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Some results on complete convergence for weighted sums
∑n

i=1 aniXi are presented, where {Xn,
n ≥ 1} is a sequence of ϕ-mixing random variables and {ani, n ≥ 1, i ≥ 1} is an array of constants.
They generalize the corresponding results for i.i.d sequence to the case of ϕ-mixing sequence.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space
(Ω,F, P). Let n and m be positive integers. Write Fm

n = σ(Xi, n ≤ i ≤ m). Given σ-algebras
B,R in F, let

ϕ(B,R) = sup
A∈B,B∈R,P(A)>0

|P(B | A) − P(B)|. (1.1)

Define the ϕ-mixing coefficients by

ϕ(n) = sup
k≥1

ϕ
(
Fk

1 ,F∞
k+n

)
, n ≥ 0. (1.2)

Definition 1.1. A random variable sequence {Xn, n ≥ 1} is said to be a ϕ-mixing random
variable sequence if ϕ(n) ↓ 0 as n → ∞.

ϕ-mixing random variables were introduced by Dobrushin [1] and many applications
have been found. See, for example, Dobrushin [1], Utev [2], and Chen [3] for central limit
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theorem, Herrndorf [4] and Peligrad [5] for weak invariance principle, Sen [6, 7] for weak
convergence of empirical processes, Shao [8] for almost sure invariance principles, Hu and
Wang [9] for large deviations, and so forth. When these are compared with the corresponding
results of independent random variable sequences, there still remains much to be desired.

Throughout the paper, let I(A) be the indicator function of the set A. We assume that
φ(x) is a positive increasing function on (0,∞) satisfying φ(x) ↑ ∞ as x → ∞ and ψ(x) is the
inverse function of φ(x). Since φ(x) ↑ ∞, it follows that ψ(x) ↑ ∞. For easy notation, we let
φ(0) = 0 and ψ(0) = 0. an = O(bn) denotes that there exists a positive constant C such that
|an/bn| ≤ C. C denotes a positive constant which may be different in various places.

Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables and let {ani, n ≥ 1, i ≥ 1}
be an array of constants. The almost sure limiting behavior of weighted sums

∑n
i=1 aniXi was

studied by many authors; see, for example, Choi and Sung [10], Cuzick [11], Wu [12], and
Sung [13, 14], and so forth.

The main purpose of this paper is to extend the complete convergence for weighted
sums

∑n
i=1 aniXi of i.i.d. random variables to the case of ϕ-mixing random variables.

Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C, such that

P(|Xn| > x) ≤ CP(|X| > x) (1.3)

for all x ≥ 0 and n ≥ 1.

Definition 1.3. A double array {ani, n ≥ 1, i ≥ 1} of real numbers is said to be a Toeplitz array
if limn→∞ani = 0 for each i ≥ 1 and

∞∑

i=1

|ani| ≤ C (1.4)

for all n ≥ 1, where C is a positive constant.

Lemma 1.4. Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically dominated by
a random variable X. For any α > 0 and b > 0, the following statement holds:

E|Xn|αI(|Xn| ≤ b) ≤ C
{
E|X|αI(|X| ≤ b) + bαP(|X| > b)

}
, (1.5)

where C is a positive constant.

Lemma 1.5 (cf. [15, Lemma 1.2.8]). Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables.
Let X ∈ Lp(Fk

1 ), Y ∈ Lq(F∞
k+n), p ≥ 1, q ≥ 1, and 1/p + 1/q = 1. Then

|EXY − EXEY | ≤ 2
(
ϕ(n)

)1/p(
E|X|p)1/p(E|Y |q)1/q. (1.6)

Lemma 1.6 (cf. [8, Lemma2.2]). Let {Xn, n ≥ 1} be a ϕ-mixing sequence. Put Ta(n) =
∑a+n

i=a+1 Xi.
Suppose that there exists an array {Ca,n} of positive numbers such that

ET2
a(n) ≤ Ca,n for every a ≥ 0, n ≥ 1. (1.7)
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Then for every q ≥ 2, there exists a constant C depending only on q and ϕ(·) such that

E

(

max
1≤j≤n

∣
∣Ta
(
j
)∣
∣q
)

≤ C

[

C
q/2
a,n + E

(

max
a+1≤i≤a+n

|Xi|q
)]

(1.8)

for every a ≥ 0 and n ≥ 1.

