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By introducing multiparameters and conjugate exponents and using Hadamard’s inequality
and the way of real analysis, we estimate the weight coefficients and give a multiple more
accurate Hilbert’s inequality, which is an extension of some published results. We also prove

that the constant factor in the new inequality is the best possible and consider its equivalent
form.

1. Introduction

In 1908, Weyl published the following famous Hilbert’s inequality (cf. [1]). If a,,, b, >0, 0 <
S, ai<cwand 0< 3%, b2 < oo, then

1/2
sz+n<x<§a;§bg> , @)

n=1 m=1

where the constant factor s is the best possible. In 1934, Hardy proved the following more
accurate Hilbert’s inequality (cf. [2]):

szim—:"l<7r<2afn2bi> , 1.2

where the constant factor o is the best possible. For 0 < 322, a? < oo, the equivalent forms of
(1.1) and (1.2) are given as follows (cf. [2]):
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where the constant factor 72 is the best possible. Inequalities (1.1)—(1.4) are important in
analysis and their applications (cf. [3]). In near one century, there are many improvements,
generalizations and, applications of (1.1)-(1.4) in numerous literatures and monographs of
mathematics (cf. [2-18]). Yang and Huang also considered the multiple Hilbert-type integral
inequality (cf. [19, 20]). Recently, Yang summarized the methods of introducing parameters
and estimating the weight coefficients to extend Hilbert-type inequalities for the past 100
years. Some representative results are as follows (cf. [21, 22]):

() ifp,r>1, 1/p+1/g=1/r+1/s=1,0<a <1,0 <A <min{r,s}, then

© p(=1/r)-1 VP ([ o q(-1/s)-1 Y14
S CHR P B I D) R
1(m+n 1) m=1 n=1

8

>

(1.5)
) 1 pA/s-1[ « am 1 p(1-A/r)-1 »
§<n—§> I:,,,Z:l(m+n—1) ] ( )] Z(m ) thms (1.6)
& & amby, s & 1\Pa-e/n1 Vp
Zémzl(m 1/2) ¥ (n-1/2)° ~ asin(x/r) X{ﬂ;(’"‘E) ”‘m}
(1.7)

© 1 q(1-a/s)-1 1/q
X {Z (n - §> bZ} ,
n=1

© 1 pa/s-1[ o P aT p © 1 p(l-a/r)-1 .
g(”"> L%(m 1/2)° +(n 1/2)] <[asin(yr/r) m%(’”‘i) s
(1.8)

(i) ifpi,ri >1, 30,1 /pi) = 311 /ri) =1, 0<a <1, 0 < Aa < minji<y (i}, then

. . 1 . 1/pi
5 & o8 < F L G S} o

my=1 mi=1 (Z?:l mia) i=1 m;=1

The constant factors in the above five inequalities are all the best possible. Inequalities
(1.5) and (1.7) are generalizations of inequality (1.2), and inequality (1.9) is a multiple
extension of (1.1). Inequalities (1.6) and (1.8) are the equivalent forms of (1.5) and (1.7),
which are extensions of (1.4).
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In this paper, by introducing multi-parameters and conjugate exponents and using
Hadamard’s inequality, we estimate the weight coefficients and give a multiple more accurate
Hilbert s inequality, which is an extension of inequalities (1.5), (1.7), and (1.9). We also prove
that the constant factor in the new inequality is the best possible and consider its equivalent
form.

2. Some Lemmas

Lemma2l. Ifne N\ {1}, pi,ri>1(i=1,...,n), > ,(1/pi) =2, (1/ri) =1, A>0<a <2,
p>-1/2, \amax{1/(2 - a),1} < minicj<n{7:}, then

n

1/p:
n
A=TT | i+ p) D T (my + p)*“”f‘l] = 1. (2.1)
i=1

j=1G#1)

