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The purpose of this paper is to investigate the problem of finding a common element of the set of
solutions for mixed equilibrium problems, the set of solutions of the variational inclusions with
set-valued maximal monotone mappings and inverse-strongly monotone mappings, and the set of
fixed points of a family of finitely nonexpansive mappings in the setting of Hilbert spaces. We
propose a new iterative scheme for finding the common element of the above three sets. Our
results improve and extend the corresponding results of the works by Zhang et al. (2008), Peng
et al. (2008), Peng and Yao (2009), as well as Plubtieng and Sriprad (2009) and some well-known
results in the literature.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert space with inner product and norm
being denoted by (-,-) and || - ||, respectively, 2/ denoting the family of all subsets of H and
leting C be a closed convex subset of H. A mapping S : C — C is called nonexpansive if
ISx = Sy|| < |lx —yl|, for all x,y € C. We use F(S) to denote the set of fixed points of S, that
is, F(S) = {x € C : Sx = x}. It is assumed throughout the paper that S is a nonexpansive
mapping such that F(S) # 0. Recall that a self-mapping f : C — C is contraction on C if there
exists a constant « € [0,1) and x, y € C such that || f (x) - f(y)|| < a||x—-y/||. Let A be a strongly
positive bounded linear operator on H: that is, there is a constant y > 0 with property

(Ax,x) > |lx|* Vxe H. (1.1)
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Let A : H — H be a single-valued nonlinear mapping and let M : H — 2H be a
set-valued mapping. We consider the following variational inclusion problem, which is to find
a point u € H such that

0eA(u)+ M(u), (1.2)

where 0 is the zero vector in H. The set of solutions of problem (1.2) is denoted by I(A, M).

If M =0 : H— 2H, where p : H — RU {+o0} is a proper convex lower semi-
continuous function and 0¢ is the subdifferential of ¢, then the variational inclusion problem
(1.2) is equivalent to find u € H such that

(Au,v-u) +p(y) - Pp(u) >0, Vo,y € H, (1.3)

which is called the mixed quasivariational inequality (see [1]).
If M = 06¢, where C is a nonempty closed convex subset of H and 6¢c : H — [0, oo] is
the indicator function of C, that is,

Se(x) = {0’ reo (1.4)

+o0, x¢C,

then the variational inclusion problem (1.2) is equivalent to find u € C such that

(Au,v-u) >0, VYveH. (1.5)

This problem is called Hartman-Stampacchia variational problem (see [2-4]).

A set-valued mapping M : H — 2H is called monotone if, for all x,y € H, f € Mx
and g € My imply that (x—y, f—g) > 0. A monotone mapping M : H — 2 is maximal if the
graph of G(M) of M is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping M is maximal if and only if, for (x, f) € H x H,
(x -y, f—-g) >0forevery (y,g) € G(M) implies that f € Mx.

Let the set-valued mapping M : H — 2" be a maximal monotone. We define the
resolvent operator Jpr) that is associate with M and A as follows:

Tava(u) = (I+AM) " (u), ueH, (1.6)

where 1 is a positive number. It is worth mentioning that the resolvent operator [, is single-
valued, nonexpansive, and 1-inverse-strongly monotone (see [5, 6]).

Letp : C — RU {+o0} be a proper extended real-valued function and let F be a
bifunction of C x C into R, where R is the set of real numbers. Ceng and Yao [7] considered
the following mixed equilibrium problem for finding x € C such that

Flx,y) +9(y) 29(x) VyeC (1.7)
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The set of solutions of (1.7) is denoted by MEP(F, ¢). We see that x is a solution of problem
(1.7) implying that x € dom¢ = {x € C | p(x) < +oo}. If ¢ = 0, then the mixed equilibrium
problem (1.7) becomes the following equilibrium problem that is to find x € C such that

F(x,y)>0 VyeC. (1.8)

The set of solutions of (1.8) is denoted by EP(F). Given a mapping T : C — H, let
F(x,y) = (Tx,y — x) for all x,y € C. Then z € EP(F) if and only if (Tz,y — z) > 0 for
all y € C, that is, z is a solution of the variational inequality. The mixed equilibrium problems
include fixed point problems, variational inequality problems, optimization problems, Nash
equilibrium problems, and the equilibrium problem as special cases. Numerous problems in
physics, optimization, and economics reduce to find a solution of (1.8). Some methods have
been proposed to solve the equilibrium problem (see [8-21]).

In 2008, Zhang et al. [6] introduced an iterative scheme for finding a common element
of the set of solutions to the variational inclusion problem with a multivalued maximal
monotone mapping and an inverse-strongly monotone mapping and the set of fixed points
of nonexpansive mapping in Hilbert spaces. The iterative scheme is xo = x € H, and:

Yn = ]M,A(xn - -)‘Axn)/
(1.9)
Xn41 = X + (1 — a,) Sy

for all n > 0. They proved the strong convergence theorem under some mind conditions. In
the same year, Peng et al. [22] introduced an iterative scheme by the viscosity approximate
method for finding a common element of the set of solutions of a variational inclusion with
set-valued maximal monotone mapping and inverse-strongly monotone mapping, the set of
solutions of an equilibrium problem, and the set of fixed points of a nonexpansive mapping
in Hilbert spaces. The sequence {x,} is generated as follows:

x1 € H,

1
F(uy,,v)+ —(y—uy,u,—x,) >0, VyecC,
(un, y) + -y y 110)

Yn = ]M,J\(un - -)LAun)/
Xne1 = Onf (Xn) + (1 = ay)Syn, VYneN.

They proved that if {a,} and {r,} satisfy appropriate conditions, then {x,} converges
strongly to z € F(S) N 1(A, M), where z = Pr(snr(a,m) f (2).