Lemma 1.7. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) <

∞. q ≥ 2. Assume that EXn = 0 and E|Xn|q < ∞ for each n ≥ 1. Then there exists a constant C
depending only on q and ϕ(·) such that

E

⎛

⎝max
1≤j≤n

∣
∣
∣
∣
∣

a+j∑

i=a+1

Xi

∣
∣
∣
∣
∣

q
⎞

⎠ ≤ C

⎡

⎣
a+n∑

i=a+1

E|Xi|q +
(

a+n∑

i=a+1

EX2
i

)q/2
⎤

⎦ (1.9)

for every a ≥ 0 and n ≥ 1. In particular, one has

E

⎛

⎝max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣

q
⎞

⎠ ≤ C

⎡

⎣
n∑

i=1

E|Xi|q +
(

n∑

i=1

EX2
i

)q/2
⎤

⎦ (1.10)

for every n ≥ 1.

Proof. By Lemma 1.5, we can see that

E

(
a+n∑

i=a+1

Xi

)2

≤
a+n∑

i=a+1

EX2
i + 4

∑

a+1≤i<j≤a+n
ϕ1/2(j − i

)(
EX2

i

)1/2(
EX2

j

)1/2

≤
a+n∑

i=a+1

EX2
i + 2

n−1∑

k=1

a+n−k∑

i=a+1

ϕ1/2(k)
(
EX2

i + EX2
k+i

)

≤
(

1 + 4
∞∑

k=1

ϕ1/2(k)

)
a+n∑

i=a+1

EX2
i
.= Ca,n,

(1.11)

which implies (1.7). By Lemma 1.6, we can get the desired result (1.9) immediately. The proof
is complete.

Lemma 1.8. Assume that the inverse function ψ(x) of φ(x) satisfies

ψ(n)
n∑

i=1

1
ψ(i)

= O(n). (1.12)

If E[φ(|X|)] < ∞, then

∞∑

n=1

1
ψ(n)

E|X|I(|X| > ψ(n)
)
< ∞. (1.13)
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Proof. The proof is similar to that of Lemma 1 by Sung [14]. So we omit it.

2. Main Results and Their Proofs

Theorem 2.1. Let {X,Xn, n ≥ 1} be a sequence of identically distributed ϕ-mixing random variables
satisfying

∑∞
n=1 ϕ

1/2(n) < ∞, EX = 0, EX2 < ∞, and E[φ(|X|)] < ∞. Assume that the inverse
function ψ(x) of φ(x) satisfies (1.12). Let {ani, n ≥ 1, i ≥ 1} be an array of constants such that

(i) max1≤i≤n|ani| = O(1/ψ(n));

(ii)
∑n

i=1 a
2
ni = O(log−1−αn) for some α > 0.

Then for any ε > 0,

∞∑

n=1

n−1P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniXi

∣
∣
∣
∣
∣
> ε

)

< ∞. (2.1)

Proof. For each n ≥ 1, denote

X
(n)
j = XjI

(∣
∣Xj

∣
∣ ≤ ψ(n)

)
, T

(n)
j =

j∑

i=1

(
aniX

(n)
i − EaniX

(n)
i

)
, 1 ≤ j ≤ n,

A =
n⋂

i=1

(
Xi = X

(n)
i

)
=

n⋂

i=1

(|Xi| ≤ ψ(n)
)
, B = A =

n⋃

i=1

(
Xi /=X

(n)
i

)
=

n⋃

i=1

(|Xi| > ψ(n)
)
,

En =

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniXi

∣
∣
∣
∣
∣
> ε

)

.

(2.2)

It is easy to check that

j∑

i=1

aniXi =
j∑

i=1

aniXiI
(|Xi| ≤ ψ(n)

)
+

j∑

i=1

aniXiI
(|Xi| > ψ(n)

)

= T
(n)
j +

j∑

i=1

EaniX
(n)
i +

j∑

i=1

aniXiI
(|Xi| > ψ(n)

)
,

En = EnA + EnB =

(

max
1≤j≤n

∣
∣
∣
∣
∣
T
(n)
j +

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣
> ε

)

+ EnB

⊂
(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ > ε −max

1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣

)

+ B.