Proof. We find the following:

n

1/pi
n
A= H (mi n ﬂ)(/\u/ri—l)(l—p,-)+l—).a/ril—[(m]_ i ﬁ)).u/r,-—ll
i=1

j=1

N
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1
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N

and then (2.1) is valid. O

Lemma22. If\,y>0,r>11/r+1/s=1,0<a <2, f>-1/2, lamax{1/(2-a),1} <,
then

r/nr/s) [, 2 yVe(m+p) " T(/rT(/s)
a () [1 O<W>] Ermep  awm o #Y
Proof. For fixed y >0, we set
/s (la/7r)-1
o= LA x € (=f, ). (2.4)

v+ @+p)T
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In virtue of @ + Aa/r —2 < 0 and Xa/r — 1 < 0, we find (—1)if(i)(x) > 0, (i = 1,2). Putting
u = (x + pB)*/y, we have the following:

lJ“” /1 dy = F()L/r)l"()t/s)‘

)y Qe T Al 22

f; f(x)da =

Since —f < 1/2, by the following Hadamard’s inequality (cf. [5]):

m+1/2

f(m) < I f(x)dx(m e N), (2.6)

m-1/2
it follows that

w0 ,,A/s Aa/r-1 ) o m+l/2
vV (m+p) — :Zf(m)<zf f(x)dx
m=1 [y + (m+p)°] m=1 m=1J m-1/2
(2.7)
_(” « _T(A/r)I(A/s)
- L/zf < | SJEOB= Ty

and then we have the right-hand side of (2.3). Since

(x+p)*/y w1
I du

fﬂ f(x)ddx =

0 a(l+ u)A

a A /
< lf(x+ﬂ) /yu)l/r—lduz T(1+ﬁ) o
0 Aay/r

(2.8)

4

and f(x) is strictly decreasing in (—f3, o0), we get

e’} e’} ) 1
mE:jlf (m) > L f(x)dx = fﬂ f(x)dx - f,; fx)dx .

T(A/NT(/s) r(1+p)"”
al’' () O dayr

Hence, we prove that the left-hand side of (2.3) is valid. O

Lemma 2.3. As the assumption of Lemma 2.1, define the weight coefficients w;(m;) = w(m;; 11,
co.,Ty) as

© o © 0 no ) Aa/ri-1
w;(my) = (m; + p)**" oSy oy [T} (my + )

my=1 mi=1mi_1=1 mp=1 [Z?:l (mi + ﬂ)a])L

(2.10)
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(i=1,...,n), then there exists 6,, > 0, such that

aln 1 A 1
0 gr<z> [l - O<—(mn +p)6n >] < wy(my)

T G+ 7 i <)‘>
= (m, Aa/ 1y ] r({ 2.
= (my + ) mg,l n;1 S (e )] F(A)g 7

(2.11)

Moreover, for any i € {1,...,n}, it follows that

wi(m,-)<r()t)n < > (2.12)

Proof. We prove (2.11) by mathematical induction. For n = 2, wesetr = rp and s = n
satisfying 1/r+1/s = 1. Putting m = my, y = (ma + §)*, 6, = Aa/r > 0, we have the following:

— = -, (2.13)
[(m1 + B)" + (m2+ B)°] m=1 [y + (m+p)°]

(Uz(mz) _ i (m1 +ﬁ)lu/r1—1 (m2 +’6))ux/rz © y)L/s(m_’_ﬁ)/\pc/r_l

and then (2.11) is valid by using inequality (2.3).
Assuming that for n(> 2) , (2.11) is valid, then for n + 1, setting v = Z”” (m; + B)* (>
(Mps1 +P)*), s1=1-1/n, )_1, by (2.3), we have the following:

m/n)rwsl)[l ol< 1 >]< &yt m+ ) TA/rTW 1) 214
y)L/rl : '

al ) [y + (mi+p)T" e

Setting 1= As1, i =ria/s1, mj=mjq (j=1,...,n), we find 27:1(1/17]-) =1, aXmax{l/(Z -
a),1} < minj<;<, {7;}. By the assumption of induction, it follows that

