, . . . , m,
define the functions F and Hk by

F(z) =
1
m

m∑

j=1

ψj(z), Hk(z) =
zf ′

k(z)
F(z)

. (2.15)

Since ψ̂ ∈ S∗
m(h), it is evident from (2.6) that F ∈ S∗(α).

That ψ̂ ∗ φ ∈ S∗
m(h) follows from Theorem 2.1(1). Now a computation shows that

z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ ψj

)
(z)

=

(
φ ∗ zf ′

k

)
(z)

(
φ ∗ (1/m)

∑m
j=1 ψj

)
(z)

=

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) . (2.16)

Since φ ∈ Rα and F ∈ S∗(α), Theorem 1.3 yields

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) ∈ co(Hk(U)), (2.17)

and because Hk(z) ≺ h(z), it follows that

z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ ψj

)
(z)

≺ h(z), k = 1, . . . , m. (2.18)

Thus f̂ ∗ φ ∈ Cm(h).
(2) The function f̂ is in Qm(g, h) if and only if zf̂ ′ is in Cm(g, h) and by the first part,

clearly φ ∗ zf̂ ′ = z(φ ∗ f̂)′ ∈ Cm(g, h). Hence φ ∗ f̂ ∈ Qm(g, h).

Remark 2.6. Again when m = 1, known results are easily obtained as special cases of
Theorem 2.5. For instance, [1, Theorem 3.5, page 337] follows from Theorem 2.5(1), and [1,
Theorem 3.9, page 339] is a special case of Theorem 2.5(2).

Corollary 2.7. Let m ≥ 1 be a fixed integer and g a fixed function in A. Let h be a convex univalent
function satisfying Reh(z) > α, 0 ≤ α < 1. Let Fk be the Bernardi-Libera integral transform of fk
defined by (2.11). If f̂ ∈ Cm(g, h), then F̂ = 〈F1, . . . , Fm〉 ∈ Cm(g, h).

The proof is similar to the proof of Corollary 2.3 and is therefore omitted.

Remark 2.8. If g(z) = ka(z) is defined by (1.8), then Corollary 2.7 reduces to [2, Theorem 4,
page 326].
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3. Convolution of Meromorphic Functions

Let Σ denote the class of functions f of the form

f(z) =
1
z
+

∞∑

n=0

anz
n, (3.1)

that are analytic in the punctured unit disk U∗ := {z : 0 < |z| < 1}. The convolution of two
meromorphic functions f and g, where f is given by (3.1) and g(z) = (1/z) +

∑∞
n=0 bnz

n, is
given by

(
f ∗ g)(z) := 1

z
+

∞∑

n=0

anbnz
n. (3.2)

In this section, several subclasses of meromorphic functions in the punctured unit disk are
introduced by means of convolution with a given fixed meromorphic function. First we take
note that the familiar classes of meromorphic starlike and convex functions and other related
subclasses of meromorphic functions can be put in the form

Σs(g, h
)
:=

{

f ∈ Σ | −z
(
f ∗ g)′(z)

(
f ∗ g)(z) ≺ h(z)

}

, (3.3)

where g is a fixed function in Σ and h is a suitably normalized analytic function with positive
real part. For instance, the class of meromorphic starlike functions of order α, 0 ≤ α < 1,
defined by

Σs :=
{

f ∈ Σ | −Re
zf ′(z)
f(z)

> α

}

(3.4)

is a particular case of Σs(g, h) with g(z) = 1/(z(1 − z)) and h(z) = (1 + (1 − 2α)z)/(1 − z).
Here four classes Σs

m(g, h), Σ
k
m(g, h), Σ

c
m(g, h), and Σq

m(g, h) of meromorphic functions
are introduced and the convolution properties of these new subclasses are investigated. As
before, it is assumed that m ≥ 1 is a fixed integer, g is a fixed function in Σ, and h is a convex
univalent function with positive real part in U satisfying h(0) = 1.

