
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 350517, 8 pages
doi:10.1155/2010/350517

Research Article
Asymptotics for the Moment Convergence of
U-Statistics in LIL

Ke-Ang Fu

School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China

Correspondence should be addressed to Ke-Ang Fu, fukeang@hotmail.com

Received 18 September 2009; Accepted 18 January 2010

Academic Editor: Andrei Volodin

Copyright q 2010 Ke-Ang Fu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

LetUn be aU-statistic based on a symmetric kernel h(x, y) and i.i.d. samples {X,Xn;n ≥ 1}. In this
paper, the exact moment convergence rates in the law of the iterated logarithm and the law of the
logarithm of Un are obtained, which extend previous results concerning partial sums.

1. Introduction and Main Result

Let h(x, y) be a real-valued Borel measurable function, symmetric in its arguments. Define a
U-statistic based on an independent and identically distributed (i.i.d.) sequence {X,Xn;n ≥
1} and kernel function h as follows:

Un :=

∑
1≤i<j≤n h

(
Xi,Xj

)

(
n

2

) , n ≥ 2. (1.1)

This class of U-statistics was introduced by Hoeffding [1] and Halmos [2] in the 1940s, and
we have witnessed a rapid development in asymptotic theory of U-statistics since then (see
Koroljuk and Borovskich [3] and Serfling [4] for more details).

It is well known that, initiating from the work of Gut and Spătaru [5], many authors
devoted themselves to the research of precise asymptotics. Recently, Zhou et al. [6] studied
the precise asymptotics of a special kind of statistics, which includes the U-statistics, Von-
Mises statistics, linear processes, moving average processes, error variance estimates in linear
models and power sums. One of their main results is as follows, which reflects the exact
probability convergence rate in the law of the iterated logarithm.
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Theorem A. Let {Xn;n ≥ 1} be a sequence of i.i.d. random variables with mean zero and variance
one. Let Tn = Tn(X1, . . . , Xn) be a random function or statistic satisfying Tn = Sn + Rn, where
Sn =

∑n
i=1 Xi. If E|Rn|2 < ∞, then for any b > −1,

lim
ε↘0

ε2(b+1)
∞∑

n=1

(
log logn

)b

n logn
P

(

|Tn| ≥ ε
√
2n log logn

)

=
1

(b + 1)
√
π
Γ
(

b +
3
2

)

, (1.2)

where Γ(·) is the Gamma function and logn = log(n ∨ e), n ≥ 0.

Since Theorem A requires a strong condition, that is, E|Rn|2 < ∞, Yan and Su [7]
investigated the precise asymptotics of U-statistics under minimal conditions and got the
following result.

Theorem B. Let Un be a U-statistic given by (1.1). Suppose that for some 0 < δ ≤ 1, ζ1 =

E(h̃1(X1))
2
> 0, E(h̃1(X1))

2+δ
< ∞ and E|h(X1, X2)|(4+δ)/3 < ∞, where h̃1(x) = E(h(X1, X2) |

X1 = x) − μ and μ = Eh(X1, X2). Then for any b > −1,

lim
ε↘0

ε2(b+1)
∞∑

n=1

(
log logn

)b

n logn
P

(

|Un| ≥ ε
√
2n−1 log logn

)

=
1

(b + 1)
√
π
Γ
(

b +
3
2

)

. (1.3)

On the other hand, for the i.i.d. sequence {X,Xn;n ≥ 1}, it is noted that Chow [8] first
introduced the well-known complete moment convergence and gave the result as follows.

Theorem C. Suppose that EX = 0. For 0 < p < 2, r > 1 and rp ≥ 1, if E(|X|rp + |X| log(1 + |X|)) <
∞, then for any ε > 0,

∞∑

n=1

nr−2−1/pE
{

max
1≤k≤n

|Sk| − εn1/p
}

+
< ∞, (1.4)

where {x}+ = x ∨ 0.

Inspired by them, in this paper, we aim to establish a moment version of Theorem B
for U-statistics. Our main result reads as follows.

