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We prove the generalized Hyers-Ulam stability of the following additive-cubic equation f(kx +
y) + f(kx − y) = kf(x + y) + kf(x − y) + 2f(kx) − 2kf(x) in the setting of random normed spaces.

1. Introduction

A basic question in the theory of functional equations is as follows: when is it true that
a function, which approximately satisfies a functional equation, must be close to an exact
solution of the equation?

If the problem accepts a unique solution, we say the equation is stable (see [1]). The
first stability problem concerning group homomorphisms was raised by Ulam [2] in 1940
and affirmatively solved by Hyers [3]. The result of Hyers was generalized by Rassias [4]
for approximate linear mappings by allowing the Cauchy difference operator CDf(x, y) =
f(x+y)− [f(x)+f(y)] to be controlled by ε(‖x‖p +‖y‖p). In 1994, a generalization of Rassias’
theorem was obtained by Găvruţa [5], who replaced ε(‖x‖p + ‖y‖p) by a general control
function ϕ(x, y) in the spirit of Th. M. Rassias’ approach. The stability problems of several
functional equations have been extensively investigated by a number of authors, and there
are many interesting results concerning this problem (see, e.g., [6–12] and references therein).
In addition, J. M. Rassias et al. [13–16] generalized the Hyers stability result by introducing
twoweaker conditions controlled by theUlam-Gavruta-Rassias (or UGR) product of different
powers of norms and the JM Rassias (or JMR) mixed product-sum of powers of norms,
respectively.
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The theory of random normed spaces (RN-spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us the appropriate tools to study the geometry of
nuclear physics and have important application in quantum particle physics (see [17] and the
references therein). The generalized Hyers-Ulam stability of different functional equations in
random normed spaces, fuzzy normed spaces, and non-Archimedean fuzzy normed spaces
has been recently studied in [14–28].

Najati and Eskandani [29] established the general solution and investigated the Ulam-
Hyers stability of the following functional equation.

f
(
2x + y

)
+ f

(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 2f(2x) − 4f(x), (1.1)

with f(0) = 0 in the quasi-Banach spaces. It is easy to see that the mapping f(x) = ax3 + bx is
a solution of the functional equation (1.1), which is called a mixed additive-cubic functional
equation, and every solution of the mixed additive-cubic functional equation is said to be a
mixed additive-cubic mapping.

In [14–16], we considered the following general mixed additive-cubic functional
equation:

f
(
kx + y

)
+ f

(
kx − y

)
= kf

(
x + y

)
+ kf

(
x − y

)
+ 2f(kx) − 2kf(x). (1.2)

It is easy to show that the function f(x) = ax3 + bx satisfies the functional equation (1.2). We
observe that in case k = 2 (1.2) yields mixed additive-cubic equation (1.1). Therefore, (1.2) is
a generalized form of the mixed additive-cubic equation.

In the present paper, we first prove a theorem on stability of equation g(ax) =
asg(x) (a, s ∈ N, a ≥ 2) in random normed spaces and derive from it results on stability of
equation f(4x) = 10f(2x) − 16f(x). Next, use those results to establish Ulam-Hyers stability
for the general mixed additive-cubic functional equation (1.2) in the setting of random
normed spaces. In this way some results will be obtained on stability of the linear functional
equations also for the random normed spaces, which correspond, for example, to the papers
[30–33].

2. Preliminaries

In the sequel we adopt the usual terminology, notations and conventions of the theory of
random normed spaces, as in [17, 28]. Throughout this paper, the space of all probability
distribution functions is denoted by

Δ+ =
{
F : R ∪ {−∞,+∞} → [0, 1] : F is left-continuous and nondecreasing on R

and F(0) = 0, F(+∞) = 1},
(2.1)

and the subset D+ ⊆ Δ+ is the set D+ = {F ∈ Δ+ : l−F(+∞) = 1}, where l−f(x) denotes the left
limit of the function f at the point x. The spaceΔ+ is partially ordered by the usual pointwise
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ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R. The maximal
element for Δ+ in this order is the distribution function given by

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(2.2)

Definition 2.1 (see [17, 28]). A function T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm).

Now, if T is a t-norm and {xi} is a given sequence of numbers in [0, 1], we define a
sequence Tn recursively by T1

i=1x1 = x1 and Tn
i=1xi = T(Tn−1

i=1 xi, xn) for all n ≥ 2. T∞
i=nxi is

defined as T∞
i=1xn+i.

Definition 2.2 (see [17, 28]). A random normed space (briefly, RN-space) is a triple (X, μ,T),
where X is a vector space, T is a continuous t-norm, and μ is a mapping from X intoD+ such
that the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) μαx(t) = μx(t/|α|) for all x in X, α/= 0 and all t ≥ 0;

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and all t, s ≥ 0.