In 2009, Plubtieng and Sriprad [23] introduced an iterative method for finding a
common element of the set of common fixed points of a countable family of nonexpansive
mapping, the set of solutions of a variational inclusion with set-valued maximal monotone
mapping and inverse-strongly monotone mappings, and the set of solutions of an equilibrium
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problem in Hilbert spaces. Starting with an arbitrary x; € H, define the sequences {x,}, {y.},
and {u,} by

1
F(uny) + r—(y—un,un—xn> >0, VyeC,

Yn = I (Un — LAuy,), (1.11)

Xn+1 = tnY f(xn) + (1 = a,B)Sy,, VneN,

where A is an inverse-strongly monotone mapping and B is a bounded linear operator on H.
They proved that if the sequences {a,} and {r,} of parameters satisfy appropriate conditions,
then {x,} is generated by (1.11) converging strongly to the unique solution of the variational
inequality

((B-yf)z,z-x) <0, VYxeF(S)NEP(F)NnI(A M), (1.12)
which is the optimality condition for the minimization problem

meig%(Ax,x) - h(x)), (1.13)

where h is a potential function for y f, that is, h!(x) = yf(x), for all x € H.
LetT; : C — C,wherei=1,2,...,N, be a family of finitely nonexpansive mappings.
Let the mapping W, : C — C be defined by

un,O = I/
Ui = A1 Tilho + (1= A1),

U = AppTolyg + (1= App)l,
(1.14)

Uyn-1 = AN Tl v + (1= Ay n-1) ],

Wy =UyN = Ay nTnUpn-1 + (1 = Ay N) T,

where {41}, { iz}, ..., {Aun] € [0,1]. Such a mapping W, is called the W-mapping generated
by Ty, T,,...,Tn and Ay 1, Ao, . .., Ay n. Nonexpansivity of each T; ensures the nonexpansivity
of W,,. Moreover, in [24, Lemma 3.1], it is shown that F(W,,) = ﬂf\zjl F(T;).

The concept of W-mappings was introduced in [25, 26]. It is now one of the main
tools in studying convergence of iterative methods for approaching common fixed points of
nonlinear mappings; more recent progresses can be found in [24, 27, 28] and the references
cited therein.

Following from W-mappings, Peng and Yao [29] introduced iterative schemes based
on the extragradient method for finding a common element of the set of solutions of
a generalized mixed equilibrium problem, the set of fixed points of a finite family of
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nonexpansive mappings, and the set of solutions of a variational inequality problem for a
monotone, Lipschitz continuous mapping. The sequence {x,} is generated by

x1=x€C,

F(un,y) +(y) — () + (Bxy, y — un) + rl(y —Up, Uy —Xn) 20, YyeC,
n (1.15)

Yn = Pc(un, — LAuy,),
Xns1 = 0nXpy + (1 — )Wy P (uy — MAy,), VneN,

where A is monotone and Lipschitz continuous mapping and B is an inverse-strongly
monotone mapping. They proved the weak convergence theorem if the sequences {a,} and
{ra} of parameters satisfy appropriate conditions.

In this paper, motivated by the above results and the iterative schemes considered by
Zhang et al. in [6], Peng et al. in [22], Peng and Yao in [29], and Plubtieng and Sriprad in
[23], we present a new general iterative scheme for finding a common element of the set of
solutions for mixed equilibrium problems, the set of solutions of the variational inclusions
with set-valued maximal monotone mapping and inverse-strongly monotone mapping, and
the set of fixed points of a family of finitely nonexpansive mappings in the setting of
Hilbert spaces. Then, we prove strong convergence theorem under some mind conditions.
Furthermore, by using above result, an iterative algorithm for solution of an optimization
problem was obtained. The results presented in this paper extend and improve the results of
Zhang et al. [6], Peng et al. [22], Peng and Yao [29], Plubtieng and Sriprad [23], and some
authors.

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (:,-) and let C be a closed
convex subset of H. When {x,} is a sequence in H, x, — x means that {x,} converges weakly
to x and x,, — x means the strong convergence. In a real Hilbert space H, we have

[l =ylI* = IxI* = |wl|* - 2¢x - v, ),

(2.1)
[[Ax + (1= Dy|* = Mxl® + @ = D[|y]]* - 2@ -V |lx -y

forall x,y € H and 1 € [0, 1]. For every point x € H, there exists a unique nearest point in C,
denoted by Pcx, such that

|x — Pex|| < ||[x-y| VyeC. (2.2)

Pc is called the metric projection of H onto C. It is well known that P is a nonexpansive
mapping of H onto C and satisfies

(x =y, Pex = Pcy) > ||Pex - Pey||? (2.3)
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for every x,y € H. Moreover, Pcx is characterized by the following properties:

Pex € C,
(x = Pcx,y— Pcx) <0, (2.4)
I = ylI* > llx = Pex|* + ||y - Pex||?
forallx e H,y € C.

Recall that a mapping A of H into itself is called p-inverse-strongly monotone if there
exists a positive real number f such that

(Au- Av,u—v) > a||Au— Aol (2.5)

for all u,v € H. It is obvious that any p-inverse-strongly monotone mapping A is (1/p)-
Lipschitz monotone and continuous mapping. We also have that, for all u,v € H and A > 0,

(I = XAA)u — (I - XA)o|* = ||(u - v) - \(Au - Av)||?
= ||lu—v|]* = 2Mu - v, Au— Av) + \?||Au - Av|*  (2.6)

< |lu—=o|* + A(A - 2a) || Au — Av|*.

So, if A < 2a, then I — 1A is a nonexpansive mapping from H into itself.
It is also known that H satisfies the Opial condition [30], that is, for any sequence
{xn} C H with x,, — x, the inequality

lim inf[|x, — x| < 1iﬂior.}f||xn | (2.7)

holds for every y € H with x #y.
For solving the mixed equilibrium problem, let us give the following assumptions for

the bifunction F, ¢, and the set C.