Theorem 1.1. Let Un be a U-statistic given by (1.1). Suppose that Eh(X1, X2) = 0 and
E|h(X1, X2)|2 < ∞. Then for any b > −1/2,

lim
ε↘0

ε2(b+1)
∞∑

n=2

(
log logn

)b−1/2

n logn
E

{√
n|Un| − ε

√
2 log logn

}

+
=

2−1/2−bE|N|2(b+1)
(b + 1)(2b + 1)

, (1.5)

whereN is a normal random variable with mean zero and variance 4ζ1.
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Remark 1.2. Here we consider the moment convergence rates of U-statistic in the law of the
iterated logarithm, extending the results of Zhou et al. [6] and Yan and Su [7] for exact
probability convergence rates and reflecting the convergence rates of the law of the iterated
logarithm more directly.

By some modifications, we can get the following result easily.

Theorem 1.3. Under the assumptions of Theorem 1.1, One has that for d > 0 and 1/2 < b+1/d < 1,

lim
ε↘0

ε2b+(2/d)−1
∞∑

n=2

(
logn

)bd−d/2

n
E
{
n1/2|Un| − ε

(
logn

)d/2
}

+
=

dE|N|2b+2/d
(bd + 1)(2bd + 2 − d)

. (1.6)

Remark 1.4. Note that in our theorem, we assume E|h(X1, X2)|2 < ∞, which is stronger than
the condition imposed by Yan and Su [7], and required only to use a moment bound of Chen

[9] given in Lemma 2.1. However, the assumption E(h̃1(X1))
2+δ

< ∞ in Yan and Su [7] is
weakened.

2. Proof of Theorem 1.1

Note that E|h(X1, X2)|2 < ∞ readily implies ζ1 = E(h̃1(X1))
2
< ∞. Thus without loss of

generality, assume E(h̃1(X1))
2
= 1/4. In the sequel, let C denote a positive constant whose

value possibly varies from place to place and the notation of [x]means the integer part of x.
We first introduce some useful lemmas, which are known as the moment inequality of

U-statistics and the Toeplitz lemma, respectively.

Lemma 2.1 (Chen [9]). LetUn be given by (1.1). Suppose that Eh(X1, X2) = 0 and E|h(X1, X2)|q <
∞ for q ≥ 2. Then there exists a constant Dq depending only on q such that

E|Un|q ≤ Dqn
−qE|h(X1, X2)|q. (2.1)

Lemma 2.2 (Stout [10]). Let {ani} be a matrix of real numbers and {xi} a sequence of real numbers.
Let xi → x as i → ∞. Then

∞∑

i=1

|ani| ≤ M < ∞ ∀n ≥ 1,

∞∑

i=1

ani −→ 1 as n −→ ∞,

ani −→ 0 as n −→ ∞ for each i ≥ 1

(2.2)
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imply that

∞∑

i=1

anixi −→ x as n −→ ∞. (2.3)

In what follows, for M > 4 and 0 < ε < 1/4, we set a(ε) = [exp(exp(M/ε2))]. The
proof is very much modeled for proving results in the area of precise asymptotics, and hence
Theorem 1.1 follows immediately by applying the following propositions.

Proposition 2.3. For any b > −1/2, one has

lim
ε↘0

ε2b+1
∞∑

n=1

(
log logn

)b−1/2

n logn
E

{

|N| − ε
√
2 log logn

}

+
=

2−1/2−bE|N|2(b+1)
(b + 1)(2b + 1)

, (2.4)

whereN is defined as above.

Proof. Notice that

lim
ε↘0

ε2b+1
∞∑

n=1

(
log logn

)b−1/2

n logn
E

{

|N| − ε
√
2 log logn

}

+

= lim
ε↘0

ε2b+1
∫∞

ee

(
log logy

)b−1/2

y logy

∫∞

ε
√

2 log logy
P{|N| ≥ x}dxdy

= 21/2−blim
ε↘0

∫∞
√
2ε
z2b

∫∞

z

P{|N| ≥ x}dxdz

= 21/2−blim
ε↘0

∫∞
√
2ε
P{|N| ≥ x}

∫x

√
2ε
z2bdzdx

=
21/2−b

2b + 1
lim
ε↘0

∫∞
√
2ε
P{|N| ≥ x}x2b+1dx

=
2−1/2−bE|N|2(b+1)
(b + 1)(2b + 1)

.