Example 2.3. Let (X, ‖ · ‖) be a normed space. For all x ∈ X and t > 0, consider μx(t) =
t/(t + ‖x‖). Then (X, μ,TM) is a random normed space, where TM is the minimum t-norm.
This space is called the induced random normed space.

Definition 2.4. Let (X, μ,T) be an RN-space.

(1) A sequence {xn} inX is said to be convergent to a point x ∈ X if, for every t > 0 and
ε > 0, there exists a positive integer N such that μxn−x(t) > 1 − ε whenever n ≥ N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and ε > 0, there
exists a positive integer N such that μxn−xm(t) > 1 − ε whenever n ≥ m ≥ N.

(3) An RN-space (X, μ,T) is said to be complete if and only if every Cauchy sequence
in X is convergent to a point in X.
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3. On the Stability of a General Mixed Additive-Cubic Equation
in RN-Spaces

Theorem 3.1. Let s, a ∈ N with a ≥ 2, X be a linear space, (Y, μ,TM) be a complete RN-space, and
g : X → Y be a mapping for which there is ψ : X → D+ such that

μg(ax)−asg(x)(t) ≥ ψx(t) (3.1)

for all x ∈ X and t > 0. If for some 0 < α < as,

ψax(t) ≥ ψx

(
t

α

)
(3.2)

for all x ∈ X and t > 0, then there exists a uniquely determined mapping G : X → Y such that
G(ax) = asG(x) and

μg(x)−G(x)(t) ≥ ψx

(
(as − α)t

2

)
(3.3)

for all x ∈ X and t > 0.

Proof. Replacing x by aix in (3.1) and using (3.2), we get

μ(g(ai+1x)/as(i+1))−(g(aix)/asi)

(
αit

as(i+1)

)

≥ ψx(t) (3.4)

for all x ∈ X, i ∈ N, and t > 0. It follows that

μ(g(anx)/asn)−(g(amx)/asm)

(
n−1∑

i=m

αit

as(i+1)

)

= μ∑n−1
i=m((g(ai+1x)/as(i+1))−(g(aix)/asi))

(
n−1∑

i=m

αit

as(i+1)

)

≥ ψx(t)

(3.5)

for all x ∈ X, t > 0 and all nonnegative integers n and m with n > m. Hence

μ(g(anx)/asn)−(g(amx)/asm)(t) ≥ ψx

(

t/
n−1∑

i=m

αi

as(i+1)

)

(3.6)

for all x ∈ X, t > 0, and m,n ∈ N with n > m. As 0 < α < as and
∑∞

i=0(α
i/as(i+1)) < ∞, the right

hand side of the inequality tends to 1 as m tend to infinity. Then the sequence {g(anx)/asn}
is a Cauchy sequence in (Y, μ,TM). Since (Y, μ,TM) is a complete RN-space, this sequence
converges to some point G(x) ∈ Y . Therefore, we may define G(x) := limn→∞g(anx)/asn for
all x ∈ X. Fix x ∈ X, and put m = 0 in (3.6). Then we obtain

μ(g(anx)/asn)−g(x)(t) ≥ ψx

(

t/
n−1∑

i=0

αi

as(i+1)

)

, (3.7)
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and so, by (RN3), we have

μG(x)−g(x)(t) ≥ TM

(
μG(x)−(g(anx)/asn)

(
t

2

)
, μ(g(anx)/asn)−g(x)

(
t

2

))

≥ TM

(

μG(x)−(g(anx)/asn)

(
t

2

)
, ψx

(

t/
n−1∑

i=0

2αi

as(i+1)

)) (3.8)

for every t > 0. Taking the limit as n → ∞ in (3.8), by G(x) = limn→∞g(anx)/asn, we get
(3.3).

To prove the uniqueness of the mapping G, assume that there exists another mapping
H : X → Y which satisfies (3.3) and H(ax) = asH(x) for all x ∈ X. Fix x ∈ X. Clearly,
G(anx) = asnG(x), and H(anx) = asnH(x) for all n ∈ N. It follows from (3.2) and (3.3) that

μG(x)−H(x)(t) ≥ TM

(
μ(G(anx)/asn)−(g(anx)/asn)

(
t

2

)
, μ(g(anx)/asn)−(H(anx)/asn)

(
t

2

))

≥ ψx

(
(as − α)asnt

4αn

)
.

