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Some nonlinear weakly singular integral inequalities in two variables which generalize some
known results are discussed. The results can be used as powerful tools in the analysis of certain
classes of differential equations, integral equations, and evolution equations. An example is
presented to show boundedness of solution of a differential equation here.

1. Introduction

Various singular integral inequalities play an important role in the development of the
theory of differential equations, functional differential equations, and integral equations. For
example, Henry [1] proposed a linear integral inequality with singular kernel to investigate
some qualitative properties for a parabolic differential equation, and Sano and Kunimatsu
[2] gave a modified version of Henry type inequality. However, such results are expressed by
a complicated power series which are sometimes inconvenient for their applications. To avoid
the shortcoming of these results, Medveď [3] presented a new method to discuss nonlinear
singular integral inequalities of Henry type and their Bihari version as follows:

u(t) ≤ a(t) +
∫ t

0
(t − s)β−1sγ−1F(s)u(s)ds,

u(t) ≤ a(t) +
∫ t

0
(t − s)β−1F(s)w(u(s))ds,

(1.1)

and the estimates of solutions are given, respectively. In [4], Medveď also generalized his
results to an analogue of the Wendroff inequalities for functions in two variables. From then
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on, more attention has been paid to such inequalities with singular kernel (see [5–9]). In
particular, Ma and Yang [8] used a modification of Medveď method to obtain pointwise
explicit bounds on solutions of more general weakly singular integral inequalities of the
Volterra type, and later Ma and Pečarić [9] used this method to study nonlinear inequalities
of Henry type. Recently, Cheung et al. [10] applied the modified Medveď method to
investigate some newweakly singular integral inequalities ofWendroff type and applications
to fractional differential and integral equations.

In this paper, motivated mainly by the work of Ma et al. [8, 9] and Cheung et al. [10],
we discuss more general form of nonlinear weakly singular integral inequality of Wendroff
type for functions in two variables

u
(
x, y

) ≤ a
(
x, y

)
+
∫x

0

∫y

0
(xα − sα)β−1sγ−1

(
yα − tα

)β−1
tγ−1f

(
x, y, s, t

)
w(u(s, t))ds dt. (1.2)

Our results can generalize some known results and be used more effectively to study the
qualitative properties of the solutions of certain partial differential and integral equations.
Moreover, an example is presented to show the usefulness of our results.

2. Main Result

In what follows, R denotes the set of real numbers, and R+ = (0,∞). C(X, Y) denotes the
collection of continuous functions from the setX to the set Y .D1z(x, y) andD2z(x, y) denote
the first-order partial derivatives of z(x, y) with respect to x and y, respectively.

Before giving our result, we cite the following definition and lemmas.

Definition 2.1 (see [8]). Let [x, y, z] be an ordered parameter group of nonnegative real
numbers. The group is said to belong to the first-class distribution and is denoted by
[x, y, z] ∈ I if conditions x ∈ (0, 1], y ∈ (1/2, 1), and z ≥ 3/2 − y are satisfied; it is said to
belong to the second-class distribution and is denoted by [x, y, z] ∈ II if conditions x ∈ (0, 1],
y ∈ (0, 1/2] and z > (1 − 2y2)/(1 − y2) are satisfied.

Lemma 2.2 (see [8]). Let α, β, γ , and p be positive constants. Then,

∫ t

0
(tα − sα)p(β−1)sp(γ−1)ds =

tθ

α
B

[
p
(
γ − 1

)
+ 1

α
, p
(
β − 1

)
+ 1

]
, t ∈ R+, (2.1)

where B[ξ, η] =
∫1
0 s

ξ−1(1 − s)η−1ds (Re ξ > 0,Re η > 0) is well-known B-function and
θ = p[α(β − 1) + γ − 1] + 1.

Lemma 2.3 (see [8]). Suppose that the positive constants α, β, γ , p1, and p2 satisfy the following
conditions:

(1) if [α, β, γ] ∈ I, p1 = 1/β;

(2) if [α, β, γ] ∈ II, p2 = (1 + 4β)/(1 + 3β).
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Then, for i = 1, 2,

B

[
pi
(
γ − 1

)
+ 1

α
, pi

(
β − 1

)
+ 1

]
∈ (0,+∞),

θi = pi
[
α
(
β − 1

)
+ γ − 1

]
+ 1 ≥ 0

(2.2)

are valid.