Definition 3.1. The class Σs
m(h) consists of f̂ := 〈f1, f2, . . . , fm〉, fk ∈ Σ, 1 ≤ k ≤ m, satisfying

∑m
j=1 fj(z)/= 0 in U∗ and the subordination

− mzf ′
k(z)∑m

j=1 fj(z)
≺ h(z), k = 1, . . . , m. (3.5)
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The class Σs
m(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗ g, . . . , fm ∗ g〉 ∈ Σs

m(h). The
class Σk

m(h) consists of f̂ for which −zf̂ ′ ∈ Σs
m(h) or equivalently satisfying the condition

∑m
j=1 f

′
j(z)/= 0 in U∗ and the subordination

−m
(
zf ′

k

)′(z)
∑m

j=1 f
′
j(z)

≺ h(z), k = 1, . . . , m. (3.6)

The class Σk
m(g, h) consists of f̂ for which f̂ ∗ g ∈ Σk

m(h).

Various subclasses of meromorphic functions investigated in earlier works are special
instances of the above defined classes. For instance, if g(z) := (1/z)+(1/(1−z)), then Σs

m(g, h)
coincides with Σs

m(h). By putting g = pμ ∗ qβ,λ, where

pμ(z) :=
1

z(1 − z)μ
, qβ,λ(z) :=

1
z
+

∞∑

k=0

(
λ

k + 1 + λ

)β

zk, (3.7)

the class Σs
m(g, h) reduces to the class Σβ

λ,μ(m,h) investigated in [9]. If g = kn, where

kn(z) :=
1
z
+

∞∑

k=1

[1 + λ(k + 1)]nzk, (3.8)

then the class of Σs
m(g, h) is the class Σm(n, λ, h) studied in [5]. If g = ka, where

ka(z) :=
1

z(1 − z)a
, a > 0, (3.9)

then the class Σs
m(g, h) coincides with Σm(a, h) investigated in [6].

Definition 3.2. The class Σc
m(h) consists of f̂ := 〈f1, f2, . . . , fm〉, fk ∈ Σ, 1 ≤ k ≤ m, satisfying

the subordination

− mzf ′
k(z)∑m

j=1 ψj(z)
≺ h(z), k = 1, . . . , m, (3.10)

for some ψ̂ ∈ Σs
m(h). In this case, we say that f̂ ∈ Σc

m(h) with respect to ψ̂ ∈ Σs
m(h). The class

Σc
m(g, h) consists of f̂ for which f̂ ∗ g := 〈f1 ∗ g, f2 ∗ g, . . . , fm ∗ g〉 ∈ Σc

m(h). The class Σq
m(h)

consists of f̂ for which −zf̂ ′ ∈ Σc
m(h) or equivalently satisfying the subordination

−m
(
zf ′

k

)′(z)
∑m

j=1 ϕ
′
j(z)

≺ h(z), k = 1, . . . , m, (3.11)

for some ϕ̂ ∈ Km(h) with −zϕ̂′ = ψ̂ and ψ̂ ∈ S∗
m(h). The class Σ

q
m(g, h) consists of f̂ for which

f̂ ∗ g ∈ Σq
m(h).
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If g(z) := (1/z) + (1/(1 − z)), then Σc
m(g, h) coincides with Σc

m(h). If g(z) = kn(z) is
defined by (3.8), then Σc

m(g, h) reduces to Qm(n, λ, h) investigated in [5]. If g(z) = ka(z) is
defined by (3.9), then the class Σc

m(g, h) is the class C
∗
m(a, h) studied in [6].

We shall require the theorem below which is a simple modification of Theorem 1.3.

Theorem 3.3. Let α ≤ 1, f, φ ∈ Σ, z2φ ∈ Rα, and z2f ∈ S∗(α). Then, for any analytic function
H ∈ H(U),

φ ∗ (Hf
)

φ ∗ f (U) ⊂ co(H(U)). (3.12)

Theorem 3.4. Assume that m ≥ 1 is a fixed integer and g is a fixed function in Σ. Let h be a convex
univalent function satisfying Reh(z) < 2 − α, 0 ≤ α < 1, and φ ∈ Σ with z2φ ∈ Rα.