(3.9)

Since limn→∞(as − α)asnt/(4αn) = ∞, we get limn→∞ψx((as − α)asnt/(4αn)) = 1. Therefore,
it follows from (3.9) that μG(x)−H(x)(t) = 1 for all t > 0, and so G = H. This completes the
proof.

Corollary 3.2. Let s ∈ {1, 3} be fixed, X be a linear space, (Y, μ,TM) be a complete RN-space, and
f : X → Y be a mapping for which there is ψ : X → D+ such that

μf(4x)−10f(2x)+16f(x)(t) ≥ ψx(t) (3.10)

for all x ∈ X and t > 0. If for some 0 < α < 2s, ψ2x(t) ≥ ψx(t/α) for all x ∈ X and t > 0, then there
exists a uniquely determined mapping Fs : X → Y such that Fs(2x) = 2sFs(x) and

μf(2x)−23/sf(x)−Fs(x)(t) ≥ ψx

(
(2s − α)t

2

)
(3.11)

for all x ∈ X and t > 0.

Theorem 3.3. Let X be a linear space, (Z, μ′,TM) be an RN-space, (Y, μ,TM) be a complete RN-
space, and f : X → Y be a mapping with f(0) = 0 for which there is ϕ : X × X → Z such
that

μf(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,y)(t) (3.12)

for all x, y ∈ X and t > 0. If for some 0 < α < 2,

μ′
ϕ(2x,2y)(t) ≥ μ′

αϕ(x,y)(t) (3.13)



6 Journal of Inequalities and Applications

for all x, y ∈ X and t > 0, then there exists a unique additive mapping A : X → Y such that

μf(2x)−8f(x)−A(x)(t) ≥ ψx

(
(2 − α)

(
k3 − k

)
t

2

)

(3.14)

for all x ∈ X and t > 0, where

ψx(t) := (TM)32i=1

(
μ′
ϕ(x/2,(2k+1)x/2)

(
t

384k

)
, μ′

ϕ(x/2,(2k−1)x/2)

(
t

384k

)
,

μ′
ϕ(x/2, 3kx/2)

(
t

384

)
, μ′

ϕ(0,(3k−1)x/2)

(
(k − 1)t
384k

)
, μ′

ϕ(x,x)

(
t

96k2

)
,

μ′
ϕ(x/2,kx/2)

(
t

96

)
, μ′

ϕ(0,(k+1)x/2)

(
(k − 1)t
96k

)
, μ′

ϕ(0,(k−1)x)

(
(k − 1)t
96k2

)
,

μ′
ϕ(0,kx)

(
t

96(k + 1)

)
, μ′

ϕ(x,(k+1)x)

(
t

128

)
, μ′

ϕ(x,(k−1)x)

(
t

128

)
,

μ′
ϕ(0,x)

(
(k − 1)t
128

)
, μ′

ϕ(0,kx)

(
(k − 1)t
128k

)
, μ′

ϕ(2x,x)

(
t

32

)
, μ′

ϕ(2x,kx)

(
t

16

)
,

μ′
ϕ(x,(2k−1)x)

(
t

56

)
, μ′

ϕ(x,(2k+1)x)

(
t

56

)
, μ′

3x,x

(
t

56

)
, μ′

ϕ(x,x)

(
t

56

)
,

μ′
ϕ(0,(k+1)x)

(
(k − 1)t

56

)
, μ′

ϕ(0,(k−1)x)

(
(k − 1)t

56

)
, μ′

ϕ(0,2kx)

(
(k − 1)t
56k

)
,

μ′
ϕ(x,(2k+1)x)

(
t

384k

)
, μ′

ϕ(x,(2k−1)x)

(
t

384k

)
, μ′

ϕ(x,3kx)

(
t

384

)
,

μ′
ϕ(0,(3k−1)x)

(
(k − 1)t
384k

)
, μ′

ϕ(2x,2x)

(
t

96k2

)
, μ′

ϕ(x,kx)

(
t

96

)
,

μ′
ϕ(0,(k+1)x)

(
(k − 1)t
96k

)
, μ′

ϕ(0,2(k−1)x)

(
(k − 1)t
96k2

)
,

μ′
ϕ(0,2kx)

(
t

96(k + 1)

)
, μ′

ϕ(2x,2kx)

(
t

16

))
.