(2.5)

Proposition 2.4. For b > −1/2, one has

lim
ε↘0

ε2b+1
∑

n≤a(ε)

(
log logn

)b−1/2

n logn

∣
∣
∣
∣E

{

|N| − ε
√
2 log logn

}

+
− E

{

n1/2|Un| − ε
√
2 log logn

}

+

∣
∣
∣
∣ = 0.

(2.6)
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Proof. Set Δn = supx∈R|P(|N| ≥ x) − P(n1/2|Un| ≥ x)|. Then, from the central limit theorem for
U-statistics (cf. Koroljuk and Borovskich [3]), it follows that Δn → 0 as n → ∞. Note that

ε2b+1
∑

n≤a(ε)

(
log logn

)b−1/2

n logn

∣
∣
∣
∣E

{

|N| − ε
√
2 log logn

}

+
− E

{

n1/2|Un| − ε
√
2 log logn

}

+

∣
∣
∣
∣

= ε2b+1
∑

n≤a(ε)

(
log logn

)b−1/2

n logn

∣
∣
∣
∣

∫∞

0
P

(

|N| ≥ x + ε
√
2 log logn

)

dx

−
∫∞

0
P

(

n1/2|Un| ≥ x + ε
√
2 log logn

)

dx

∣
∣
∣
∣

≤
√
2ε2b+1

∑

n≤a(ε)

(
log logn

)b

n logn

∫∞

0

∣
∣
∣
∣P

(

|N| ≥ (x + ε)
√
2 log logn

)

−P
(

n1/2|Un| ≥ (x + ε)
√
2 log logn

)∣
∣
∣
∣dx

≤
√
2ε2b+1

∑

n≤a(ε)

(
log logn

)b

n logn
(Pn1 + Pn2),

(2.7)

where

Pn1 :=
∫ (log logn)−1/2Δ−1/2

n

0

∣
∣
∣
∣P

(

|N| ≥ (x + ε)
√
2 log logn

)

−P
(

n1/2|Un| ≥ (x + ε)
√
2 log logn

)∣
∣
∣
∣dx,

Pn2 :=
∫∞

(log logn)−1/2Δ−1/2
n

∣
∣
∣
∣P

(

|N| ≥ (x + ε)
√
2 log logn

)

−P
(

n1/2|Un| ≥ (x + ε)
√
2 log logn

)∣
∣
∣
∣dx.

(2.8)

Thus, for Pn1, by applying Lemma 2.2, we have

ε2b+1
∑

n≤a(ε)

(
log logn

)b

n logn
Pn1 ≤ ε2b+1

∑

n≤a(ε)

(
log logn

)b−1/2

n logn
Δ1/2

n

≤ Mb+1/2 1
(
log loga(ε)

)b+1/2

∑

n≤a(ε)

(
log logn

)b−1/2

n logn
Δ1/2

n −→ 0, as ε ↘ 0.

(2.9)
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As for Pn2, coupled with Markov’s inequality and Lemma 2.1 with q = 2, then an application
of Lemma 2.2 provides

ε2b+1
∑

n≤a(ε)

(
log logn

)b

n logn
Pn2

≤ Cε2b+1
∑

n≤a(ε)

(
log logn

)b

n logn

∫∞

(log logn)−1/2Δ−1/2
n

(
1

(x + ε)2 log logn
+

n−1

(x + ε)2 log logn

)

dx

≤ Cε2b+1
∑

n≤a(ε)

(
log logn

)b

n logn

∫∞

(loglogn)−1/2Δ−1/2
n

1

(x + ε)2 log logn
dx

≤ Cε2b+1
∑

n≤a(ε)

(
log logn

)b−1/2

n logn
Δ1/2

n −→ 0, as ε ↘ 0.

