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Both Djordjević (2007) and Takane et al. (2007) have studied the equivalent conditions for
B{1, 3}A{1, 3} ⊆ (AB){1, 3} and B{1, 4}A{1, 4} ⊆ (AB){1, 4}. In this note, we derive the
necessary and sufficient conditions for B{1, 3}A{1, 3} ⊇ (AB){1, 3}, B{1, 4}A{1, 4} ⊇ (AB){1, 4},
B{1, 3}A{1, 3} = (AB){1, 3} and B{1, 4}A{1, 4} = (AB){1, 4}.

1. Introduction

Let Cm×n denote the set of allm×nmatrices over the complex field C. ForA ∈ C
m×n, its range

space, null space, rank, and conjugate transpose will be denoted by R(A), N(A), r(A), and
A∗, respectively. The symbol dimR(A) denotes the dimension of R(A). The n × n identity
matrix is denoted by In, and if the size is obvious from the context, then the subscript on In
can be neglected.

For a matrix A ∈ C
m×n, a generalized inverse X of A is a matrix which satisfies some

of the following four Penrose equations:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA. (1.1)

Let ∅/=η ⊆ {1, 2, 3, 4}. Then Aη denotes the set of all matrices X which satisfy (i) for all i ∈ η.
Any matrix X ∈ Aη is called an η-inverse of A. One usually denotes any {1}-inverse of A
by A(1) or A−, and any {1, 3}-inverse of A by A(1,3) which is also called a least squares g-
inverses of A. Any {1, 4}-inverse of A is denoted by A(1,4) which is also called a minimum
norm g-inverses of A. The unique {1, 2, 3, 4}-inverse of A is denoted by A†, which is called
the Moore-Penrose generalized inverse of A. General properties of the above generalized
inverses can be found in [1–3]. The research in this area is active, especially about the {2}-
inverse and the reverse order law for generalized inverse; see [4–7].
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There are very good results for the reverse order law for {1}-inverse and {1, 2}-
inverse of two-matrix or multi-matrix products, and Liu and Yang [8] studied equivalent
conditions for B{1, 3, 4}A{1, 3, 4} ⊆ (AB){1, 3, 4}, B{1, 3, 4}A{1, 3, 4} ⊇ (AB){1, 3, 4}, and
B{1, 3, 4}A{1, 3, 4} = (AB){1, 3, 4}. Moreover, Wei and Guo [9] derived the reverse order
law for {1, 3}-inverse and {1, 4}-inverse of two-matrix products by using the product
singular value decomposition (P-SVD). However, there is a fly in the ointment in Wei
and Guo’s results. That is, those results contain the information of subblock produced
by P-SVD. In other words, they are related to P-SVD. In order to overcome this
shortcoming, two methods are employed. One is operator theory; the other is maximal
and minimal rank of matrix expressions. Using these two different methods, both [6, 10]
obtain

B{1, 3}A{1, 3} ⊆ (AB){1, 3} ⇐⇒ R(A∗AB) ⊆ R(B), (1.2)

B{1, 4}A{1, 4} ⊆ (AB){1, 4} ⇐⇒ R(BB∗A∗) ⊆ R(A∗). (1.3)

These results are our hope because there is no information of the P-SVD in them. Note
that R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗) are equivalent to r(B,A∗AB) = r(B) and
r(A∗, BB∗A∗) = r(A), respectively. Therefore, these results are only related to the range
space (or the rank) of A, A∗, B, B∗ or their expressions. However, there are no analogs for
B{1, 3}A{1, 3} ⊇ (AB){1, 3} and B{1, 4}A{1, 4} ⊇ (AB){1, 4}. In this note, we derive the
necessary and sufficient conditions for them. And after this we present a new equivalent
conditions for B{1, 3}A{1, 3} = (AB){1, 3} and B{1, 4}A{1, 4} = (AB){1, 4}, and this results
are not related to P-SVD. To our knowledge, there is no article discussing these in the
literature.

In this note we will need the following two lemmas.