(3.15)

Proof. Letting x = 0 in (3.12), we get

μf(y)+f(−y)(t) ≥ μ′
ϕ(0,y)((k − 1)t) (3.16)

for all y ∈ X and t > 0. Putting y = x in (3.12), we have

μf((k+1)x)+f((k−1)x)−kf(2x)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,x)(t) (3.17)
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for all x ∈ X and t > 0. Replacing x by 2x in (3.17), we obtain

μf(2(k+1)x)+f(2(k−1)x)−kf(4x)−2f(2kx)+2kf(2x)(t) ≥ μ′
ϕ(2x,2x)(t) (3.18)

for all x ∈ X and t > 0. Letting y = kx in (3.12), we get

μf(2kx)−kf((k+1)x)−kf(−(k−1)x)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,kx)(t) (3.19)

for all x ∈ X and t > 0. Letting y = (k + 1)x in (3.12), we have

μf((2k+1)x)+f(−x)−kf((k+2)x)−kf(−kx)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,(k+1)x)(t) (3.20)

for all x ∈ X and t > 0. Letting y = (k − 1)x in (3.12), we have

μf((2k−1)x)−(k+2)f(kx)−kf(−(k−2)x)+(2k+1)f(x)(t) ≥ μ′
ϕ(x,(k−1)x)(t) (3.21)

for all x ∈ X and t > 0. Replacing x and y by 2x and x in (3.12), respectively, we get

μf((2k+1)x)+f((2k−1)x)−2f(2kx)−kf(3x)+2kf(2x)−kf(x)(t) ≥ μ′
ϕ(2x,x)(t) (3.22)

for all x ∈ X and t > 0. Replacing x and y by 3x and x in (3.12), respectively, we get

μf((3k+1)x)+f((3k−1)x)−2f(3kx)−kf(4x)−kf(2x)+2kf(3x)(t) ≥ μ′
ϕ(3x,x)(t) (3.23)

for all x ∈ X and t > 0. Replacing x and y by 2x and kx in (3.12), respectively, we have

μf(3kx)+f(kx)−kf((k+2)x)−kf(−(k−2)x)−2f(2kx)+2kf(2x)(t) ≥ μ′
ϕ(2x,kx)(t) (3.24)

for all x ∈ X and t > 0. Setting y = (2k + 1)x in (3.12), we have

μf((3k+1)x)+f(−(k+1)x)−kf(2(k+1)x)−kf(−2kx)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,(2k+1)x)(t) (3.25)

for all x ∈ X and t > 0. Letting y = (2k − 1)x in (3.12), we have

μf((3k−1)x)+f(−(k−1)x)−kf(−2(k−1)x)−kf(2kx)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,(2k−1)x)(t) (3.26)

for all x ∈ X and t > 0. Letting y = 3kx in (3.12), we have

μf(4kx)+f(−2kx)−kf((3k+1)x)−kf(−(3k−1)x)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,3kx)(t) (3.27)
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for all x ∈ X and t > 0. By (3.16), (3.17), (3.23), (3.25), and (3.26), we get

μkf(2(k+1)x)+kf(−2(k−1)x)+6f(kx)−2f(3kx)−kf(4x)+2kf(3x)−6kf(x)(t)

≥ (TM)7i=1

(
μ′

ϕ(x,(2k−1)x)

(
t

7

)
, μ′

ϕ(x,(2k+1)x)

(
t

7

)
, μ′

ϕ(3x,x)

(
t

7

)
, μ′

ϕ(x,x)

(
t

7

)
,

μ′
ϕ(0,(k+1)x)

(
(k − 1)t

7

)
, μ′

ϕ(0,(k−1)x)

(
(k − 1)t

7

)
, μ′

ϕ(0,2kx)

(
(k − 1)t

7k

))

(3.28)

for all x ∈ X and t > 0. By (3.16), (3.20), and (3.21), we have

μf((2k+1)x)+f((2k−1)x)−kf((k+2)x)−kf(−(k−2)x)−4f(kx)+4kf(x)(t)

≥ (TM)4i=1

(
μ′
ϕ(x,(k+1)x)

(
t

4

)
, μ′

ϕ(x,(k−1)x)

(
t

4

)
, μ′

ϕ(0,x)

(
(k − 1)t

4

)
, μ′

ϕ(0,kx)

(
(k − 1)t

4k

))

(3.29)

for all x ∈ X and t > 0. It follows from (3.22) and (3.29) that

μkf((k+2)x)+kf(−(k−2)x)−2f(2kx)+4f(kx)−kf(3x)+2kf(2x)−5kf(x)(t)

≥ (TM)5i=1

(
μ′
ϕ(x,(k+1)x)

(
t

8

)
, μ′

ϕ(x,(k−1)x)

(
t

8

)
,

μ′
ϕ(0,x)

(
(k − 1)t

8

)
, μ′

ϕ(0,kx)

(
(k − 1)t

8k

)
, μ′

ϕ(2x,x)

(
t

2

))
(3.30)

for all x ∈ X and t > 0. By (3.24) and (3.30), we have

μf(3kx)−4f(2kx)+5f(kx)−kf(3x)+4kf(2x)−5kf(x)(t)