(A1) F(x,x) =0forall x € C.

(A2) F is monotone, thatis, F(x,y) + F(y,x) <0forall x,y € C.

(A3) Foreach x,y,z € C, lim;_oF(tz+ (1 - t)x,y) < F(x,y).

(A4) For each x € C, y — F(x,y) is convex and lower semicontinuous.

(A5) For each y € C,x — F(x,y) is weakly upper semicontinuous.

(B1) For each x € H and r > 0, there exist a bounded subset D, C C and y, € C, such
that forany z € C \ Dy,

F(z,yx) + ¢(yx) + %(yx -2,z2-X) < ¢(z) (2.8)

(B2) Cis a bounded set.
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We need the following lemmas for proving our main result.

Lemma 2.1 (Peng and Yao [31]). Let C be a nonempty closed convex subset of H. Let F : CxC — R
be a bifunction satisfying (A1)—(A5) and let ¢ : C — R U {+oo} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping
T, : H — C as follows:

T, (x) = {z €C:F(z,y)+op(y) + %(y—z,z—x) >p(z), Vy € C} (2.9)

forall z € H. Then, the following hold.

(1) For each x € H, T,(x) #0.
(2) T, is single valued.

(4) F(T;) = MEP(F, ¢).

)
)
(3) T, is firmly nonexpansive, that is, for any x,y € H, ||T,x — T,y|* < (T,x - T,y, x — y).
)
(5) MEP(F, ¢) is closed and convex.

Lemma 2.2 (Xu [32]). Assume that {a,} is a sequence of nonnegative real numbers such that

An+1 < (1 - an)an + 611/ n> O; (210)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) X an = o,
(2) limsup, ,_ (6,/an) <0o0r 3721 16, < oo.

Then lim,, _, wa, = 0.

Lemma 2.3 (Osilike and Igbokwe [33]). Let (E,(-,-)) be an inner product space. Then for all
x,y,z€Eand a,p,y € [0,1] witha + f+y =1, one has

llecx + py +yz[|” = allxl + BllylI* + yll=I - apllx ~ y|I* - ayllx — 21 - pylly =", 211)

Lemma 2.4 (Colao et al. [28]). Let C be a nonempty convex subset of a Banach space. Let {T; N
be a family of finitely nonexpansive mappings of C into itself and let {An1}, {An2), ..., {Aon] be
sequences in [0,1] such that A,; — ;i (i = 1,...,N). Moreover for every integer n > 1, let W
and Wy, be the W-mappings generated by T1,T,..., Tn and Ay, Ay, ..., AN and T1, Ty, ..., Tn and
(A1), {An2l, oo, {AuN}, respectively. Then for every x € C, it follows that

Tim [[W,x — Wx|| = 0. (2.12)

Lemma 2.5 (Suzuki [34]). Let {x,} and {y,} be bounded sequences in a Banach space X and let
{Bn} be a sequence in [0,1] with 0 < liminf, ., p, < limsup, B, < 1. Suppose that x,.1 =
(1 = Bu)Yn + Puxy for all integers n > 0 and limsup, _, _ ([Yns1 = Yull = 1Xns1 — x0ll) < 0. Then,
limy, — 0| yn = xull = 0.
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Lemma 2.6 (Marino and Xu [35]). Assume that A is a strongly positive linear bounded operator
on a Hilbert space H with coefficient y > 0and 0 < p < ||A[|™Y. Then ||I — pA|| <1 - py.

Lemma 2.7 (Brézis [5]). LetM : H — 2H be a maximal monotone mapping and A : H — H be
a Lipschitz continuous mapping. Then the mapping S = M + A : H — 2H is a maximal monotone

mapping.

Remark 2.8. Lemma 2.7 implies that I(A, M) is closed and convex if M : H — 2H is a
maximal monotone mapping and A : H — H is a Lipschitz continuous mapping.

Lemma 2.9 (Zhang et al. [6]). u € H is a solution of variational inclusion (1.2) if and only if
u = Jpa(u—AAu), forall L > 0, that is,

I(A, M) = F(Jma(I - AA)), VYA >0. (2.13)

3. Main Result

In this section, we prove a strong convergence theorem for finding a common element of the
set of fixed points of a family of finitely nonexpansive mappings, the set of solutions of a
mixed equilibrium problem, and the set of solutions of a variational inclusion problem for an
inverse-strongly monotone mapping in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let F be a
bifunction of C x C into real numbers R satisfying (A1)—(A5) and let ¢ : C — RU {+oo} be a proper
lower semicontinuous and convex function. Let f be a contraction of H into itself with coefficient
a € (0,1). Let A be an B-inverse-strongly monotone mapping of H into itself, M : H — 2H be a
maximal monotone mapping, and let B be a strongly bounded linear operator on H with coefficient
Yy>0and 0 <y <y/a. Let T1, Ty, ..., TN be a family of finitely nonexpansive mappings of C into H
such that Q := nr]:]: {F(Ti) N 1(A, M) " MEP(F, ¢) # 0 and let W,, be the W-mapping generated by
T, Ty,...,Tn and Xya, Ao, . .., Ay N. Assume that either (B1) or (B2) holds. Let {x,} be a sequence
generated by x1 € H and

1
F(un/]/) +‘P(y) —(uy) + r_<]/_”n/”n -x,) 20, VyeC(,

Yn = ]M,)L(un - -)LAun)/ (31)
Uy = ]M,)L(]/n - /\Ayn)/
X1 = Y f (%) + Puxy + (1= Bu)I — @, B)W, 0y,
for every n > 1, where {ay}, {fn} C (0,1),{rn} C (0,00), and X € (0,2p) satisfy the following
conditions:

(i) >0 oty = oo and limy, _ oty = 0,
(ii

(iii

liminf, .1, >0 and lim,_ o|rp1 — 1| =0,

0 <liminf, ., ,p, <limsup, ., pBn <1,

)
)
)
)