Lemma 1.1 (see [11, 12]). Let A ∈ C
m×n, B ∈ C

m×k, X ∈ C
k×l, C ∈ C

l×n and D ∈ C
l×k. Then

(1) r(A,B) = r(A) + r(B) − dimR(A) ∩ R(B); (1.4)

(2) r(BX) = r(X) − dimN(B) ∩ R(X); (1.5)

(3) r

(
C

A

)
= r(A) + r

[
C
(
I −A†A

)]
; (1.6)

(4) max
X

r(A − BXC) = min

{
r[A, B], r

(
A

C

)}
; (1.7)

(5) max
A(1,3)

r
(
D − CA(1,3)B

)
= min

{
r

(
A∗A A∗B

C D

)
− r(A), r

(
B

D

)}
; (1.8)

(6) min
A(1,3)

r
(
D − CA(1,3)B

)
= r

(
A∗A A∗B

C D

)
+ r

(
B

D

)
− r

⎛
⎜⎝

A 0

0 B

C D

⎞
⎟⎠. (1.9)
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Lemma 1.2 (see [13]). Let Ai,j ∈ C
mi×nj (1 ≤ i, j ≤ 3) be given; X ∈ C

m1×n3 and Y ∈ C
m3×n1 are

two arbitrary matrices. Then

min
X,Y

r

⎛
⎜⎝

A11 A12 X

A21 A22 A23

Y A32 A33

⎞
⎟⎠ = r(A21, A22, A23) + r

⎛
⎜⎝

A12

A22

A32

⎞
⎟⎠

+max

{
r

(
A11 A12

A21 A22

)
− r

(
A12

A22

))

−r(A21, A22), r

(
A22 A23

A32 A33

)
−
(
A22

A32

)
− r(A22, A23)

}
.

(1.10)

2. Main Results

In this section, we first give the minimal rank of D − B(1,3)A(1,3) with respect to any B(1,3) and
A(1,3). Secondly, the necessary and sufficient conditions for the inclusion B{1, 3}A{1, 3} ⊇
(AB){1, 3} are obtained by using our previous result. Finally, we also give the necessary
and sufficient conditions for B{1, 3}A{1, 3} = (AB){1, 3}, B{1, 4}A{1, 4} ⊇ (AB){1, 4}, and
B{1, 4}A{1, 4} = (AB){1, 4}.

Lemma 2.1. Let A ∈ C
m×n, B ∈ C

n×k and D ∈ C
k×m. Then

min
B(1,3),A(1,3)

r
(
D − B(1,3)A(1,3)

)
=r

(
B∗BD B∗

A∗ A∗A

)
−min

{
r

(
B∗

A

)
, r

(
BD

A∗

)
−r

(
D

A∗

)
+n

}
. (2.1)

Proof. The expression of {1, 3}-inverses of A can be written as A(1,3) = A† + FAV , where FA =
I −A†A and the matrix V is arbitrary; see [1]. By combining this fact with elementary block
matrix operations, it follows that

r
(
D − B(1,3)A(1,3)

)
= r

[(
B† + FBṼ

)(
A† + FAV

)
−D

]

= r
(
B†A† + B†FAV + FBṼA† + FBṼ FAV −D

)

= r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 In V

0 0 −Im 0 0 Im

0 0 0 In FA 0

−B† FB −D 0 0 0

In 0 A† In 0 0

Ṽ Ik 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− k −m − 3n.

(2.2)
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Applying (1.10) to (2.2) gives

min
B(1,3),A(1,3)

r
(
D − B(1,3)A(1,3)

)
= r

(
FB, B

†A† −D,−B†FA

)

+max

{
−r

(
FB, B

†FA

)
, r

(
−D 0

A† FA

)
−r(FA)−r

(
FB −D 0

0 A† −FA

)}
.

(2.3)

By using the elementary block matrix operations, the rank of the first partitioned matrix in
the right-hand side of (2.3) is simplified as follows:

r
(
FB, B

†A† −D,−B†FA

)

= r

(
−B† FB −D 0

In 0 A† −FA

)
− n

= r

⎛
⎜⎜⎜⎜⎝

B† 0 0 0 0 0

B† −B† Ik − B†B −D 0 0

0 In 0 A† −In +A†A A†

0 0 0 0 0 A†

⎞
⎟⎟⎟⎟⎠ − n − r

(
A†

)
− r

(
B†

)

= r

⎛
⎜⎜⎜⎜⎝

B† B† B†B 0 0 0

B† 0 Ik −D 0 0

0 In 0 0 −In A†

0 0 0 −A† −A†A A†

⎞
⎟⎟⎟⎟⎠ − n − r(A) − r(B)

= r

(
B†BD B†

A† A†A

)
+ k − r(A) − r(B).