(1) If f̂ ∈ Σs
m(g, h), then f̂ ∗ φ ∈ Σs

m(g, h).

(2) If f̂ ∈ Σk
m(g, h), then f̂ ∗ φ ∈ Σk

m(g, h).

Proof. (1) It is enough to prove the result for g(z) = 1/z(1 − z). For k = 1, 2, . . . , m, define the
functions F and Hk by

F(z) =
1
m

m∑

j=1

fj(z), Hk(z) = −zf
′
k(z)

F(z)
. (3.13)

We show that F satisfies the condition z2F ∈ S∗(α). For f̂ ∈ Σs
m(h) and z ∈ U, clearly

−zf
′
k(z)

F(z)
∈ h(U), k = 1, . . . , m. (3.14)

Since h(U) is a convex domain, it follows that

− 1
m

m∑

k=1

zf ′
k(z)

F(z)
∈ h(U), (3.15)

or

−zF
′(z)

F(z)
≺ h(z). (3.16)

Since Reh(z) < 2 − α, the subordination (3.16) yields

−Re
(
zF ′(z)
F(z)

)

< 2 − α, (3.17)



Journal of Inequalities and Applications 11

and thus

Re

(
z
(
z2F

)′(z)
z2F(z)

)

= Re
zF ′(z)
F(z)

+ 2 > α. (3.18)

Inequality (3.18) shows that z2F ∈ S∗(α).
A routine computation now gives

− z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ fj

)
(z)

=

(
φ ∗ (−zf ′

k

))
(z)

(
φ ∗ (1/m)

∑m
j=1 fj

)
(z)

=

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) . (3.19)

Since z2φ ∈ Rα and z2F ∈ S∗(α), Theorem 3.3 yields

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) ∈ co(Hk(U)), (3.20)

and because Hk(z) ≺ h(z), it is clear that

− z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ fj

)
(z)

≺ h(z), k = 1, . . . , m. (3.21)

Thus f̂ ∗ φ ∈ Σs
m(h).

(2) The function f̂ is in Σk
m(g, h) if and only if −zf̂ ′ is in Σs

m(g, h) and the result of part
(1) shows that φ ∗ (−zf̂ ′) = −z(φ ∗ f̂)′ ∈ Σs

m(g, h). Hence φ ∗ f̂ ∈ Σk
m(g, h).

Remark 3.5. (1) The above theorem can be written in the following equivalent forms:

Σs
m

(
g, h

) ⊂ Σs
m

(
φ ∗ g, h), Σk

m

(
g, h

) ⊂ Σk
m

(
φ ∗ g, h). (3.22)

(2) When m = 1, various known results are easily obtained as special cases of
Theorem 3.4. For instance, if g(z) = pμ ∗ qβ,λ is defined by (3.7), then [9, Theorem 6, page
1265] follows from Theorem 3.4(1).

Corollary 3.6. Assume that m ≥ 1 is a fixed integer and g is a fixed function in Σ. Let h be a convex
univalent function satisfying Reh(z) < 2 − α, 0 ≤ α < 1. Define

Fk(z) =
γ + 1
zγ+2

∫z

0
tγ+1fk(t)dt

(
γ ∈ C, Re γ ≥ 0, k = 1, . . . , m

)
. (3.23)

If f̂ ∈ Σs
m(g, h), then F̂ = 〈F1, . . . , Fm〉 ∈ Σs

m(g, h). Similarly, if f̂ ∈ Σk
m(g, h), then F̂ ∈ Σk

m(g, h).
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Proof. Define the function φ by

φ(z) =
1
z
+

∞∑

n=0

γ + 1
γ + 2 + n

zn. (3.24)

For Re γ ≥ 0, the function z2φ(z) is a convex function [11], and hence z2φ(z) ∈ Rα ([4,
Theorem 2.1, page 49]). It is clear from the definition of Fk that

Fk(z) = fk(z) ∗
(

1
z
+

∞∑

n=0

γ + 1
γ + 2 + n

zn
)

=
(
fk ∗ φ

)
(z), (3.25)

so that F̂ = f̂ ∗ φ. By Theorem 3.4, it follows that F̂ = f̂ ∗ φ ∈ Σs
m(g, h).