(iv) limy oo |Api — Ayo1il =0 foralli=1,2,...,N.
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Then {x,} converges strongly to z € Q, where z = Po(I — B + y f)(z), which is the unique solution
of the variational inequality

((B-yf)z,z-x)<0, xeQ. (3.2)

Proof. Since lim, _, »a, = 0, we may assume, without loss of generality, that a,, < (1-,)||B||
for all n. We assume that ||I — B|| < 1-¥. Since B is linear bounded self-adjoint operator on H,
we have

IBll = sup{[(Bx, x)| : x € H, ||x|| = 1}. (3.3)
Observe that
((1-Bu)I-a,B)x,x) =1- P, —ay(Bx,x) >1-f, —ay||B|| >0, (3.4)
this shows that (1 - ,)I — a,, B is positive. It follows that

1= )T = auBll = sup{[{((1 — o) - aB)x,x)] : x € ] = 1)
=sup{l -, —a.(Bx,x) :x € H,||x|| =1} (3.5)
< 1 _ﬂn _“n?-

Let p € Q, let {T,,} be a sequence of mappings defined as in Lemma 2.1, and let u, = T, x,.
For any n € N, we have

lleen =PIl = ITr, 0 = Trpll <l = pl- (3.6)

Since p € Q, we have p = Ja (p — LAp). From Jury and I — LA being nonexpansive, then we
have

lon =PIl = T3 (Y = AAYn) = Tma(p - AAp) ||
< || (yn = LAyn) - (p - AAP) ||
< lya -l
= | Tma (tn = LAuy) = Jia (p — LAp) || (3.7)
< | (un = AAu,) = (p = LAP) ||
< lun -
< |lxn - pll
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for all n € N. It follows that

l|xne1 = pIl = lletny f (n) + Puxtn + ((1 = Pu)I = auB)Wyvn - p|
= llaw(yf (xn) = BP) + Bu(xn = p) + ((1 = pu) I = auB) (Wovw = p) |
< aul|yf (xn) = Bp|| + Bullxn = p|| + (1 = Bu — aa¥) lon - p|
< aul|yf (xn) = Bp|| + Bullxn = Pl + (1 = Bu = aa¥) |20 - p| (3.8)
< anllyfGen) =yf ()| + anlly f (p) = Bp|l + (1 = aa¥) [|xn |
< anyal|x, = p|| + aullyf (p) = Bp|l + (1 - au¥) [lxn — p|l

- (1= (- yaan) o =l + -y L2221
for every n € N. It follows by mathematical induction that
(- Smax{”xl— I W} w1, (3.9)
Therefore, {x,} is bounded. We also obtain that {u,}, {W,v.}, {f(xn)}, {ya}, and {v,}, are

all bounded.
Next, we show that lim,, _, o ||X+1 — x| = 0. Observing that u, = T,,x, € dom¢ and

Up1 = Ty, Xne1 € dom @, we get
1
F(un,y) +9(y) — @(uy) + r—(y —Up,Up—Xy) 20 Yy eC, (3.10)
1
F(tns1,¥) + @(y) = 0(uns1) + r—l(y — Uni1, Uni1 = Xn1) 20 Vy € C. (3.11)
n+

Take v = 1,41 in (3.10) and y = u,, in (3.11); by using condition (A2), we obtain

<un+1 —u,, unr_ Xn _ Upi1 — xn+1> > 0. (312)

n Tn+1

Thus (Ups1 = Un, Up —Ups1 + Xne1 — Xn + (1 =70/ Tne1) (Une1 — Xne1) ) > 0. Without loss of generality,
let us assume that there exists a real number c such that r,, > ¢, for all n > 1. Then, we have

1-In
.

n+1

et — ]2 < s — 1t { e = all + et = | } (313)
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and hence

”un+1 - un” < ”xn+1 - xn” +

741 = Tulllttns1 — Xl

n
. (3.14)
1
< lxena = xall + Elrn+1 — 1| My,
where M, = sup{||lu, — x,|| : n € N}.
On the other hand, again since Jp1,, and I — 1A are nonexpansive, we obtain
||vn+1 - Un” = ”]M,)L (]/n+1 - /\A]/n+1) - ]M,)L (]/n - -)LAyn) ”
< | (Wner = AAYmi1) = (yn = LAy) |
< lynet =yl
e (3.15)
= ||]M,)L (un+1 - )LAunH) - ]M,A (un - )LAun)”
< Il(un+1 - AMuy) - (un - J\Ayn) ”
< ||un+1 - un”-
It follows from (3.14) and (3.15) that
1
lvn41 = Onll < X1 — X0l + Elrnﬂ = 1n| M. (3.16)
Define the sequence {z,} by x,:1 = (1 — B4)z4 + Pnxy, for all n > 1. Then, observe that
Zy = Xn+l — ﬁnxn
1-pa
_any f(xn) + Puxn + (1= Pu) I — anB)W, 0y — By (3.17)

1-pn

any f(xn) + (1= Pu)I - ay,B)W, 0,
1-p6, ’
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It follows that

an+1Yf(xn+1) + ((1 - ,ﬁn+1)I - an+1B)Wn+1Un+1

Zn+sl — Zn

1- ﬂn+1
any f(xn) + (1= pn)I - a,B)W,0,,
_ . ﬁn
_ an+1Yf(xn+l) 4 (1 _ﬁn+1)Wn+lvn+l B a1 BWyi10041
1- ﬂn+1 1- ﬂn+1 1- ﬂn+1 (3.18)

“an(xn) (1 - ﬂn)ann a,BW,v,
S e i b + 5,

o
= e (Yf(xwrl) - BWn+1vn+1)
1- ﬁn+1
o
+ 1 _nﬁ (BWHUT! - Yf(xn)) + Winop — Wyoy,.
n