(2.4)

Using the formula r(AB) ≤ min{r(A), r(B)} together with the fact that

(
B∗B 0

0 A∗A

)(
B†BD B†

A† A†A

)
=

(
B∗BD B∗

A∗ A∗A

)
,

(
B†(B†)∗ 0

0 A†(A†)∗

)(
B∗BD B∗

A∗ A∗A

)
=

(
B†BD B†

A† A†A

) (2.5)

means that

r

(
B†BD B†

A† A†A

)
= r

(
B∗BD B∗

A∗ A∗A

)
. (2.6)
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Substituting (2.6) into (2.4) yields

r
(
FB, B

†A† −D,−B†FA

)
= r

(
B∗BD B∗

A∗ A∗A

)
+ k − r(A) − r(B). (2.7)

Similarly, we obtain

r
(
FB, B

†FA

)
= r

(
B∗

A

)
+ k − r(A) − r(B),

r

(−D 0

A† −FA

)
= r

(
A∗

D

)
+ n − r(A) ,

r

(
FB −D 0

0 A† −FA

)
= r

(
BD

A∗

)
+ n + k − r(A) − r(B).

(2.8)

It is always ture that R(I −A†A) = N(A). Therefore,

r(FA) = r
(
I −A†A

)
= n − r(A). (2.9)

Substituting (2.7)–(2.9) into (2.3) yields (2.1).

Theorem 2.2. Let A ∈ C
m×n and B ∈ C

n×k. Then the following statements are equivalent:

(1) B{1, 3}A{1, 3} ⊇ (AB){1, 3};
(2) r(A∗AB,B) + r(A) = r(AB) +min{r(A∗, B), max{n + r(A) −m, n + r(B) − k}}.

Proof. We know that B{1, 3}A{1, 3} ⊇ (AB){1, 3} is equivalent to saying that for an arbitrary
{1, 3}-inverse (AB)(1,3), there are {1, 3}-inverses A(1,3) and B(1,3) satisfying B(1,3)A(1,3) =
(AB)(1,3). That is,

B{1, 3}A{1, 3} ⊇ (AB){1, 3} ⇐⇒ max
(AB)(1,3)

min
A(1,3),B(1,3)

r
[
(AB)(1,3) − B(1,3)A(1,3)

]
= 0. (2.10)

By using the formula (2.1), we get

min
B(1,3),A(1,3)

r
[
(AB)(1,3) − B(1,3)A(1,3)

]

= r

(
B∗B(AB)(1,3) B∗

A∗ A∗A

)
−min

{
r

(
B∗

A

)
, r

(
B(AB)(1,3)

A∗

)
− r

(
(AB)(1,3)

A∗

)
+ n

}
.

(2.11)
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Using the formulas (1.9) and (1.8) together with elementary block matrix operations,
the maximal and minimal ranks of first partitioned matrix in the right-hand side of (2.11) are
as follows:

min
(AB)(1,3)

r

(
B∗B(AB)(1,3) B∗

A∗ A∗A

)

= min
(AB)(1,3)

[
r

(
0 B∗

A∗ A∗A

)
−
(
−B∗B

0

)
(AB)(1,3)(I, 0)

]

= r

⎛
⎜⎝

B∗A∗AB B∗A∗ 0

−B∗B 0 B∗

0 A∗ A∗A

⎞
⎟⎠ + r

⎛
⎜⎝

I 0

0 B∗

A∗ A∗A

⎞
⎟⎠ − r

⎛
⎜⎜⎜⎜⎝

AB 0 0

0 I 0

−B∗B 0 B∗

0 A∗ A∗A

⎞
⎟⎟⎟⎟⎠

= r

(
B∗A∗A

B∗

)
+ r(A) − r(AB) = max

(AB)(1,3)
r

(
B∗B(AB)(1,3) B∗

A∗ A∗A

)
.