The second result is established analogously.

Remark 3.7. Again we take note of how our results extend various earlier works. If g(z) =
pμ ∗ qβ,λ is defined by (3.7), then [7, Proposition 2, page 512] follows from Corollary 3.6. If
g(z) = kn(z) is defined by (3.8), then Corollary 3.6 yields [5, Theorem 2.2, page 4]. If g(z) =
ka(z) is defined by (3.9), then Corollary 3.6 reduces to [6, Theorem 2, page 11].

Theorem 3.8. Assume that m ≥ 1 is a fixed integer and g is a fixed function in Σ. Let h be a convex
univalent function satisfying Reh(z) < 2 − α, 0 ≤ α < 1, and φ ∈ Σ with z2φ ∈ Rα.

(1) If f̂ ∈ Σc
m(g, h) with respect to ψ̂ ∈ Σs

m(g, h), then f̂ ∗ φ ∈ Σc
m(g, h) with respect to

ψ̂ ∗ φ ∈ Σs
m(g, h).

(2) If f̂ ∈ Σq
m(g, h) with respect to ϕ̂ ∈ Σk

m(g, h), then f̂ ∗ φ ∈ Σq
m(g, h) with respect to

ϕ̂ ∗ φ ∈ Σk
m(g, h).

Proof. (1) In view of the fact that

f̂ ∈ Σc
m

(
g, h

) ⇐⇒ f̂ ∗ g ∈ Σc
m(h), (3.26)

it is sufficient to prove that f̂ ∗ φ ∈ Σc
m(h) when f̂ ∈ Σc

m(h). Let f̂ ∈ Σc
m(h). For k = 1, 2, . . . , m,

define the functions F and Hk by

F(z) =
1
m

m∑

j=1

ψj(z), Hk(z) = −zf
′
k(z)

F(z)
. (3.27)

Inequality (3.18) shows that z2F ∈ S∗(α).
It is evident that

− z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ ψj

)
(z)

=

(
φ ∗ (−zf ′

k

))
(z)

(
φ ∗ (1/m)

∑m
j=1 ψj

)
(z)

=

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) . (3.28)
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Since z2φ ∈ Rα and z2F ∈ S∗(α), Theorem 3.3 yields

(
φ ∗HkF

)
(z)

(
φ ∗ F)(z) ∈ co(Hk(U)), (3.29)

and because Hk(z) ≺ h(z), it follows that

− z
(
φ ∗ fk

)′(z)

(1/m)
∑m

j=1
(
φ ∗ ψj

)
(z)

≺ h(z), k = 1, . . . , m. (3.30)

Thus f̂ ∗ φ ∈ Σc
m(h).

(2) The function f̂ is in Σq
m(g, h) if and only if −zf̂ ′ is in Σc

m(g, h) and from the first part
above, it follows that φ ∗ (−zf̂ ′) = −z(φ ∗ f̂)′ ∈ Σc

m(g, h). Hence φ ∗ f̂ ∈ Σq
m(g, h).

Corollary 3.9. Assume that m ≥ 1 is a fixed integer and g is a fixed function in Σ. Let h be a convex
univalent function satisfying Reh(z) < 2−α, 0 ≤ α < 1. Let Fk be defined by (3.23). If f̂ ∈ Σc

m(g, h),
then F̂ = 〈F1, . . . , Fm〉 ∈ Σc

m(g, h).

The proof is analogous to Corollary 2.3 and is omitted.

Remark 3.10. If g(z) = kn(z) is defined by (3.8), then Corollary 3.9 yields [5, Theorem 3.1,
page 9]. If g(z) = ka(z) is defined by (3.9), then Corollary 3.9 reduces to [6, Theorem 4, page
14].
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