Assume that

(A1) a(x, y) ∈ C(R2
+, R+) and f(x, y, s, t) ∈ C(R4

+, R+);

(A2) w(u) ∈ C(R+, R+) is nondecreasing andw(0) = 0.

Let ã(x, y) = max 0≤τ≤x,0≤η≤y a(τ, η) and f̃(x, y, s, t) = max 0≤τ≤x,0≤η≤y f(τ, η, s, t).

Theorem 2.4. Under assumptions (A1) and (A2), if u(m,n) ∈ C(R2
+, R+) satisfies (1.2), then

(1) for [α, β, γ] ∈ I,

u
(
x, y

) ≤
[
W−1

1

(
W1

(
A1

(
x, y

))
+ B1

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)1/(1−β)
ds dt

)]1−β
(2.3)

for 0 ≤ x ≤ X and 0 ≤ y ≤ Y , where

M1 =
1
α
B

[
β + γ − 1

αβ
,
2β − 1

β

]
,

A1
(
x, y

)
= 2β/(1−β)ã

(
x, y

)1/(1−β)
,

B1
(
x, y

)
= 2β/(1−β)

(
M2

1

(
xy

)(1/β)[α(β−1)+γ−1]+1)β/(1−β)
,

(2.4)

W−1
1 is the inverse of W1,

W1 =
∫u

u0

dξ

w1/(1−β)(ξ1−β) , u ≥ u0 > 0, (2.5)

and X, Y ∈ R+ are chosen such that

W1
(
A1

(
x, y

))
+ B1

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)1/(1−β)
ds dt ∈ Dom

(
W−1

1

)
, (2.6)

(2) for [α, β, γ] ∈ II,

u
(
x, y

) ≤
[
W−1

2

(
W2

(
A2

(
x, y

))
+ B2

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)(1+4β)/β
ds dt

)]β/(1+4β)
(2.7)
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for 0 ≤ x ≤ X and 0 ≤ y ≤ Y , where

M2 =
1
α
B

[
γ
(
1 + 4β

) − β

α
(
1 + 3β

) ,
4β2

1 + 3β

]
,

A2
(
x, y

)
= 2(1+3β)/βã

(
x, y

)(1+4β)/β
,

B2
(
x, y

)
= 2(1+3β)/β

(
M2

2
(
xy

)((1+4β)/(1+3β))[α(β−1)+γ−1]+1)(1+3β)/β
,

(2.8)

W−1
2 is the inverse of W2,

W2 =
∫u

u0

dξ

w(1+4β)/β
(
ξβ/(1+4β)

) , u ≥ u0 > 0, (2.9)

and X, Y ∈ R+ are chosen such that

W2
(
A2

(
x, y

))
+ B2

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)(1+4β)/β
ds dt ∈ Dom

(
W−1

2

)
. (2.10)

Proof. With the definition of ã(x, y) and f̃(x, y, s, t), clearly, ã(x, y) and f̃(x, y, s, t) are
nonnegative and nondecreasing in x and y. Furthermore, ã(x, y) ≥ a(x, y) and f̃(x, y, s, t) ≥
f(x, y, s, t). From (1.2), we have

u
(
x, y

) ≤ ã
(
x, y

)
+
∫x

0

∫y

0
(xα − sα)β−1sγ−1

(
yα − tα

)β−1
tγ−1f̃

(
x, y, s, t

)
w(u(s, t))ds dt. (2.11)

Next, for convenience, we introduce indices pi, qi. Denote that if [α, β, γ] ∈ I, then let p1 = 1/β
and q1 = 1/(1 − β); if [α, β, γ] ∈ II, then let p2 = (1 + 4β)/(1 + 3β) and q2 = (1 + 4β)/β.
Then 1/pi + 1/qi = 1 holds for i = 1, 2.

Using the Hölder inequality with indices pi, qi to (2.11), we get

u
(
x, y

) ≤ ã
(
x, y

)
+
(∫x

0

∫y

0
(xα − sα)pi(β−1)spi(γ−1)

(
yα − tα

)pi(β−1)tpi(γ−1)ds dt
)1/pi

×
(∫x

0

∫y

0

(
f̃
(
x, y, s, t

))qi
(w(u(s, t)))qids dt

)1/qi

.