(2.12)

Therefore, for an arbitrary {1, 3}-inverse (AB)(1,3),

r

(
B∗B(AB)(1,3) B∗

A∗ A∗A

)
= r

(
B∗A∗A

B∗

)
+ r(A) − r(AB). (2.13)

Using formulas (1.6) and (1.5), we get

r

(
B(AB)(1,3)

A∗

)
− r

(
(AB)(1,3)

A∗

)
= r

[
B(AB)(1,3)

(
I −AA†

)]
− r

[
(AB)(1,3)

(
I −AA†

)]

= −dimN(B) ∩ R
[
(AB)(1,3)

(
I −AA†

)]
.

(2.14)

Substituting (2.13) and (2.14) into (2.11) produces

min
B(1,3),A(1,3)

r
[
(AB)(1,3) − B(1,3)A(1,3)

]
= r

(
B∗A∗A

B∗

)
+ r(A) − r(AB)

−min

{
r

(
B∗

A

)
, n − dimN(B) ∩ R

[
(AB)(1,3)

(
I −AA†

)]}
.

(2.15)
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Furthermore, we have

max
(AB)(1,3)

min
B(1,3),A(1,3)

r
[
(AB)(1,3) − B(1,3)A(1,3)

]

= r

⎛
⎝B∗A∗A

B∗

⎞
⎠ + r(A) − r(AB) −min

⎧⎨
⎩r

⎛
⎝B∗

A

⎞
⎠, n − a

⎫⎬
⎭,

(2.16)

where a = max(AB)(1,3) dimN(B) ∩ R[(AB)(1,3)(I −AA†)].
Next, we want to prove that a is equal to min{k − r(B), m − r(A)}. First observe that

a ≤ min{k − r(B), m− r(A)} since a ≤ dimN(B) = k − r(B) and a ≤ max(AB)(1,3)r[(AB)(1,3)(I −
AA†)] ≤ r(I −AA†) = dimN(A∗) = m − r(A). Therefore, a = min{k − r(B), m − r(A)} holds
if and only if there is a {1, 3}-inverse (AB)(1,3) such that

dimN(B) ∩ R
[
(AB)(1,3)

(
I −AA†

)]
= min{k − r(B), m − r(A)}. (2.17)

Suppose that m − r(A) ≤ k − r(B). Also note that r[(AB)(1,3)(I − AA†)] ≤ m − r(A)

for arbitrary {1, 3}-inverses (AB)(1,3). Therefore, for some (AB)(1,3), (2.17) holds if and only if

there is a {1, 3}-inverse (AB)(1,3) such that R[(AB)(1,3)(I −AA†)] ⊆ N(B) and r[(AB)(1,3)(I −
AA†)] = m − r(A) hold—that is,

min
(AB)(1,3)

r

[(
B

I

)
(AB)(1,3)

(
I −AA†

)
−
(

0

C

)]
= 0, (2.18)

where C is any k × m matrix and r(C) = m − r(A). It follows from the formula (1.7)
that maxXr(I − B†B)X(I − AA†) = min{r(I − B†B), r(I − AA†)} = m − r(A). Therefore,
there is a matrix X0 satisfying r(I − B†B)X0(I − AA†) = m − r(A). Let C = (I −
B†B)X0(I − AA†). It is always true that r(C) = m − r(A), BC = 0, and B∗A∗(I − AA†) =
0. Use these equations together with the formula (1.9) to conclude that (2.18) holds.
Therefore, if m − r(A) ≤ k − r(B), then there is a {1, 3}-inverse (AB)(1,3) such that (2.17)
holds.

On the other hand, suppose thatm−r(A) > k−r(B). Also note that dimN(B) = k−r(B).
Therefore, for some (AB)(1,3) (2.17) holds if and only if there is a {1, 3}-inverse (AB)(1,3) such

that N(B) = R(I − B†B) ⊆ R[(AB)(1,3)(I −AA†)] holds, that is,

min
(AB)(1,3)

r
[
I − B†B − (AB)(1,3)

(
I −AA†

)
X
]
= 0, (2.19)
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where X is some m × k matrix. Use the formula (1.9) to find that

min
(AB)(1,3)

r
[
I − B†B − (AB)(1,3)

(
I −AA†

)
X
]

= r

(
B∗A∗AB B∗A∗(I −AA†)X

I I − B†B

)
+ r

((
I −AA†)X
I − B†B

)
− r

⎛
⎜⎝

AB 0

0
(
I −AA†)X

I I − B†B

⎞
⎟⎠

= r

((
I −AA†)X
I − B†B

)
− r

[(
I −AA†

)
X
]

= r
(
X∗

(
I −AA†

)
, I − B†B

)
− r

[
X∗

(
I −AA†

)]
.