From the definition of W,,, since T; and U,,;, i =1,2,..., N, are nonexpansive, we have

Wii10n = Wpon| = ([ At NTNU s, N-10n + (1 = A1, N)On = A, NTNU i, N-10n = (1 = Ay,n) On |
<A, N = A Nll[oall + A, NTNU a1, N-100n = Ag, NTNU 3, N-104 |
< Mnst,N = ANl llOnl + |41, N (TN U a1, N-100 = TNU, N-102) ||
+ [bst,N = A, NI TN U N-104 |

S2M |1, N = AN+ X, N [ U 1, N-100 = Uy N—104 ],
(3.19)

where M, is an approximate constant such that M, >  max{sup,,{lloall},
{supnzl{llelln,m,lvnH} |m=1,2,...,N}}.
SinceO< A, <1forallm>1andi=1,2,...,N, we compute

IUp+1,N-170 = U, N-10n]|
= |bast, N1 TN, N—200 + (1 = L1, N-1)Un = Ag, N1 TN-1 U, 205 = (1 = Ay N-1) 04|
< Ar1,N-1 = A N-alllonll + 11, N1 TN-1U 1, N-20n = Ay, N1 TN-1U i, N2 |
< n,N-1 = A N-ll|onll + X, N1 (TN-1U i1, N-20n = TN-1U i, N-200) ||
+ A, N-1 = A N[ TN U, N2 0|

< 2Mo A1, N-1 = ANt | + [[Uns1,N-20y = U N—2Dy ]|
(3.20)
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It follows that

IU i1, N-10n = U, N-10n ] £ 2Mo| A1, N-1 = ANt ] + 2Mo| A g1, N—2 = Ay N2
+ ||Un+1,N—SUn - un,N—SUn”

N-1
< 2]\/IZ Z |)‘n+1,i - )‘n,i| + ||un+1,1vn - un,lvn”
i=2

= 3.21
=2M> > Ane1i — Anil (521
i

+ ”-)Ln+1,1Tlvn + (1 - )ln+1,1)vn - -)Ln,lTl'Un - (1 - -)Ln,l)vn”

N-1

<2My Y i = Anl-
i1

Substituting (3.21) into (3.19) yields that

N-1
IWi10n = Wionll < 2Mo| AN = Ann |+ 24001, 8 M2 D [ = Al
i-1
N (3.22)
<2M, Y A = Anil,
i=1
and hence
(Whs10ne1 = Waon|l < [[Wii10ne1 = Wi 0all + [Whi1vn — Wy, ||
(3.23)

N
< lwner = vall + 2M2 D [ Awiri = Anil-
i-1

Combining (3.16) and (3.23), we obtain

Izt = 2all € 725 (S Gonnt) |+ 1BWasaomal) + 1

+ |Whe10ne1 — Wiy ||

e (1BWonl + £ o))

Xt
(|l f Gene) | + [1BWas1omeall) + 1

= - 75, (IBWoall + lyf o)

N
+ ||Un+1 - vn“ + ZMZZMnH,i - )ln,il
i=1

(lyf xust) || + IBWs1vman []) +

Xl

< —
=71_ ﬂ

L2 (IBW,onl + [y f )

+ ||xn+1 xn” + = |rn+1 rn|M1 + 2MZZ|/\n+11 - )‘n,il-
i=1
(3.24)
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So
o
||Zn+1 - Zn” - ||xn+1 - xn” < n—H(HYf(anrl)” + ||BWn+1Un+1||)
1 _ﬁn+1
e
+ 1- B, (”Bann” + ”Yf(xn)”) (3.25)

1 N
+ E|rn+1 - rnlMl + ZMZZMnH,i - -)tn,il'
i=1

Conditions (i)—(iv) imply that

tim sup (|21 — Zal ~ et ~ xall) <O. (3.26)

n—oo
Hence, by Lemma 2.5, we have

nlifc}oﬂzn — x|l =0. (3.27)

Consequently,

Jim floenen = xall = Hm (1= ) 120 = 2l = 0. (3.28)

From (ii), (3.14), (3.16), and (3.28), we also have ||u,41 — u,|| — 0 and ||v, — va|| — 0 as
n — oo. We note that

X1 — Xn = Y f (Xn) + Puxn + (1 = ) I — a,B)W,0,, — xy,
= anY f (xn) = anBxy + a0y Bxy + Py + (1= po)I — a,B)Wy0,
~((1 =B = auB)xy + (1= p)I - 2, B)x, — Xy, (3.29)
= an (yf(xn) = Bxn) + ((1 = Pu)I = anB) (W0 — x5)

< “n(Yf(xn) - an) + (1 - ﬁn - an?) Wy, - xn)
It follows that

(1 - ﬁn - “n?)”xn - Wy, < an”Yf(xn) - an” + |y = Xnial, (3.30)
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From (i), (iii), and (3.28), we obtain

nhjrolo”xn - Who,| = 0. (3.31)

Next, we shall show that lim,,_, . ||x, — u,|| = 0. For any p € Q, since T,, is firmly
nonexpansive, we have

|2 < <Trnxn - Tr,,Prxn - P> = <un —PrXn— P>

s = I = 1T~ Top
3.32
1 , , , (3.32)

= 2w I+l = pIF e~ 01P).