(2.12)

By

(A1 +A2 + · · · +An)r ≤ nr−1(Ar
1 +Ar

2 + · · · +Ar
n

)
, Ai ≥ 0, r ≥ 1, (2.13)



Journal of Inequalities and Applications 5

from (2.12) and Lemma 2.2, we have

uqi
(
x, y

)

≤ 2qi−1
[
ã
(
x, y

)qi +
(∫x

0

∫y

0
(xα − sα)pi(β−1)spi(γ−1)

(
yα − tα

)pi(β−1)tpi(γ−1)ds dt
)qi/pi

×
(∫x

0

∫y

0

(
f̃
(
x, y, s, t

))qi
(w(u(s, t)))qids dt

)]

= 2qi−1ã
(
x, y

)qi + 2qi−1
(
M2

i

(
xy

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x, y, s, t

))qi
(w(u(s, t)))qids dt

)
,

(2.14)

where

Mi =
1
α
B

[
pi
(
γ − 1

)
+ 1

α
, pi

(
β − 1

)
+ 1

]
(2.15)

and θi is given in Lemma 2.3 for i = 1, 2.
Since qi ≥ 0 and θi ≥ 0 (i = 1, 2), then ã(x, y)qi and ((xy)θi)qi/pi are also nondecreasing

in x and y. Taking any arbitrary x̃ and ỹ with x̃ ≤ X, ỹ ≤ Y , we obtain

uqi
(
x, y

) ≤ 2qi−1ã
(
x̃, ỹ

)qi + 2qi−1
(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x̃, ỹ, s, t

))qi
(w(u(s, t)))qids dt

)

(2.16)

for 0 ≤ x ≤ x̃, 0 ≤ y ≤ ỹ. Denote

Ai

(
x̃, ỹ

)
= 2qi−1ã

(
x̃, ỹ

)qi , (2.17)

and let

zi
(
x, y

)
= Ai

(
x̃, ỹ

)
+ 2qi−1

(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x̃, ỹ, s, t

))qi
(w(u(s, t)))qids dt

)
.

(2.18)

Then, uqi(x, y) ≤ zi(x, y) or u(x, y) ≤ z
1/qi
i (x, y). Meanwhile, zi(0, y) = Ai(x̃, ỹ), and zi(x, y)

is nondecreasing in x and y. Considering

D1zi
(
x, y

)
= 2qi−1

(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫y

0

(
f̃
(
x̃, ỹ, x, t

))qi
(w(u(x, t)))qids dt

)

≤ 2qi−1
(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫y

0

(
f̃
(
x̃, ỹ, x, t

))qi(
w(zi(x, t))1/qi

)qi
dt

)
,

(2.19)
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we have

D1zi
(
x, y

)
wqi

(
z
1/qi
i

(
x, y

)) ≤ 2qi−1
(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫y

0

(
f̃
(
x̃, ỹ, x, t

))qi
dt

)
, (2.20)

where we apply the fact that wqi(z1/qii (x, y)) is nondecreasing in y. Integrating both sides of
the above inequality from 0 to x, we obtain

Wi

(
zi
(
x, y

)) ≤ Wi

(
zi
(
0, y

))
+ 2qi−1

(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x̃, ỹ, s, t

))qi
ds dt

)

= Wi

(
Ai

(
x̃, ỹ

))
+ 2qi−1

(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x̃, ỹ, s, t

))qi
ds dt

) (2.21)

for 0 ≤ x ≤ x̃, 0 ≤ y ≤ ỹ, where

Wi(u) =
∫u

u0

dξ

wqi
(
ξ1/qi

) , u ≥ u0 > 0. (2.22)

From assumption (A2), Wi is strictly increasing so its inverse W−1
i is continuous and increas-

ing in its corresponding domain. Replacing x and y by x̃ and ỹ, we have

Wi

(
zi
(
x̃, ỹ

)) ≤ Wi

(
Ai

(
x̃, ỹ

))
+ 2qi−1

(
M2

i

(
x̃ỹ

)θi)qi/pi
(∫ x̃

0

∫ ỹ

0

(
f̃
(
x̃, ỹ, s, t

))qi
ds dt

)
.