- © o TT1(7. Xa/7-1
Wn1 (mn+1) = (ﬁ’ln + ﬁ))uz/r,, X Z e Z H]:l (m] +ﬂ) —
=l =l [ (7 + )]

ey p) ”1}

{mlz—l [y + (m +ﬂ)vl]A

< (ﬁ’ln‘l'ﬁ)xu/?n i .. Z -
7ty =1 =1 [Zi:l (mi +ﬁ) ]

1w /7 m/n)r@) ) el
<ra<—1>1—1[r<?> T () :am) ]‘1[r rX)

i gy (2.15)
m; + p) L'(A/r)T(A/s1)
(1)

7
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I G+ ™ r/mr/s)
aT(1)
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el )~ Ta/7-1 (2.16)
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al (1) PP (S, (s + )]
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a1 (n+1) n+1 A 1 M/ m)E (A s1)
Ty <r> [1 Oz<(mn+ e >] ar()
where Sn >0 and
e o [T (4 A

0<y:= (M, +p) el Z Z H]_l (m]jﬂ) a7k Ol< : M/rl>

=l =l [S (g + B)] (tns1 + ) (2.17)

17-,1 n+1 1
“rary L0 ()

Setting 6,41 = min{gn, al/ri} >0, by (2.16), we have the following:

al-(m+1) n+l 1 1
W1 (Mps1) > Wl;lr<7’_z> X [1 - O(m)]/ (2.18)

and then by (2.15), (2.18), and mathematical induction, (2.11) is valid. Setting m; = m;, 7; =
ri(j=1,...,i=1),mj =mj, 7j =rin (j =1i,...,n-1), my = my, 7, = r;, then we have the
following:

. O SR A U W S S |
wi(mi) = w(mnrrlz~--/rn) < m];:l[r<z> = WI;IF(E) (2.19)

Hence, (2.12) is valid. O
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3. Main Results

Theorem 3.1. Suppose that n € N\ {1}, p;, i > 1 (G =1,...,n), X1Q1/pi) = i (1/1)
1,1/, =1-1/pp, A >0,0 < a <2, >-1/2, \amax{1/(2 - a),1} < minici<,{7i},

0 (m; € N), such that

© . :
0< Z (m; +ﬂ)p"(1_lu/r")_l<an2.>p < (i=1,...,n),
m;=1

then one has the following equivalent inequalities:

0 0 n .

53

mj
ma=l mi=l [0 (mz +p)" ] i=1

n

al (A-da/r)-1/ _@G)\ Pi Y
<FM)IIF< >{§:(l+ﬁf' an)( %> } ,

. N 1/4n
- { i (m, +ﬂ)mq"/r"1[ > Z I an ]q } q
My=1 my1=1 [Zl 1 (ml ﬂ) ]

. _ ‘ 1/pi
<G| Senor ey}

Proof. Since 1/p, +1/q, =1, by (2.1) and Holder’s inequality (cf. [5]), we find that

5.5 me T
maa=l mi=l [ (ml"'ﬁ) ]

[*e] [ee] 1

my_1=1 h mlz=1 [Z?:l (mi + ﬂ) ]

M

1/pn
|:< n+ﬂ)(m/rn 1)(1—;7,,)1‘:[( +p)Aa/r] ] P

1/Pl Gn
n-1 n
XH [(ml n ,6) (Aa/ri-1)(1-pi) H (m]_ i ﬂ))m/rjl] ai’rll),
=l j=1(#1)

0

IN

(st Y 5 S
my_1=1 my=1 i=1 (m;

an/pi
n-1 n
% [(ml +ﬂ)(ia/ri—l)(1—pi) H (m] +ﬁ>la/rj—1] ( (1),>

i=1 =1(j#1)

Ay,

(i)

[AVAI

(3.1)

(3.2)

(3.3)
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[T T/ r) \™P 1-Aagu /1
S< an-1T (1) > (o +F) q mgl n;[ ll(m,+ﬁ)]

—_

n—

qn/pi
n
x [<mi+p><*“/“>“pf> [T <m,-+ﬂ>““f1] ()",
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I
—_

(3.4)

[TL T /)7
4 S( 2 TT(1) )