(2.3)
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Therefore

P(En) ≤ P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ > ε −max

1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣

)

+ P(B)

≤ P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ > ε −max

1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣

)

+
n∑

i=1

P
(|Xi| > ψ(n)

)
.

(2.4)

Firstly, we will show that

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣
−→ 0, as n −→ ∞. (2.5)

It follows from Lemma 1.8 and Kronecker’s lemma that

1
ψ(n)

n∑

i=1

E|X|I(|X| > ψ(i)
) −→ 0, as n −→ ∞. (2.6)

By EX = 0, condition (i), (2.6), and ψ(n) ↑ ∞, we can see that

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣
= max

1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniXiI
(|Xi| > ψ(n)

)
∣
∣
∣
∣
∣

≤
n∑

i=1

E|aniXi|I
(|Xi| > ψ(n)

)

≤
n∑

i=1

|ani|E|X|I(|X| > ψ(n)
)

≤ 1
ψ(n)

n∑

i=1

E|X|I(|X| > ψ(i)
) −→ 0, as n −→ ∞,

(2.7)

which implies (2.5). By (2.4) and (2.5), we can see that, for sufficiently large n,

P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniXi

∣
∣
∣
∣
∣
> ε

)

≤ P

(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ >

ε

2

)

+
n∑

i=1

P
(|Xi| > ψ(n)

)
. (2.8)

To prove (2.1), it suffices to show that

∞∑

n=1

n−1P
(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ >

ε

2

)

< ∞,

∞∑

n=1

n−1
n∑

i=1

P
(|Xi| > ψ(n)

)
< ∞.

(2.9)
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By Markov’s inequality, Lemma 1.7, EX2 < ∞, and condition (ii), we have

∞∑

n=1

n−1P
(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣ >

ε

2

)

≤ C
∞∑

n=1

n−1E
(

max
1≤j≤n

∣
∣
∣T

(n)
j

∣
∣
∣
2
)

≤ C
∞∑

n=1

n−1
n∑

i=1

E
∣
∣
∣aniX

(n)
i

∣
∣
∣
2

= C
∞∑

n=1

n−1
n∑

i=1

a2
niEX

2I
(|X| ≤ ψ(n)

)

≤ C
∞∑

n=1

n−1
n∑

i=1

a2
ni

≤ C
∞∑

n=1

n−1log−1−αn < ∞.

(2.10)

It follows from E[φ(|X|)] < ∞ that

∞∑

n=1

n−1
n∑

i=1

P
(|Xi| > ψ(n)

)
=

∞∑

n=1

P
(|X| > ψ(n)

)
=

∞∑

n=1

P
(
φ(|X|) > n

) ≤ CE
[
φ(|X|)] < ∞. (2.11)

We complete the proof of the theorem.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) <

∞ and let {ani, n ≥ 1, i ≥ 1} be an array of real numbers. Let {bn, n ≥ 1} be an increasing sequence of
positive integers and let {cn, n ≥ 1} be a sequence of positive real numbers. If for some q ≥ 2, 0 < t < 2,
and for any ε > 0, the following conditions are satisfied:

∞∑

n=1

cn

bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
< ∞, (2.12)

∞∑

n=1

cnb
−q/t
n

bn∑

i=1

|ani|qE|Xi|qI
(
|aniXi| < εb1/tn

)
< ∞, (2.13)

∞∑

n=1

cnb
−q/t
n

[
bn∑

i=1

a2
niEX

2
i I
(
|aniXi| < εb1/tn

)
]q/2

< ∞, (2.14)

then

∞∑

n=1

cnP

⎧
⎨

⎩
max
1≤i≤bn

∣
∣
∣
∣
∣
∣

i∑

j=1

[
anjXj − anjEXjI

(∣
∣anjXj

∣
∣ < εb1/tn

)]
∣
∣
∣
∣
∣
∣
≥ εb1/tn

⎫
⎬

⎭
< ∞. (2.15)