(2.23)

Since x̃ and ỹ are arbitrary, we replace x̃ and ỹ by x and y, respectively, and get

Wi

(
zi
(
x, y

)) ≤ Wi

(
Ai

(
x, y

))
+ 2qi−1

(
M2

i

(
xy

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x, y, s, t

))qi
ds dt

)
. (2.24)

for 0 ≤ x ≤ X and 0 ≤ y ≤ Y . The above inequality can be rewritten as

zi
(
x, y

) ≤ W−1
i

(
Wi

(
Ai

(
x, y

))
+ 2qi−1

(
M2

i

(
xy

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x, y, s, t

))qi
ds dt

))
.

(2.25)

Therefore, we have

u
(
x, y

) ≤ z
1/qi
i

(
x, y

)

≤
[
W−1

i

(
Wi

(
Ai

(
x, y

))
+ 2qi−1

(
M2

i

(
xy

)θi)qi/pi
(∫x

0

∫y

0

(
f̃
(
x, y, s, t

))qi
ds dt

))]1/qi

(2.26)
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for 0 ≤ x ≤ X and 0 ≤ y ≤ Y .
Finally, considering two situations for i = 1, 2 and using parameters α, β, γ to denote

pi, qi,Mi, and θi in the above inequality, we can obtain the estimations, respectively. we omit
the details here.

Remark 2.5. Medveď [4, Theorem 2.2] investigated the special case (α = γ = 1, f(x, y, s, t) = F(s, t))
of inequality (1.2) under the assumption that “ w(u) satisfies the condition (q).” However, in our
result, the (q) condition is eliminated. If we take α = 1 andw(u) = u, then we can obtain the result of
linear case [4, Theorem 2.4].

Remark 2.6. Let up(x, y) = v(x, y), then u(x, y) = v1/p(x, y) or uq(x, y) = vq/p(x, y). Therefore,
if we take w(v) = vq/p , the formula (2.6) in [10] is the special case of inequality (1.2), and we can
obtain more concise results than (2.7) and (2.9) in [10]. Moreover, here the condition p ≥ q also can
be eliminated.

Remark 2.7. When [α, β, γ] does not belong to I or II, there are some technical problems which we do
not discuss here.

3. Some Corollaries

Corollary 3.1. Let functions u(x, y), a(x, y), f(x, y, s, t) be defined as in Theorem 2.4, and let k be
a constant with 0 < k ≤ 1. Suppose that

u
(
x, y

) ≤ a
(
x, y

)
+
∫x

0

∫y

0
(xα − sα)β−1sγ−1

(
yα − tα

)β−1
tγ−1f

(
x, y, s, t

)
(u(s, t))kds dt. (3.1)

Then,
(1) for [α, β, γ] ∈ I,

if k = 1,

u
(
x, y

) ≤ 2βã
(
x, y

)
exp

[(
1 − β

)
B1

(
x, y

) ∫x

0

∫y

0

(
f̃
(
x, y, s, t

))1/(1−β)
ds dt

]
, (3.2)

if 0 < k < 1,

u
(
x, y

) ≤
{
2βã

(
x, y

)(1−k)/(1−β) + (1 − k)B1
(
x, y

) ∫x

0

∫y

0

(
f̃
(
x, y, s, t

))1/(1−β)
ds dt

}(1−β)/(1−k)

(3.3)

for x ≥ 0, y ≥ 0, where ã(x, y), f̃(x, y, s, t), B1(x, y) are defined as in Theorem 2.4,

(2) for [α, β, γ] ∈ II,

if k = 1,

u
(
x, y

) ≤ 2(1+3β)/(1+4β)ã
(
x, y

)
exp

[
β

1 + 4β
B2

(
x, y

) ∫x

0

∫y

0

(
f̃
(
x, y, s, t

))(1+4β)/β
ds dt

]
, (3.4)
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if 0 < k < 1,

u
(
x, y

)

≤
{(

21+3βã
(
x, y

)1+4β)(1−k)/β
+ (1 − k)B2

(
x, y

) ∫x

0

∫y

0

(
f̃
(
x, y, s, t

))(1+4β)/β
ds dt

}β/(1+4β)(1−k)
,

(3.5)

for x ≥ 0, y ≥ 0, where ã(x, y), f̃(x, y, s, t), B2(x, y) are defined as in Theorem 2.4.

Proof. Clearly, inequality (3.1) is the special case of (1.2). Taking w(u) = uk, we can get (3.1).