(2.20)

We know from (2.20) that (2.19) holds if and only if there is an m × k matrix X such that
R(I − B†B) ⊆ R[X∗(I − AA†)]. In fact, note that r(I − B†B) = dimN(B) = k − r(B) and
r(I − A†A) = dimN(A∗) = m − r(A), and let P1, P2, Q1, and Q2 be nonsingular matrices
such that I − B†B = P1

(
Ik−r(B) 0

0 0

)
Q1 and I − A†A = P2

(
Im−r(A) 0

0 0

)
Q2. Using this together with

m − r(A) > k − r(B) means that if X∗ = P1P
−1
2 , then R(I − B†B) ⊆ R[X∗(I −AA†)]. Therefore,

ifm − r(A) > k − r(B), then there is a {1, 3}-inverse (AB)(1,3) such that (2.17) holds.
In summary, there is a {1, 3}-inverse (AB)(1,3) such that (2.17) holds. That is, a =

min{k − r(B), m − r(A)}. Apply this to (2.16) to obtain that

max
(AB)(1,3)

min
B(1,3),A(1,3)

r
[
(AB)(1,3) − B(1,3)A(1,3)

]
= r(A∗AB,B) + r(A) − r(AB)

−min{r(A∗, B), max{n + r(B) − k, n + r(A)−m}}.
(2.21)

Noting that (2.10) and letting the right-hand side in (2.21) be equal to zero, then the
equivalence between (1) and (2) follows immediately.

It is obvious that B{1, 3}A{1, 3} = (AB){1, 3} if and only if B{1, 3}A{1, 3} ⊆ (AB){1, 3}
and B{1, 3}A{1, 3} ⊇ (AB){1, 3}. Also note Theorem 2.2 and formula (1.2). It is easy to obtain
the following theorem.

Theorem 2.3. Let A ∈ C
m×n and B ∈ C

n×k. Then the following statements are equivalent:

(1) B{1, 3}A{1, 3} = (AB){1, 3};

(2) r(B,A∗AB) = r(B) and r(A) + r(B) = r(AB) +min{r(A∗, B), max{n + r(B) − k, n +
r(A) −m}}.

The following theorems can be obtained by applying Theorem 2.2 or Theorem 2.3 to the product
B∗A∗ and using the fact that X ∈ D{1, 3} if and only if X∗ ∈ D∗{1, 4}.
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Theorem 2.4. Let A ∈ C
m×n and B ∈ C

n×k. Then the following statements are equivalent:

(1) B{1, 4}A{1, 4} ⊇ (AB){1, 4};
(2) r(BB∗A∗, A∗) + r(B) = r(AB) +min{r(A∗, B), max{n + r(A) −m, n + r(B) − k}}.

Theorem 2.5. Let A ∈ C
m×n and B ∈ C

n×k. Then the following statements are equivalent:

(1) B{1, 4}A{1, 4} = (AB){1, 4};
(2) r(BB∗A∗, A∗) = r(A) and r(A) + r(B) = r(AB) + min{r(A∗, B), max{n + r(A) −

m, n + r(B) − k}}.

3. Examples

In this section, we give two examples. The first example comes from [14], and they verify
that B{1, 2, 3}A{1, 2, 3} ⊆ (AB){1, 2, 3}. However, this example does not only satisfy this
result. In Example 3.1, we know that this example satisfies Theorems 2.3 and 2.5, and so we
have B{1, 3}A{1, 3} = (AB){1, 3} and B{1, 4}A{1, 4} = (AB){1, 4}. In this example, we will
verify these results. Secondly, we give another example which only satisfies B{1, 3}A{1, 3} ⊃
(AB){1, 3} and B{1, 4}A{1, 4} ⊃ (AB){1, 4}.