It follows that

lln = pII* < 120 = pII = s = (3.33)
Therefore, we have

ll2net = plI* = lltny f Gen) + Butu + (1= fu)T = @ B) Wy, =
= l|n(y f () = Bp) + Bu(u = p) + (1 = Bu) T = @uB) (Wi = p)||?
< aullyf(xn) = Bpll” + Bullxn = pl|* + (1 = fu = ) |0 — pI”
< aullyf Gea) = Bp|I* + Bullxa = pII” + (1= B = aa¥) [[un = p||°
< allyf (ea) = Bp|* + Bullen = pII” + (1= B = aa) ([l0n = P = llew = )

=t ||y f (xn) = Bp||* + (1 = ata¥) [|xn = p||* = (1= B — ) 20w — 0l
(3.34)

Then, we obtain
(1= Bn = ) [ = teall” < @l f () = Bp||* + (1 = ) 0 = pII* = [J20n1 = pI°

<t |y £ (xn) = Bp|* + s = xall (|20 = p| + 12001 = |])-
(3.35)
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By (i), (iii), and (3.28) imply that

Jim [l = un | = 0. (3.36)
Since liminf, _ 1, > 0, we have
. Xy — Uy 1
lim ||[——|| = lim —||x, —u,|| = 0. (3.37)
n— oo Tn n—owty

We note that, by (3.34), nonexpansiveness of Jjr, and the inverse-strong monotonicity
of A imply that

|1 = P11 < anlly f (en) = Bpl|* + Bull2n = p||* + (1= Bu — @) [ — p|°
= ||y f (xen) = Bp||* + Bul|2n - p|°
+ (1= Bu = ) | Tmia (Y = AAYw) = Jiaa (p - AAp) ||
< ||y f (xn) = Bp|* + Bullxa - P
+ (1= P = an)) || (yn = Mya) - (p - LAp) ||

(3.38)

< aully f(ea) = Bp|” + Bullxa — p|I°

+ (1= =) { llyn = pII* + 1(A - 28) [ Ay, — Ap|*}
< aully f(ea) = Bp||” + Bullxa — p|I°

+ (1= =) |lw = Pl + (1= pu = @) A(L = 29) | Ay, — Ap]?
< aullyfGea) = Bp|l* + lxa = pII* + (1= B - au¥)A(A - 28) | Ay — Ap] "

It follows from (i), (iii), and (3.28) that

0< (1-pu—aa))A(26 - 1) || Ayn - Ap|”

< au|y f () = Bp|* + [l = pII* = [|uer ~pII° (3.39)

< anllyf (en) = Bpll” + It = st ([0 =PIl + [lena = pIl) — 0,
which implies that

|Ayn — Ap|| — 0, asn— oo. (3.40)
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On the other hand, since Jj1, is firmly nonexpansive, we have

0w =PI = 11 /ma (Y = LAY) = Tma(p = AAp)||*
< ((¥n — LAyn) = (p - LAp),vn - p)

= 2 {1 = 149.) ~ (- 14p) I + flow —pI
(| (¥n = AAya) - (p - 1Ap) - (vu - p) |}

< {llyn =PI+ low=pI* = | (g = 02) = M(Aya - 4p) |I*}

2 2 2
{Hly =plI* + llow = pIP = [l = vl

NI= N =

+20(y = 0, Ayn — Ap) = 12| Ay, - Ap|*}

1 5 5 5
< 2 {lyn =PI+ l1ow oI ~ 1y — 4l

+2)lyn = oul| | Ayn - Ap|l - 22| Ays - Ap]I*},

which yields that

2 2 2
lon =plI” < lyn =PI = [lyn = oall” + 2| yn — v || || Ayn — Ap]|-

From (3.34) and (3.42), we obtain

et = pII” < @ullyf Gen) = Bpll* + Bulln = pII” + (1= u = aa?) lon = pII”

< ||y f (xn) = B + Bullxn - p||°

+ (1= Bu = @) {190 = II* = llyn = oall® + 20l yn - 0ull | Ay - Ap| }

< aullyf () = Bp||” + Bullxn = pII* + (1= Bu = &) |xn — pI°
= (1= B = ) [y - oal*
+20(1 = Bu — a¥) [|yn — vul| || Ay - Ap||

< ||y fGen) = Bp||* + |0 = plI” = (1= o = au¥) ||y — va|”
+20(1 = P = an¥) [|yn — o[ | Ayn — Ap]-

17

(3.41)

(3.42)

(3.43)
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Hence, we get

(1= Pu =) llyn = vull” < aullvf Gen) = Bp||” + xn = pII* = [l = I
+20(1 = pu = an¥) [[yn = val| | Ay — Ap]|
< [y f (en) = Bp||” + 11xn = Xnea | (120 = p | + |01 = 1)
+20(1 = pu = an?) [lyn = oall | Ay - Ap].

(3.44)
By (i), (iii), (3.28), and (3.40), we have
Tim [|y = va]| = 0. (3.45)
Similarly, we can prove that
JEI;JHA“" - Ap|| =0. (3.46)
By the same idea in (3.42), (3.45) and using (3.46), then we obtain that
Tim [|uy = yn| = 0. (347)
From
IWon = 0all < Wnvn = xall + 1% = nll + [[1tn =yl + [y = 0al, (348)
hence
Jim [Wy0, =, =0, (3.49)
and also
o = 2ull < [|on = yull + l|yn = tnl| + 1t = x0ll — 0 as n — oo. (3.50)

Observe that Po(I — B +yf) is a contraction of H into itself. Indeed, for all x,y € H, we have

[Pa(I-B+yf)(x)=Pa(I-B+yf)(y)| < [[T-B+yf)(x) - (IT-B+yf) ()]
<IT=Bllflx =yl +yllf ) = FW)l
<@A=-Pllx -yl +yallx -yl
= (1= -ya)llx -yl

(3.51)
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Since H is complete, there exists a unique fixed point z € H such that z = Po(I - B+ yf)z.
Next, we show that

limsup((B-yf)z,z—x,) <0. (3.52)

n—oo

Indeed, we can choose a subsequence {v,,} of {v,} such that

ili—>n;;<(B —-Yf)z,z-vy) =limsup((B-yf)z,z —v,). (3.53)

n— oo

Since {v,,} is bounded, there exists a subsequence {Umj } of {v,,} which converges weakly to
v € C. Without loss of generality, we can assume that v,, — v. From |W, v, — v,|| — 0, we
obtain W,v,, — v. Let us show that v € MEP(F, ). Since u, = T;,x, € dom ¢, we have