≥ (TM)6i=1

(
μ′
ϕ(x,(k+1)x)

(
t

16

)
, μ′

ϕ(x,(k−1)x)

(
t

16

)
, μ′

ϕ(0,x)

(
(k − 1)t

16

)
,

μ′
ϕ(0,kx)

(
(k − 1)t
16k

)
, μ′

ϕ(2x,x)

(
t

4

)
, μ′

ϕ(2x,kx)

(
t

2

))
(3.31)

for all x ∈ X and t > 0. By (3.16) and (3.25)–(3.27), we have

μkf(−(k+1)x)−kf(−(k−1)x)−k2f(2(k+1)x)+k2f(−2(k−1)x)+k2f(2kx)−(k2−1)f(−2kx)+f(4kx)−2f(kx)+2kf(x)(t)

≥ (TM)4i=1

(
μ′
ϕ(x,(2k+1)x)

(
t

4k

)
, μ′

ϕ(x,(2k−1)x)

(
t

4k

)
, μ′

ϕ(x,3kx)

(
t

4

)
, μ′

ϕ(0,(3k−1)x)

(
(k − 1)t

4k

))

(3.32)
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for all x ∈ X and t > 0. It follows from (3.16), (3.18), (3.19), and (3.32) that

μf(4kx)−2f(2kx)−k3f(4x)+2k3f(2x)(t)

≥ (TM)9i=1

(
μ′
ϕ(x,(2k+1)x)

(
t

24k

)
, μ′

ϕ(x,(2k−1)x)

(
t

24k

)
, μ′

ϕ(x,3kx)

(
t

24

)
, μ′

ϕ(0,(3k−1)x)

(
(k − 1)t
24k

)
,

μ′
ϕ(2x,2x)

(
t

6k2

)
, μ′

ϕ(x,kx)

(
t

6

)
, μ′

ϕ(0,(k+1)x)

(
(k − 1)t

6k

)
,

μ′
ϕ(0,2(k−1)x)

(
(k − 1)t
6k2

)
, μ′

ϕ(0,2kx)

(
t

6(k + 1)

))

(3.33)

for all x ∈ X and t > 0. Hence

μf(2kx)−2f(kx)−k3f(2x)+2k3f(x)(t)

≥ (TM)9i=1

(
μ′
ϕ(x/2,(2k+1)x/2)

(
t

24k

)
, μ′

ϕ(x/2,(2k−1)x/2)

(
t

24k

)
, μ′

ϕ(x/2,3kx/2)

(
t

24

)
,

μ′
ϕ(0,(3k−1)x/2)

(
(k − 1)t
24k

)
, μ′

ϕ(x,x)

(
t

6k2

)
, μ′

ϕ(x/2,kx/2)

(
t

6

)
,

μ′
ϕ(0,(k+1)x/2)

(
(k − 1)t

6k

)
, μ′

ϕ(0,(k−1)x)

(
(k − 1)t
6k2

)
, μ′

ϕ(0,kx)

(
t

6(k + 1)

))

(3.34)

for all x ∈ X and t > 0. By (3.19), we have

μf(4kx)−kf(2(k+1)x)−kf(−2(k−1)x)−2f(2kx)+2kf(2x)(t) ≥ μ′
ϕ(2x,2kx)(t) (3.35)

for all x ∈ X and t > 0. From (3.33) and (3.35), we have

μkf(2(k+1)x)+kf(−2(k−1)x)−k3f(4x)+(2k3−2k)f(2x)(t)

≥ (TM)10i=1

(
μ′
ϕ(x,(2k+1)x)

(
t

48k

)
, μ′

ϕ(x,(2k−1)x)

(
t

48k

)
, μ′

ϕ(x,3kx)

(
t

48

)
, μ′

ϕ(0,(3k−1)x)

(
(k − 1)t
48k

)
,

μ′
ϕ(2x,2x)

(
t

12k2

)
, μ′

ϕ(x,kx)

(
t

12

)
, μ′

ϕ(0,(k+1)x)

(
(k − 1)t
12k

)
, μ′

ϕ(0,2(k−1)x)

(
(k − 1)t
12k2

)
,

μ′
ϕ(0,2kx)

(
t

12(k + 1)

)
, μ′

ϕ(2x,2kx)

(
t

2

))

(3.36)



10 Journal of Inequalities and Applications

for all x ∈ X and t > 0. Also, from (3.28) and (3.36), we get

μ2f(3kx)−6f(kx)+(k−k3)f(4x)−2kf(3x)+(2k3−2k)f(2x)+6kf(x)(t)