Proof. Note that if the series
∑∞

n=1 cn is convergent, then (2.15) holds. Therefore, we will
consider only such sequences {cn, n ≥ 1} for which the series

∑∞
n=1 cn is divergent.
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Let

Y
(n)
i = aniXiI

(
|aniXi| < εb1/tn

)
, S′

ni =
i∑

j=1

Y
(n)
j , n ≥ 1, i ≥ 1,

A =
bn⋂

i=1

{
Y

(n)
i = aniXi

}
, B = A =

bn⋃

i=1

{
Y

(n)
i /=aniXi

}
=

bn⋃

i=1

(
|aniXi| ≥ εb1/tn

)
,

En =

⎧
⎨

⎩
max
1≤i≤bn

∣
∣
∣
∣
∣
∣

i∑

j=1

[
anjXj − anjEXjI

(∣
∣anjXj

∣
∣ < εb1/tn

)]
∣
∣
∣
∣
∣
∣
≥ εb1/tn

⎫
⎬

⎭
.

(2.16)

Therefore

P

⎧
⎨

⎩
max
1≤i≤bn

∣
∣
∣
∣
∣
∣

i∑

j=1

[
anjXnj − anjEXjI

(∣
∣anjXj

∣
∣ < εb1/tn

)]
∣
∣
∣
∣
∣
∣
≥ εb1/tn

⎫
⎬

⎭

= P(En) = P(EnA) + P(EnB) ≤ P(EnA) + P(B)

≤
bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
+ ε−qb−q/tn E

(

max
1≤i≤bn

∣
∣S′

ni − ES′
ni

∣
∣
)q

.

(2.17)

Using the Cr inequality and Jensen’s inequality, we can estimate E|Y (n)
i − EY

(n)
i |q in the

following way:

E
∣
∣
∣Y

(n)
i − EY

(n)
i

∣
∣
∣
q ≤ C|ani|qE|Xi|qI

(
|aniXi| < εb1/tn

)
. (2.18)

By (2.17), (2.18), and Lemma 1.7, we can get

P

⎧
⎨

⎩
max
1≤i≤bn

∣
∣
∣
∣
∣
∣

i∑

j=1

[
anjXj − anjEXjI

(∣
∣anjXj

∣
∣ < εb1/tn

)]
∣
∣
∣
∣
∣
∣
≥ εb1/tn

⎫
⎬

⎭

≤ C
bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
+ Cb

−q/t
n

bn∑

i=1

|ani|qE|Xi|qI
(
|aniXi| < εb1/tn

)

+ Cb
−q/t
n

[
bn∑

i=1

a2
niEX

2
i I
(
|aniXi| < εb1/tn

)
]q/2

.

(2.19)

Therefore, we can conclude that (2.15) holds by (2.12), (2.13), (2.14), and (2.19).
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Theorem 2.3. Let 1 ≤ p ≤ 2 and let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables
satisfying

∑∞
n=1 ϕ

1/2(n) < ∞, EXn = 0, and E|Xn|p < ∞ for n ≥ 1. Let {ani, n ≥ 1, i ≥ 1} be an
array of real numbers satisfying the following condition:

n∑

i=1

|ani|pE|Xi|p = O
(
nδ
)

as n −→ ∞ (2.20)

for some 0 < δ ≤ 2/q and q > 2. Then for any ε > 0 and αp ≥ 1,

∞∑

n=1

nαp−2P

⎛

⎝max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjXj

∣
∣
∣
∣
∣
∣
≥ εnα

⎞

⎠ < ∞. (2.21)