Example 3.1. Let

A =

⎛
⎜⎝

1 0 0

0 1 1

0 1 1

⎞
⎟⎠, B =

⎛
⎜⎝

1 0 0

1 1 0

1 1 0

⎞
⎟⎠. (3.1)

It is easy to obtain that

r(B,A∗AB) = r(A∗, BB∗A∗) = r(B) = r(A) = r(B,A∗) = 2. (3.2)

From Theorems 2.3 and 2.5, we can conclude that

B{1, 3}A{1, 3} = (AB){1, 3}, B{1, 4}A{1, 4} = (AB){1, 4}. (3.3)

Now we verify this statement. Since

A{1, 3} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 0

a1 a2 a3

−a1 −a2 +
1
2

−a3 +
1
2

⎞
⎟⎟⎟⎠ | a1, a2, a3 ∈ C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

B{1, 3} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 0

−1 1
2

1
2

a4 a5 a6

⎞
⎟⎟⎟⎠ | a4, a5, a6 ∈ C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,
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(AB){1, 3} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 0

−1 1
4

1
4

a7 a8 a9

⎞
⎟⎟⎟⎠ | a7, a8, a9 ∈ C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(3.4)

we easily find that

B{1, 3}A{1, 3} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 0

−1 1
4

1
4

a b c

⎞
⎟⎟⎟⎠ | ai ∈ C, i = 1, 2, . . . , 6

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (3.5)

where a = a4+a1a5−a1a6, b = a2a5−a2a6+(1/2)a6, and c = a3a5−a3a6+(1/2)a6. It is obvious
that B{1, 3}A{1, 3} ⊆ (AB){1, 3}. If a1 = a2 = 0, a3 = 1, a4 = a7, a5 = a8 + a9, and a6 = 2a8,
then we have a = a7, b = a8, and c = a9, that is, B{1, 3}A{1, 3} ⊇ (AB){1, 3}. Therefore,
B{1, 3}A{1, 3} = (AB){1, 3}.

On the other hand, since

A{1, 4} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 a1 −a1

0 a2 −a2 +
1
2

0 −a3 +
1
2

a3

⎞
⎟⎟⎟⎟⎠ | a1, a2, a3 ∈ C

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

B{1, 4} =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 a4 −a4

−1 a5 1 − a5

0 a6 −a6

⎞
⎟⎟⎠ | a4, a5, a6 ∈ C

⎫⎪⎪⎬
⎪⎪⎭,

(AB){1, 4} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 a7 −a7

−1 a8 −a8 +
1
2

0 a9 −a9

⎞
⎟⎟⎟⎠ | a7, a8, a9 ∈ C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(3.6)

we easily see that

B{1, 4}A{1, 4} =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 d −d
−1 e −e + 1

2
0 f −f

⎞
⎟⎟⎠ | ai ∈ C, i = 1, 2, . . . , 6

⎫⎪⎪⎬
⎪⎪⎭, (3.7)

where d = a1 − (1/2)a4 + a2a4 + a3a4, e = (1/2) − a1 − a3 − (1/2)a5 + a2a5 + a3a5, and f =
a2a6+a3a6−(1/2)a6. It is obvious that B{1, 4}A{1, 4} ⊆ (AB){1, 4}. If a1 = a7, a2 = a7+a8+a9,
a3 = 1/2 − a7 − a8, a4 = a5 = 0 and a6 = 1, then we have d = a7, e = a8, and f = a9, that is,
B{1, 4}A{1, 4} ⊇ (AB){1, 4}. Therefore, B{1, 4}A{1, 4} = (AB){1, 4}.
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Example 3.2. Let

A =

⎛
⎜⎝

1 0 0 0

0 1 1 0

0 1 1 0

⎞
⎟⎠, B =

⎛
⎜⎜⎜⎜⎝

1 0 0

1 1 0

0 1 0

0 0 0

⎞
⎟⎟⎟⎟⎠. (3.8)

It is easy to obtain that

r(A) = r(B) = r(AB) = 2, r(B,A∗AB) = r(A∗, BB∗A∗) = r(B,A∗) = 3. (3.9)

From Theorems 2.2 and 2.4, we can find that

B{1, 3}A{1, 3} ⊇ (AB){1, 3}, B{1, 4}A{1, 4} ⊇ (AB){1, 4}. (3.10)

Furthermore, note that r(B,A∗AB) = r(A∗, BB∗A∗) = 3/= r(B) = r(A) = 2. Using Theorems
2.3 and 2.5, we can conclude that