≥ (TM)17i=1

(
μ′
ϕ(x,(2k−1)x)

(
t

14

)
, μ′

ϕ(x,(2k+1)x)

(
t

14

)
,

μ′
ϕ(3x,x)

(
t

14

)
, μ′

ϕ(x,x)

(
t

14

)
, μ′

ϕ(0,(k+1)x)

(
(k − 1)t

14

)
,

μ′
ϕ(0,(k−1)x)

(
(k − 1)t

14

)
, μ′

ϕ(0,2kx)

(
(k − 1)t
14k

)
, μ′

ϕ(x,(2k+1)x)

(
t

96k

)
,

μ′
ϕ(x,(2k−1)x)

(
t

96k

)
, μ′

ϕ(x,3kx)

(
t

96

)
, μ′

ϕ(0,(3k−1)x)

(
(k − 1)t
96k

)
,

μ′
ϕ(2x,2x)

(
t

24k2

)
, μ′

ϕ(x,kx)

(
t

24

)
, μ′

ϕ(0,(k+1)x)

(
(k − 1)t
24k

)
,

μ′
ϕ(0,2(k−1)x)

(
(k − 1)t
24k2

)
, μ′

ϕ(0,2kx)

(
t

24(k + 1)

)
, μ′

ϕ(2x,2kx)

(
t

4

))

(3.37)

for all x ∈ X and t > 0.
On the other hand, it follows from (3.31) and (3.37) that

μ8f(2kx)−16f(kx)+(k−k3)f(4x)+(2k3−10k)f(2x)+16kf(x)(t)

≥ (TM)23i=1

(
μ′
ϕ(x,(k+1)x)

(
t

64

)
, μ′

ϕ(x,(k−1)x)

(
t

64

)
, μ′

ϕ(0,x)

(
(k − 1)t

64

)
, μ′

ϕ(0,kx)

(
(k − 1)t
64k

)
,

μ′
ϕ(2x,x)

(
t

16

)
, μ′

ϕ(2x,kx)

(
t

8

)
, μ′

ϕ(x,(2k−1)x)

(
t

28

)
,

μ′
ϕ(x,(2k+1)x)

(
t

28

)
, μ′

ϕ(3x,x)

(
t

28

)
, μ′

ϕ(x,x)

(
t

28

)
, μ′

ϕ(0,(k+1)x)

(
(k − 1)t

28

)
,

μ′
ϕ(0,(k−1)x)

(
(k − 1)t

28

)
, μ′

ϕ(0,2kx)

(
(k − 1)t
28k

)
, μ′

ϕ(x,(2k+1)x)

(
t

192k

)
,

μ′
ϕ(x,(2k−1)x)

(
t

192k

)
, μ′

ϕ(x,3kx)

(
t

192

)
, μ′

ϕ(0,(3k−1)x)

(
(k − 1)t
192k

)
,

μ′
ϕ(2x,2x)

(
t

48k2

)
, μ′

ϕ(x,kx)

(
t

48

)
, μ′

ϕ(0,(k+1)x)

(
(k − 1)t
48k

)

μ′
ϕ(0,2(k−1)x)

(
(k − 1)t
48k2

)
, μ′

ϕ(0,2kx)

(
t

48(k + 1)

)
, μ′

ϕ(2x,2kx)

(
t

8

))

(3.38)

for all x ∈ X and t > 0. Therefore by (3.34) and (3.38), we get

μf(4x)−10f(2x)+16f(x)

(
t

k3 − k

)
≥ ψx(t) (3.39)
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for all x ∈ X and t > 0. By Corollary 3.2, there exists a unique mapping A : X → Y such that
A(2x) = 2A(x) and μf(2x)−8f(x)−A(x)(t) ≥ ψx((2 − α)(k3 − k)t/2) for all x ∈ X and t > 0.

It remains to show that A is an additive map. Replacing x, y by 2nx, 2ny in (3.12) we
get

μ(1/2n)[f(k2nx+2ny)+f(k2nx−2ny)−kf(2nx+2ny)−kf(2nx−2ny)−2f(k2nx)+2kf(2nx)](t)

≥ μ′
ϕ(x,y)

(
2nt
αn

) (3.40)

for all x, y ∈ X and t > 0. Hence

μf(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)(t)

≥ (TM)8i=1

(
μA(kx+y)−(g(2n(kx+y)))/2n

(
t

8

)
, μA(kx−y)−(g(2n(kx−y)))/2n

(
t

8

)
,

μA(x+y)−(g(2n(x+y)))/2n

(
t

8k

)
, μA(x−y)−(g(2n(x−y)))/2n

(
t

8k

)
,

μA(kx)−(g(2nkx))/2n

(
t

16

)
, μA(x)−(g(2nx))/2n

(
t

16k

)
,

μ′
ϕ(x,y)

(
2nt

8αn+1

)
, μ′

ϕ(x,y)

(
2nt
64αn

))

(3.41)

for all x, y ∈ X and t > 0. Taking the limit as n → ∞ in (3.41), we conclude that A fulfills
(1.2), and so by [16, Lemma 3.1], we see that the mapping x → A(2x) − 8A(x) is additive,
which implies that the mapping A is additive. This completes the proof.