F(uny) +¢(y) - ¢(un) + rl<y — U, Uy —%n) 20, VyeC. (3.54)
From (A2), we also have
1
(y) = @) + —(y =t ttn = ) 2 F(y, 1), Vy €C, (3.55)

and hence

Up, — Xp,

¢(y) = p(un) + <y — Un,, > >F(y,uy), YyeC. (3.56)

n;

From ||x, — u,|| — O, |[x, - Wyo,|| — 0, and [|[W,v, — v,]| — 0, we get u,, — v. Since
(Un, = xn,) /1w, — 0, it follows by (A4) and the weakly lower semicontinuity of ¢ that

F(y,v) +¢(v)-¢(y) <0, VYyeC. (3.57)

FortwithO<t<landy € C lety, =ty + (1 -t)v.Sincey € Cand v € C, we have y; € C,
and hence F(y;, v) + ¢(v) — ¢(y;) < 0. So, from (A1), (A4), and the convexity of ¢, we have

0=F(ye,y) +o(ys) — ()
<ty ) + (1 - OF (y,0) + tp(y) + (1 - Do) - o(v:) (3.58)
<HF(yny) +o(y) —o(y1))-

Dividing by t, we get F(y:,y) + ¢(y) — ¢(y:) > 0. From (A3) and the weakly lower
semicontinuity of ¢, we have F(v, y) +¢(y) —¢(v) > 0 forall y € C, and hence v € MEP(F, ¢).
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Next, we show thatv € F(W,,) = mi}’:l F(T;). Assume that v ¢ ﬂfll F(T;).Since v,, — v
and W, v # v, from Opial’s condition, we have

liminf||v,, — v|| < liminf||v,, - W,0||
1— 00 1— 00
< lim inf({|vy, — Wnvn[| + [Waon, - Waol)) (3.59)

< h.minf”Un,- - UH,
1— 00

which is a contradiction. Thus, we obtain v € F(W,,) = ﬂnNzl F(T;).

Next, we show that v € I(A, M). In fact, having A as fp-inverse-strongly monotone,
implies that A is (1/f)-Lipschitz continuous monotone mapping and that domain of A is
equal to H. It follows from Lemma 2.7 that M + A is a maximal monotone. Let (y, g) € G(M +
A), thatis, g— Ay € M(y). Since vy, = Jpa (Yn, — AAYy,), we have y,, —ALAy,, € (I +AM)(vy,),
that is,

%(yni ~Un; — )LAyTli) € M(vni)‘ (360)
With M + A being a maximal monotone, we have
1
<y = O § =AY = 3 (Y = On = iAyn,-)> 20, (3.61)
and so
1
(V= 0n,8) 2 (Y =0, Ay + 5 (Y, = On = A AYw,)
1
= <y — U, AY — AUy, + AUy, — AYn, + 1 (Y, — vni)> (3.62)
1
>0+ (y — Uy, Avy, — Ayp,) + <y - Uy, X<y"i - vni)>.
It follows from ||y, — v,|| — O, |[Ay, — Av,|| — 0, and v,, — v that
Hm (y -y, g) =(y-v,8) 20. (3.63)

It follows from the maximal monotonicity of M + A that 0 € (M + A)(v), thatis, v € I(A, M).
This implies that v € Q.
Since z = Po(I — B + yf)(z), it follows that

limsup((B-yf)z z—x,) =limsup((B-yf)z z—vy)

n—oo n—oo

= lim (B /)2~ ) = ((B-1f)z 2~ 0) 0.

(3.64)
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By (3.49), (3.50), and the last inequality, we have

limsup(y fz — Bz, W, v, — z) < 0. (3.65)

n— oo

Finally, we show that {x,} converges strongly to z. Indeed, from (3.1), we have

enis = 217 = lanyf Gen) + Buxn + (1= Bu) I = @uB)Wyoy - 2|
= Nl (y £ (@n) = B2) + Bu(tn = 2) + (1 = u)T = auB) (Wyvy - 2) ||
= @2y f(xn) = Bz|]* + [|Bun = 2) + (1 = fu) ] — uB) Wyt - 2) ||
+2(Pu(xn— z) + ((1 - ﬂn)I - oan) Wy, — z),an(yf(xn) - Bz))
< @Iy f(xen) = Bzl[* + (Bulltn = 2l + (1= B = &) 0w — 211)°
+ Zanﬂn<xn -z, 7f(xn) - Bz) + 20, (1 = B — any) (Wyvy — 2,y f (x4) — Bz)
< @2 |y f(xn) = Bz|[* + (Bulln — 2l| + (1 = o — @) I ~ 21))°
+2anPn(xn — 2, ¥ f (Xn) = Y f(2)) + 20nPu(xn — 2,y f(2) — Bz)
+ 20, (1 = B = ) (Wavn = 2,7 f (x) = Y f(2))
+ 20, (1 = B — ) (Wnv, — 2,y f (z) — Bz)
< ay|lyf(xn) = Bz* + (1 - @ay)’llxa - 2|
+ 20, By |13 — 2l £ (n) = £(2)|| + 200 (X0 — 2,7 f () - B2)
+ 20, (1 = B — ) Y IIWoow = zl|[| f (xn) = f(2) |
+ 20, (1 = P — ) (Wnv, — 2,y f (z) — Bz)
< ay|lyf(xn) = Bz* + (1 - @ay)’llxa - 2|
+ 20, Bnyal| X, — z|* + 2200 (xn — 2,7 f(2) - Bz)
+ 20, (1= B — an¥) yal|xn — z|I* + 20, (1 = By — ) (Wvn — 2,7 f(2) - Bz)
= oIy f (en) = Bz|[ + (1 - 20 + a2 + 2aaya - 2ya) |, — 21
+2a,fn{xy — 2,7 f(2z) - Bz) + szn(l —Pn - an?)(ann -z,7f(z) - Bz)