Proof. Take cn = nαp−2, bn = n, and 1/t = α in Theorem 2.2. By (2.20) we have

∞∑

n=1

cn

bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
≤ C

∞∑

n=1

nαp−2
n∑

i=1

|ani|pE|Xi|p
nαp

≤ C
∞∑

n=1

n−2+δ < ∞,

∞∑

n=1

cnb
−q/t
n

bn∑

i=1

|ani|qE|Xi|qI
(
|aniXi| < εb1/tn

)
≤

∞∑

n=1

n−2
n∑

i=1

|ani|pE|Xi|p ≤ C
∞∑

n=1

n−2+δ < ∞,

∞∑

n=1

cnb
−q/t
n

[
bn∑

i=1

a2
niEX

2
i I
(
|aniXi| < εb1/tn

)
]q/2

≤ C
∞∑

n=1

nαp−2−αpq/2
(

n∑

i=1

|ani|pE|Xi|p
)q/2

≤ C
∞∑

n=1

nαp−2−αpq/2+δq/2 ≤ C
∞∑

n=1

nαp(1−q/2)−1 < ∞

(2.22)

following from δq/2 ≤ 1. By the assumption EXn = 0 for n ≥ 1 and (2.20) we get

1
nα

max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjEXjI
(∣
∣anjXj

∣
∣ < εnα)

∣
∣
∣
∣
∣
∣
≤ 1

nα

n∑

j=1

∣
∣anjEXjI

(∣
∣anjXj

∣
∣ < εnα)∣∣

=
1
nα

n∑

j=1

∣
∣anjEXjI

(∣
∣anjXj

∣
∣ ≥ εnα)∣∣

≤ 1
nαp

n∑

j=1

∣
∣anj

∣
∣pE
∣
∣Xj

∣
∣p ≤ Cnδ−αp −→ 0, as n −→ ∞

(2.23)

following from δ < 1 and αp ≥ 1. We get the desired result by Theorem 2.2 immediately. The
proof iscompleted.
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Theorem 2.4. Let 1 ≤ p ≤ 2 and let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables
satisfying

∑∞
n=1 ϕ

1/2(n) < ∞, EXn = 0, and E|Xn|p < ∞ for n ≥ 1. Assume that the random
variables are stochastically dominated by a random variable X such that E|X|p < ∞ and let {ani,
n ≥ 1, i ≥ 1} be an array of real numbers satisfying the following condition:

n∑

i=1

|ani|p = O
(
nδ
)

as n −→ ∞ (2.24)

for some 0 < δ ≤ 2/q and q > 2. Then for any ε > 0 and αp ≥ 1, (2.21) holds.

Proof. The proof is similar to that of Theorem 2.3. We only need to note that

E|Xn|p =
∫∞

0
tpdP(|Xn| ≤ t)

= −
∫∞

0
tpdP(|Xn| > t)

= − lim
t→∞

tpP(|Xn| > t) +
∫∞

0
P(|Xn| > t)dtp

= 0 + p

∫∞

0
tp−1P(|Xn| > t)dt

≤ Cp

∫∞

0
tp−1P(|X| > t)dt

= CE|X|p < ∞

(2.25)

for each n ≥ 1.

Theorem 2.5. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) <

∞ and let {ani, n ≥ 1, i ≥ 1} be a Toeplitz array. Assume that the random variables are stochastically
dominated by a random variable X. If for some 0 < t < 2 and δ > 1/t,

sup
i≥1

|ani| = O
(
n1/t−δ

)
, E|X|β < ∞, (2.26)

where β = max(2/δ, 1 + 1/δ), then for any ε > 0,

∞∑

n=1

P

⎛

⎝max
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjXj

∣
∣
∣
∣
∣
∣
≥ εn1/t

⎞

⎠ < ∞. (2.27)
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Proof. Take cn = 1, bn = n for n ≥ 1 and q ≥ max(2, 1 + 1/δ) in Theorem 2.2. Then we can see
that (2.12) and (2.13) are satisfied. In fact, by (1.4) and (2.26)we have

∞∑

n=1

cn

bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
=

∞∑

n=1

n∑

i=1

P
(
|aniXi| ≥ εn1/t

)

≤ C
∞∑

n=1

n∑

i=1

P
(
|aniX| ≥ Cn1/t

)

≤ C
∞∑

n=1

n∑

i=1

P
(
|X| ≥ Cnδ

)

= C
∞∑

n=1

n
∞∑

k=n

P
(
Ckδ ≤ |X| < C(k + 1)δ

)

≤ C
∞∑

k=1

k2P
(
Ckδ ≤ |X| < C(k + 1)δ

)