Similar to Theorem 3.3, one can prove the following result.

Theorem 3.4. Let X be a linear space, (Z, μ′,TM) be an RN-space, (Y, μ,TM) be a complete RN-
space, and f : X → Y be a mapping with f(0) = 0 for which there is ϕ : X × X → Z such
that

μf(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,y)(t) (3.42)

for all x, y ∈ X and t > 0. If for some 0 < α < 8, μ′
ϕ(2x,2y)(t) ≥ μ′

αϕ(x,y)(t) for all x, y ∈ X and t > 0,
then there exists a unique cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥ ψx

(
(8 − α)

(
k3 − k

)
t

2

)

(3.43)

for all x ∈ X and t > 0, where ψx(t) is defined as in Theorem 3.3.

Remark 3.5. We can also prove Theorems 3.3 and 3.4 for α > 2 and α > 8, respectively.
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Theorem 3.6. Let X be a linear space, (Z, μ′,TM) be an RN-space, (Y, μ,TM) be a complete RN-
space, and f : X → Y be a mapping with f(0) = 0 for which there is ϕ : X × X → Z such
that

μf(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)(t) ≥ μ′
ϕ(x,y)(t) (3.44)

for all x, y ∈ X and t > 0. If for some 0 < α < 2,

μ′
ϕ(2x,2y)(t) ≥ μ′

αϕ(x,y)(t) (3.45)

for all x, y ∈ X and t > 0, then there exist a unique additive mapping A : X → Y and a unique cubic
mapping C : X → Y such that

μf(x)−A(x)−C(x)(t) ≥ ψx

(
3(2 − α)

(
k3 − k

)
t

2

)

(3.46)

for all x ∈ X and t > 0, where ψx(t) is defined as in Theorem 3.3.

Proof. By Theorems 3.3 and 3.4, there exist an additive mapping A1 : X → Y and a cubic
mapping C1 : X → Y such that

μf(2x)−8f(x)−A1(x)(t) ≥ ψx

(
(2 − α)

(
k3 − k

)
t

2

)

, (3.47)

μf(2x)−2f(x)−C1(x)(t) ≥ ψx

(
(8 − α)

(
k3 − k

)
t

2

)

(3.48)

for all x ∈ X and t > 0. Therefore from (3.47) and (3.48), we get

μ
f(x)+(

1
6
)A1(x)−(

1
6
)C1(x)

(t) ≥ ψx

(
3(2 − α)

(
k3 − k

)
t

2

)

(3.49)

for all x ∈ X and t > 0. Letting A(x) = −(1/6)A1(x) and C(x) = (1/6)C1(x) for all x ∈ X, it
follows from (3.49) that

μf(x)−A(x)−C(x)(t) ≥ ψx

(
3(2 − α)

(
k3 − k

)
t

2

)

(3.50)
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for all x ∈ X and t > 0. To prove the uniqueness of A and C, let A′, C′ : X → Y be another
additive and cubic mapping satisfying (3.46). Set Ã = A −A′ and C̃ = C − C′. So

μÃ(x)+C̃(x)(t) ≥ TM

(
μA(x)+C(x)−f(x)

(
t

2

)
, μf(x)−A′(x)−C′(x)

(
t

2

))

≥ ψx

(
3(2 − α)

(
k3 − k

)
t

4

) (3.51)

for all x ∈ X and t > 0. By Ã(2x) = 2Ã(x), C̃(2x) = 8C̃(x), and (3.51), we get

μC̃(x)(t) ≥ TM

(
μÃ(2nx)+C̃(2nx)

(
8nt
2

)
, μÃ(2nx)

(
8nt
2

))

≥ TM

(

ψx

(
3(2 − α)

(
k3 − k

)
8nt

4αn

)

, μÃ(x)

(
4nt
2

)) (3.52)

for all x ∈ X and t > 0. Since the right hand side of the inequality tends to 1 as n tend to
infinity, we find that C̃(x) = 0. Therefore C̃ = 0, and then Ã = 0. This completes the proof.