= <1 -a, (2? - an?z - 2ya+ 2an7ya>) [[xn — z||2 + a0y,
(3.66)

where 0, = aully f (xn) = Bz|* + 2B (xn — 2, Y f (2) = Bz) +2(1 = fu — an}) (Wuvn — 2,y f (2) — B2).
By (3.65), we getlimsup, _, 0, < 0. Hence by Lemma 2.2 to (3.66), we conclude that x,, — z.
This completes the proof. O
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Using Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let F be a
bifunction of C x C into real numbers R satisfying (A1)—(A5) and let f be a contraction of H into
itself with coefficient & € (0,1). Let A be an p-inverse-strongly monotone mapping of H into itself
and let M : H — 2H be a maximal monotone mapping such that © := F(T) N1(A, M) NEP(F) # 0.
Let {x,} be a sequence generated by x, € H and

1
F(un,y) + r—(y—un,un—xn) >0, VyeC,
n

Yn = v (un — LAuy), (3.67)

Xn+l = “an(xn) + ,ann + (1 - ,Bn - Otn)T]M,,\ (]/n - .)LAyn)

for every n > 1, where {a,}, {fn} C (0,1),{rn} C (0,00), and A € (0,2p) satisfy the conditions
(i)—(iii) in Theorem 3.1. Then {x,} converges strongly to z = Poy f(2).

Proof. Taking T; =T fori=1,2,...,N, B =1,and ¢ = 0, in Theorem 3.1, we can conclude the
desired conclusion easily. This completes the proof. O

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let F be a
bifunction of C x C into real numbers R satisfying (A1)—(A5) and let ¢ : C — RU {+oo} be a proper
lower semicontinuous and convex function. Let f be a contraction of H into itself with coefficient
a € (0,1). Let A be an p-inverse-strongly monotone mapping of C into H and let B be a strongly
bounded linear operator on H with coefficienty > 0and 0 <y <y/a. Let Ty, Ty, ..., Tn be a family of
finitely nonexpansive mappings of C into H such that Y := (., F(T;) N VI(C, A) N MEP(F, ¢) #0
and let W, be the W-mapping generated by T1, Ty, ..., T and Ay, Ao, . .., Ay N. Assume that either
(B1) or (B2) holds. Let {x,} be a sequence generated by x, € H and

1
F(uny) +¢(y) — @un) + r_<]/_un/un -x4) 20, VyeC,

Yn = Pc(tn — LAuy), (3.68)
Un = PC (yn - )‘Ayn)/
X1 = Y f (Xn) + Puxn + ((1 = u)I — a,B)W, 0y,
For every n > 1. where {ay}, {fn} C (0,1),{r,} C (0,00), and XA € (0,2p) satisfy the condition

(i)—(iv) in Theorem 3.1. Then {x,} converges strongly to z € Y which is the unique solution of the
variational inequality

((B-yf)z,z-x)<0, x€Y. (3.69)

Equivalently, one has z = Py(I - B+ yf)(z).

Proof. From Theorem 3.1 put M = 06¢; then Jyy = Pc. So we have y, = Pc(u, — LAuy,)
and v, = Pc(y, — AAyy). The conclusion of Corollary 3.3 can be obtained from Theorem 3.1
immediately. O
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4. Application

In this section, we study a kind of optimization problem by using the result of this paper.
We will give an iterative algorithm of solution for the following optimization problem with
nonempty set of solutions:

min h(x), xe€C, (4.1)

where h(x) is a convex and lower semicontinuous functional defined convex subset C of a
Hilbert space H. We denote by M (h) the set of solutions of (4.1). Let F : CxC — Rbe a
bifunction defined by F(x,y) = h(y) — h(x). We consider the equilibrium problem (1.8); it is
obvious that EP(F) = Min(h). Therefore, from Theorem 3.1, we give the following corollary.

Corollary 4.1. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let F be a
bifunction of C x C into real numbers R satisfying (A1)—(A5) and let h : C — R U {+co} be a lower
semicontinuous and convex function. Let f be a contraction of H into itself with coefficient a € (0, 1).
Let A be an B-inverse-strongly monotone mapping of H into itself, let M : H — 2H be a maximal
monotone mapping, and let B be a strongly bounded linear operator on H with coefficient y > 0 and
0<y<y/a. LetTy,Ty,..., TN bea family of finitely nonexpansive mappings of C into H such that
D= ﬂfl\il F(T;) N I(A, M) nMin(h) # 0 and let W), be the W-mapping generated by T1, T», ..., Tn
and Xy, Ao, ..., AN Let {x,} be a sequence generated by x1 € H and

h(y)_h(un)-'-rl(y_un/un_xn)ZO, VyEC,
n

]/n = ]M,)L(un - -)LAun)/ (42)
Un = ]M,)L(]/n - /\Ayn)/
X1 = &Y f (Xn) + Puxy + (1= Bu)I — @, B)W, 0y,

for every n > 1, where {ay,}, {Bn} C (0,1),{rn} C (0,00), and A € (0,2p) satisfy the following
conditions:

(i) >0 an = oo and limy, _, ., = 0.

(ii) iminf, 7, >0 and lim, _ |ty —1a] = 0.
(iii) 0 < liminf, ., B, < limsup, , B, <1.
(iv) limy, oA = A1l =0 foralli=1,2,...,N.

Then {x,} converges strongly to z € @, where z = Po(I — B + y f)(z), which is the unique solution
of the variational inequality

(B-yf)z,z-x)<0, xe€®. (4.3)

Proof. From Theorem 3.1 put F(u,,y) = h(y) — h(u,) and ¢ 0. The conclusion of
Corollary 4.1 can be obtained from Theorem 3.1 immediately. O
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