(i) If k = 1,

Wi(u) =
∫u

u0

dξ

ξ
= ln

u

u0
, u ≥ u0 > 0,

W−1
i (u) = u0e

u, Dom
(
W−1

i

)
= [0,∞), i = 1, 2.

(3.6)

(ii) If 0 < k < 1,

Wi(u) =
∫u

u0

dξ

ξk
=

1
1 − k

(
u1−k − u1−k

0

)
,

W−1
i (u) =

(
u1−k
0 + (1 − k)u

)1/(1−k)
, Dom

(
W−1

i

)
= [0,∞), i = 1, 2.

(3.7)

Therefore, the positive numbersX and Y in (2.6) and (2.10) can be taken as∞, and the results
can be obtained by simple computation. We omit the details.

Corollary 3.2. Let functions u(x, y), a(x, y), f(x, y, s, t) be defined as in Theorem 2.4. Suppose that
g(x, y, s, t) ∈ C(R4

+, R+) and u(x, y) satisfies

u
(
x, y

) ≤ a
(
x, y

)
+
∫x

0

∫y

0
(xσ − sσ)μ−1sτ−1

(
yσ − tσ

)μ−1
tτ−1g

(
x, y, s, t

)
u(s, t)ds dt

+
∫x

0

∫y

0
(xα − sα)β−1sγ−1

(
yα − tα

)β−1
tγ−1f

(
x, y, s, t

)
w(u(s, t))ds dt.

(3.8)

Then,
(i) if [α, β, γ], [σ, μ, τ] ∈ I,

u
(
x, y

) ≤
[
W−1

1

(
W1

(
A1

(
x, y

)
Ω1

(
x, y

)1/(1−β))

+ Ω1
(
x, y

)1/(1−β)
B1

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)1/(1−β)
ds dt

)]1−β (3.9)
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for 0 ≤ x ≤ X1 and 0 ≤ y ≤ Y1, where

Ω1
(
x, y

)
= 2μ exp

[(
1 − μ

)
B1

(
x, y

) ∫x

0

∫y

0
g̃
(
x, y, s, t

)1/(1−μ)
ds dt

]
, (3.10)

W1, W−1
1 , A1(x, y), B1(x, y) are defined as in Theorem 2.4, and X1, Y1 ∈ R+ are chosen such that

W1

(
A1

(
x, y

)
Ω1

(
x, y

)1/(1−β))

+ Ω1
(
x, y

)1/(1−β)
B1

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)1/(1−β)
ds dt ∈ Dom

(
W−1

1

)
,

(3.11)

(ii) if [α, β, γ], [σ, μ, τ] ∈ II,

u
(
x, y

) ≤
[
W−1

2

(
W2

(
A2

(
x, y

)
Ω2

(
x, y

)(1+4β)/β)

+ Ω2
(
x, y

)(1+4β)/β
B2

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)(1+4β)/β
ds dt

)]β/(1+4β) (3.12)

for 0 ≤ x ≤ X2 and 0 ≤ y ≤ Y2, where

Ω2
(
x, y

)
= 2(1+3μ)/(1+4μ) exp

[
μ

1 + 4μ
B2

(
x, y

) ∫x

0

∫y

0
g̃
(
x, y, s, t

)(1+4μ)/μ
ds dt

]
, (3.13)

W2, W−1
2 , A2(x, y), B2(x, y) are defined as in Theorem 2.4, and X2, Y2 ∈ R+ are chosen such that

(
W2

(
A2

(
x, y

)
Ω2

(
x, y

)(1+4β)/β)

+ Ω2
(
x, y

)(1+4β)/β
B2

(
x, y

) ∫x

0

∫y

0
f̃
(
x, y, s, t

)(1+4β)/β
ds dt

)
∈ Dom

(
W−1

2

)
.