Remark 3.7. We can formulate similar statements to Theorem 3.6 for α > 8.

Corollary 3.8. Let (X, ‖ · ‖) be a normed space, (Z, μ′,TM) be an RN-space, and (Y, μ,TM) be a
complete RN-space. Let p be a non-negative real number such that p ∈ (0, 1) ∪ (1, 3) ∪ (3,∞), and let
z0 ∈ Z. If f : X → Y is a mapping with f(0) = 0 such that

μf(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)(t) ≥ μ′
(‖x‖p+‖y‖p)z0(t) (3.53)

for all x, y ∈ X and t > 0, then there exist a unique additive mapping A : X → Y and a unique cubic
mapping C : X → Y such that

μf(x)−A(x)−C(x)(t) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ′
‖x‖pz0

(
(2 − 2p)

(
k2 − 1

)
t

256[1 + 3k]

)

, p ∈ (0, 1),

μ′
‖x‖pz0

⎛

⎜
⎝

(2p − 2)
(
k2 − 1

)
t

256
[
1 + (3k)3

]

⎞

⎟
⎠, p ∈

(
1, log25

)
,

μ′
‖x‖pz0

⎛

⎜
⎝

(8 − 2p)
(
k2 − 1

)
t

256
[
1 + (3k)3

]

⎞

⎟
⎠, p ∈

(
log25, 3

)
,

μ′
‖x‖pz0

(
(2p − 8)

(
k2 − 1

)
t

256
[
1 + (3k)p

]

)

, p ∈ (3,∞),

(3.54)

for all x ∈ X and t > 0.
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Corollary 3.9. Let (X, ‖ · ‖) be a normed space, (Z, μ′,TM) be an RN-space, and (Y, μ,TM) be a
complete RN-space. Let r, s be non-negative real numbers such that λ := r+s ∈ (0, 1)∪(1, 3)∪(3,∞),
and let z0 ∈ Z. If f : X → Y be a mapping with f(0) = 0 such that

μf(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)(t) ≥ μ′
[‖x‖r‖y‖s+(‖x‖r+s+‖y‖r+s)]z0(t) (3.55)

for all x, y ∈ X and t > 0, then there exist a unique additive mapping A : X → Y and a unique cubic
mapping C : X → Y such that

μf(x)−A(x)−C(x)(t) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ′
‖x‖λz0

((
2 − 2λ

)(
k2 − 1

)
t

256[1 + 6k]

)

, λ ∈ (0, 1),

μ′
‖x‖λz0

⎛

⎜
⎝

(
2λ − 2

)(
k2 − 1

)
t

256
[
1 + 2(3k)3

]

⎞

⎟
⎠, λ ∈

(
1, log25

)
,

μ′
‖x‖λz0

⎛

⎜
⎝

(
8 − 2λ

)(
k2 − 1

)
t

256
[
1 + 2(3k)3

]

⎞

⎟
⎠, λ ∈

(
log25, 3

)
,

μ′
‖x‖λz0

⎛

⎜
⎝

(
2λ − 8

)(
k2 − 1

)
t

256
[
1 + 2(3k)λ

]

⎞

⎟
⎠, λ ∈ (3,∞),

(3.56)

for all x ∈ X and t > 0.

Now, we give one example to illustrate the main results of Theorem 3.6. This example
is a modification of the example of Zhang et al. [34].

Example 3.10. Let (X, ‖ · ‖) be a Banach algebra, x0 be a unit vector in X, and μx(t) is defined
as in Example 2.3. It is easy to see that (X, μ,TM) is a complete RN-space.

Define f : X → X by f(x) = x3 + ‖x‖px0 for x ∈ X. For 0 < p < 1, define

ϕ
(
x, y

)
= 8k

(
‖x‖p +

∥∥y
∥∥p)

x0, x, y ∈ X. (3.57)

Since 0 < p < 1, the inequality (a+b)p ≤ ap+bp holds when a ≥ 0 and b ≥ 0. A straightforward
computation shows that

∥∥f
(
kx + y

)
+ f

(
kx − y

)
− kf

(
x + y

)
− kf

(
x − y

)
− 2f(kx) + 2kf(x)

∥∥ ≤ 8k
(
‖x‖p +

∥∥y
∥∥p)

(3.58)
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for all x, y ∈ X. Therefore, all the conditions of Theorem 3.6 hold, and there exist a unique
additive mapping A : X → X and a unique cubic mapping C : X → X such that

μf(x)−A(x)−C(x)(t) ≥ ψx

(
3(2 − α)

(
k3 − k

)
t

2

)

(3.59)

for all x ∈ X and t > 0, where ψx(t) is defined as in Theorem 3.3.
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