B{1, 3}A{1, 3} ⊃ (AB){1, 3}, B{1, 4}A{1, 4} ⊃ (AB){1, 4}. (3.11)

Now we verify this statement. Since

A{1, 3} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

a1 a2 a3

−a1 −a2 +
1
2

−a3 +
1
2

a4 a5 a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

| a1, a2, . . . , a6 ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
,

B{1, 3} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

2
3

1
3

−1
3

0

−1
3

1
3

2
3

0

a7 a8 a9 a10

⎞
⎟⎟⎟⎟⎟⎠ | a7, a8, a9, a10 ∈ C

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

(AB){1, 3} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1 0 0

−1
2

1
4

1
4

a11 a12 a13

⎞
⎟⎟⎟⎟⎠ | a11, a12, a13 ∈ C

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(3.12)
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we easily get that

B{1, 3}A{1, 3} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3
+
2
3
a1 −1

6
+
2
3
a2 −1

6
+
2
3
a3

−1
3
− 1
3
a1

1
3
− 1
3
a2

1
3
− 1
3
a3

a b c

⎞
⎟⎟⎟⎟⎟⎟⎠

| a1, a2, . . . , a10 ∈ C

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (3.13)

where a = a7 + a1a8 − a1a9 + a4a10, b = (1/2)a9 + a2a8 − a2a9 + a5a10, and c = (1/2)a9 + a3a8 −
a3a9 + a6a10. It is obvious that if a1 = 1/2), a2 = 1/4, a3 = 1/4, a4 = a6 = a8 = 0, a5 = a12 − a13,
a7 = 2a13 + a11, a9 = 4a13, and a10 = 1, then

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3
+
2
3
a1 −1

6
+
2
3
a2 −1

6
+
2
3
a3

−1
3
− 1
3
a1

1
3
− 1
3
a2

1
3
− 1
3
a3

a b c

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

−1
2

1
4

1
4

a11 a12 a13

⎞
⎟⎟⎟⎟⎟⎠. (3.14)

That is, B{1, 3}A{1, 3} ⊇ (AB){1, 3}. Furthermore, note that if a1 /= 1/2, then there are some
B(1,3)A(1,3) which do not belong to (AB){1, 3}. Therefore, B{1, 3}A{1, 3} ⊃ (AB){1, 3}.

On the other hand, because

A{1, 4} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 −a1

0 a2 −a2 +
1
2

0 a3 −a3 +
1
2

0 a4 −a4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

| a1, a2, a3, a4 ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

B{1, 4} =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a5 −a5 + 1 a5 − 1 a6

a7 −a7 a7 + 1 a8

a9 −a9 a9 a10

⎞
⎟⎟⎠ | a5, a6, . . . , a10 ∈ C

⎫⎪⎪⎬
⎪⎪⎭,

(AB){1, 4} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 a11 −a11

−1
2

a12 −a12 +
1
2

0 a13 −a13

⎞
⎟⎟⎟⎠ | a11, a12, a13 ∈ C

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(3.15)

we easily obtain that

B{1, 4}A{1, 4} =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a5 d −d
a7 e −e + 1

2
a9 f −f

⎞
⎟⎟⎠ | a1, a2, . . . , a10 ∈ C

⎫⎪⎪⎬
⎪⎪⎭, (3.16)
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where d = a2 − a3 + a1a5 − a2a5 + a3a5 + a4a6, e = a3 + a1a7 − a2a7 + a3a7 + a4a8, and f =
a1a9 − a2a9 + a3a9 + a4a10. It is obvious that if a1 = a11, a2 = a6 = a8 = a9 = 0, a3 = a11 + 2a12,
a4 = a13, a5 = a10 = 1 and a7 = −1/2, then

⎛
⎜⎜⎜⎝

a5 d −d
a7 e −e + 1

2
a9 f −f

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 a11 −a11

−1
2

a12 −a12 +
1
2

0 −a13 −a13

⎞
⎟⎟⎟⎠. (3.17)

That is, B{1, 4}A{1, 4} ⊇ (AB){1, 4}. Furthermore, note that if a5 /= 1, then there are some
B(1,4)A(1,4) which do not belong to (AB){1, 4}. Therefore, B{1, 4}A{1, 4} ⊃ (AB){1, 4}.
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