(3.14)

Proof. By the two mentioned lemmas, it follows from (3.8) that

u
(
x, y

) ≤ Pi

(
x, y

)
+
∫x

0

∫y

0
(xσ − sσ)μ−1sτ−1

(
yσ − tσ

)μ−1
tτ−1g̃

(
x, y, s, t

)
u(s, t)ds dt, (3.15)

where g̃(x, y, s, t) = max0≤τ≤x,0≤η≤yg(τ, η, s, t) and

Pi

(
x, y

)
= ã

(
x, y

)
+
(
M2

i

(
xy

)θi)1/pi
[∫x

0

∫y

0
f̃ qi

(
x, y, s, t

)
w(u(s, t))qids dt

]1/qi
. (3.16)

(i) For [α, β, γ], [σ, μ, τ] ∈ I,
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applying Corollary 3.1 to (3.15), we have

u
(
x, y

) ≤ 2μP1
(
x, y

)
exp

[(
1 − μ

)
B1

(
x, y

) ∫x

0

∫y

0
g̃
(
x, y, s, t

)1/(1−μ)
ds dt

]
. (3.17)

Letting

Ω1
(
x, y

)
= 2μ exp

[(
1 − μ

)
B1

(
x, y

) ∫x

0

∫y

0
g̃
(
x, y, s, t

)1/(1−μ)
ds dt

]
, (3.18)

we get

u
(
x, y

) ≤ P1
(
x, y

)
Ω1

(
x, y

)
= ã

(
x, y

)
Ω1

(
x, y

)

+ Ω1
(
x, y

)(
M2

1

(
xy

)θ1)1/p1
[∫x

0

∫y

0
f̃ q1

(
x, y, s, t

)
w(u(s, t))q1ds dt

]1/q1
.

(3.19)

Since inequality (3.19) is similar to (2.12), we can repeat the procedure of proof in Theorem 2.4
and get (3.9).

(ii) As for the case that [α, β, γ], [σ, μ, τ] ∈ II, the proof is similar to the argument in the
proof of case (i) with suitable modification. We omit the details.

Remark 3.3. When [α, β, γ] ∈ I, [σ, μ, τ] ∈ II or [α, β, γ] ∈ II, [σ, μ, τ] ∈ I, we can get the results
which are similar to that in Corollary 3.2 and omit them here.

4. Application

In this section, we will apply our result to discuss the boundedness of certain partial integral
equation with weakly singular kernel.

Suppose that u(x, y) ∈ C(R2
+, R+) satisfies the inequality as follow:

u
(
x, y

) ≤ 1
2
+
∫x

0

∫y

0
(x − s)−1/3s−1/6

(
y − t

)−1/3
t−1/6e−s−2t

√
u(s, t)ds dt (4.1)

for x ≥ 0, y ≥ 0. Then, (4.1) is the special case of inequality (1.2) that is,

a
(
x, y

)
=
1
2
, α = 1, β =

2
3
, γ =

5
6
,

f
(
x, y, s, t

)
= e−s−2t, w(u) =

√
u(s, t).

(4.2)
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Obviously, [α, β, γ] = [1, 2/3, 5/6] ∈ I. Letting p1 = 3/2, q1 = 3, we have

ã
(
x, y

)
=
1
2
, f̃

(
x, y, s, t

)
= e−s−2t,

A1
(
x, y

)
= 22

(
1
2

)3

=
1
2
, M1 = B

[
3
4
,
1
2

]
,

B1
(
x, y

)
= 22

{(
B

[
3
4
,
1
2

])2(
xy

)1/4}2

= 4
(
B

[
3
4
,
1
2

])4√
xy,

W1(u) =
∫u

u0

dξ√
ξ
= 2

(√
u − √

u0
)
,

W−1
1 (u) =

(√
u0 +

u

2

)2
, Dom

(
W−1

1

)
= [0,+∞).

(4.3)

Applying (2.3) in Theorem 2.4, we get for x ≥ 0, y ≥ 0

u
(
x, y

) ≤
[
W−1

1

(
W1

(
A1

(
x, y

))
+ B1

(
x, y

) ∫x

0

∫y

0

(
e−s−2t

)3
ds dt

)]1/3

=

[
W−1

1

(
W1

(
1
2

)
+ 4

(
B

[
3
4
,
1
2

])4√
xy

∫x

0

∫y

0
e−3e−6tds dt

)]1/3

=

[
W−1

1

(√
2 − 2

√
u0 +

2
9

(
B

[
3
4
,
1
2

])4√
xy

(
1 − e−3x

)(
1 − e−6y

))]1/3

=

(√
2
2

+
1
9

(
B

[
3
4
,
1
2

])4√
xy

(
1 − e−3x

)(
1 − e−6y

))2/3

(4.4)

which implies that u(x, y) in (4.1) is bounded.
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