(2.10)

Hence (2.6) holds true.

Proposition 2.5. For 0 < ε < 1/4 and b > −1/2, one has uniformly

lim
M→∞

ε2b+1
∑

n>a(ε)

(
log logn

)b−1/2

n logn
E

{

|N| − ε
√
2 log logn

}

+
= 0. (2.11)

Proof. Note that for k large enough,

ε2b+1
∑

n>a(ε)

(
log logn

)b−1/2

n logn

∫∞

0
P

{

|N| ≥ ε
√
2 log logn + x

}

dx

≤ Cε2b+1
∑

n>a(ε)

(
log logn

)b

n logn

∫∞

0
P

{

|N| ≥ (x + ε)
√
2 log logn

}

dx

≤ Cε2b+1
∑

n>a(ε)

(
log logn

)b

n logn

∫∞

0

E|N|k

(x + ε)k
(
log logn

)k/2dx

≤ Cε2b−k+2
∑

n>a(ε)

(
log logn

)b−k/2

n logn
= CMb−(k−2)/2 −→ 0,

(2.12)

whenM → ∞, uniformly for 0 < ε < 1/4.

Proposition 2.6. Under the assumptions of Theorem 1.1, one has

lim
ε↘0

ε2b+1
∑

n>a(ε)

(
log logn

)b−1/2

n logn
E

{

n1/2|Un| − ε
√
2 log logn

}

+
= 0. (2.13)
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Proof. Notice that by virtue of Lemma 2.1 with q = 2, it follows that

ε2b+1
∑

n>a(ε)

(
log logn

)b−1/2

n logn
E

{

n1/2|Un| − ε
√
2 log logn

}

+

= ε2b+1
∑

n>a(ε)

(
log logn

)b−1/2

n logn

∫∞

ε
√

2 log logn
P
(
n1/2|Un| ≥ x

)
dx

≤ Cε2b+1
∑

n>a(ε)

(
log logn

)b−1/2

n2 logn

∫∞

ε
√

2 log logn

1
x2

dx

≤ Cε2b
∑

n>a(ε)

(
log logn

)b−1

n2 logn
≤ Cε2b

∑

n>a(ε)

1
n3/2

≤ Cε2ba(ε)−1/2 −→ 0, as ε ↘ 0.

(2.14)

Proof of Theorem 1.1. Theorem 1.1 follows from Propositions 2.3–2.6 by using the triangle
inequality immediately.

3. Proof of Theorem 1.3

By some simple modifications, Theorem 1.3 can be got similarly. For completeness, we state
the similar Propositions 3.1–3.4 in the following without details.

Proposition 3.1. For d > 0 and b + 1/d > 1/2, one has

lim
ε↘0

ε2b+(2/d)−1
∞∑

n=1

(
logn

)bd−d/2

n
E
{
|N| − ε

(
logn

)d/2
}

+
=

dE|N|2b+2/d
(bd + 1)(2bd + 2 − d)

. (3.1)

Proposition 3.2. For d > 0 and b + 1/d > 1/2, one has

lim
ε↘0

ε2b+(2/d)−1
∑

n≤c(ε)

(
logn

)bd−d/2

n

∣
∣
∣E
{
|N| − ε

(
logn

)d/2
}

+
− E

{
n1/2|Un| − ε

(
logn

)d/2
}

+

∣
∣
∣ = 0,

(3.2)

where c(ε) = [exp(M/ε2)].

Proposition 3.3. For d > 0 and b + 1/d > 1/2, one has

lim
M→∞

lim
ε↘0

ε2b+(2/d)−1
∑

n>c(ε)

(
logn

)bd−d/2

n
E
{
|N| − ε

(
logn

)d/2
}

+
= 0. (3.3)
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Proposition 3.4. For d > 0 and 1/2 < b + 1/d < 1, one has

lim
M→∞

lim
ε↘0

ε2b+(2/d)−1
∑

n>c(ε)

(
logn

)bd−d/2

n
E
{
n1/2|Un| − ε

(
logn

)d/2
}

+
= 0. (3.4)
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