≤ CE|X|2/δ < ∞,

(2.28)

and by Lemma 1.4, (1.5), and (2.26) we have

∞∑

n=1

cnb
−q/t
n

bn∑

i=1

|ani|qE|Xi|qI
(
|aniXi| < εb1/tn

)

=
∞∑

n=1

n−q/t
n∑

i=1

|ani|qE|Xi|qI
(
|aniXi| < εn1/t

)

≤ C
∞∑

n=1

n−q/t
n∑

i=1

|ani|q
[

E|X|qI
(
|aniX| < εn1/t

)
+

nq/t

|ani|q
P
(
|aniX| ≥ εn1/t

)
]

≤ C
∞∑

n=1

n−(1+1/δ)/t
n∑

i=1

|ani|1+1/δE|X|1+1/δ + C
∞∑

n=1

n∑

i=1

P
(
|aniX| ≥ εn1/t

)

≤ C
∞∑

n=1

n−1/t−1E|X|1+1/δ
n∑

i=1

|ani| + CE|X|2/δ

≤ C
∞∑

n=1

n−1/t−1 + CE|X|2/δ < ∞.

(2.29)

In order to prove that (2.14) holds, we should consider the following two cases.
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In the case δ > 1, by Lemma 1.4, (1.5), (2.26), and Cr inequality, we have

∞∑

n=1

cnb
−q/t
n

[
bn∑

i=1

a2
niEX

2
i I
(
|aniXi| < εb1/tn

)
]q/2

=
∞∑

n=1

n−q/t
[

n∑

i=1

a2
niEX

2
i I
(
|aniXi| < εn1/t

)
]q/2

≤ C
∞∑

n=1

n−q/2t−q/2δt
(

n∑

i=1

|ani|1+1/δE|X|1+1/δ
)q/2

+ C
∞∑

n=1

n∑

i=1

P
(
|aniX| ≥ εn1/t

)

≤ C
∞∑

n=1

n−q/2t−q/2δtn(1/δ)(1/t−δ)(q/2)
(
E|X|1+1/δ

)q/2
(

n∑

i=1

|ani|
)q/2

+ CE|X|2/δ

≤ C
∞∑

n=1

n−q/2t−q/2 + CE|X|2/δ

= C
∞∑

n=1

n−(q/2)(1+1/t) + CE|X|2/δ < ∞.

(2.30)

In the case 0 < δ ≤ 1, we can get

∞∑

n=1

cnb
−q/t
n

[
bn∑

i=1

a2
niEX

2
i I
(
|aniXi| < εb1/tn

)
]q/2

=
∞∑

n=1

n−q/t
[

n∑

i=1

a2
niEX

2
i I
(
|aniXi| < εn1/t

)
]q/2

≤ C
∞∑

n=1

n−q/tn(1/t−δ)(q/2)
(

n∑

i=1

|ani|EX2

)q/2

+ C
∞∑

n=1

n∑

i=1

P
(
|aniX| ≥ εn1/t

)

≤ C
∞∑

n=1

n−q/2t−qδ/2
(
EX2
)q/2
(

n∑

i=1

|ani|
)q/2

+ CE|X|2/δ

≤ C
∞∑

n=1

n−(q/2)(δ+1/t) + CE|X|2/δ < ∞.

(2.31)

To complete the proof of the theorem, we only need to prove

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjEXjI
(∣
∣anjXj

∣
∣ < εn1/t

)
∣
∣
∣
∣
∣
∣
−→ 0, as n −→ ∞. (2.32)
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Indeed, by Lemma 1.4, it follows that

n−1/tmax
1≤i≤n

∣
∣
∣
∣
∣
∣

i∑

j=1

anjEXjI
(∣
∣anjXj

∣
∣ < εn1/t

)
∣
∣
∣
∣
∣
∣

≤ Cn−1/t
n∑

j=1

∣
∣anj

∣
∣E|X| + C

n∑

j=1

P
(∣
∣anjX

∣
∣ ≥ εn1/t

)

≤ Cn−1/t + C
n∑

j=1

P
(∣
∣anjX

∣
∣ ≥ εn1/t

)
−→ 0, as n −→ ∞.

(2.33)

Thus we get the desired result.
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