0 0 0 n-1 (a/r-1) (1=py) n \a/r1 /P
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PP -"Z—x (mi+p) P T (mpp) ™
my=1m,_1=1 my= [ ( ﬁ)] i=1 ]':1(]#,‘)

1/‘7n

()"

_ H?z F()L/rl) 1/pn w© o 59 (mn +ﬂ))uu/rn—1
_<a11—m)) mg_l...z_[z[zll(mﬁﬁ)]

Gn/pi 1/

n-1
I ] (my + B)P O (my 4 g1 H (m; + gy <a£;>,>
) (779
(3.5)

following:

For n > 3, since X '(g./p;) = 1, by Holder’s inequality again in (3.5), we have the

M 1/pn n-1 0 (mn+ﬂ>)La/r"—1
J< < an-1T (1) ) 11:1[ mgzl ;g'l ";1[21 L (mi+ ﬂ) ]

1/pi
(1— N 1ol ._ A\ Pi (36)
y (mi_’_ﬂ)pl(l Aa/ri) 1(7’”1' +ﬁ))La/r, H(m] +ﬂ))La/r] 1 (a;(rll),>p
(%0
— 1/Pi
CTILT W)\ Prak [ 2 N e/ )\ P
- < ar1T (1) ) 11:1[ m,z=1wi(ml)(ml +ﬂ) (am‘) ’

Note that for n = 2, by (3.5), we directly get (3.6). Hence, (3.3) is valid by (3.6) and (2.12).
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Since 1/g, +1/pn = 1, by Holder’s inequality once again, it follows that

1 (i)
= i [(mn gy Z Z I e ] |G+ )V )

my=1 my-1=1 Zl ﬁ
S )] .
0 p 1/Pn
S ]{ Z (mn + ﬂ)pn(l_la/rn)_l <a£’213> " } .
my=1
By (3.3), we have (3.2). On the other hand, assuming that (3.2) is valid, setting
o =) Hn 1 _() =1
Aln/Tn— i amx
al) = (my, + )’ [ 3o Z ! ] , (3.8)
n-1=1 m=1 11(m1+ﬁ)]

then we find that
1/qn
_ { Z (m, +ﬂ)pn(1 Aa/ )= 1< S::j) } — [Van (3.9)

By (3.2), it follows that J < oo. If | = 0, then (3.3) is naturally valid. Suppose that | > 0, by
(3.2), we find that

0< i’ (i + )P0 () = e = 1

my=1
Vo (3.10)
[TE T/ ) & | & pi(l=Aa/r)-1{ _(i)\P 1
< ar1T (L) 11:1[ m,-z=1(mi +P) (amf> < oo
Dividing out J%/P» into two sides of (3.10), we have the following:
© . 1/qn
{ Z (mn " ﬁ)pn(l—)ta/r,,)—l (a,(qul'?) n} _ ]
m,=1
(3.11)
| KRNV R (A-da/r)-1/ (@i)\Pi n
i pi a/tri i !
PRIy H{Z( e (o) } |
Then (3.3) is valid, which is equivalent to (3.2). O

Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled, then the same constant factor
(@ /T)TTE,T(X/7;) in (3.2) and (3.3) is the best possible.
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Proof. By (2.11) and

NN Ty )
lim (m, + ﬁ)la/r" ! —— = wn(my,), (3.12)
N 2 s mp T

there exists Ny € N, such that for N > N,

gy $ o § G2 Fl Gl o))

my-1=1 my=1 [Zl 1(m1+ﬂ) ] j=1 (m"+ﬂ)
(3.13)
where 6, > 0. Setting
Aa/r,
m; + ' , My S N,
ag) = mi+6) (i=1,...,n) (3.14)
O/ ml' > N

we find that

TN ..\ 1 50
I:= . m;
"g::l Z V[ (mi+ )]
B N (mn " ‘B)/\a/rn N (ml " 'B))La/r,-—l

Tﬂﬁm;l“ rr; [ iy (mi +p) ]A

N 1 al—n n )L 1
>,,§1mn+ﬁ : F(A)Hr<r—j> [1_O<—(mn+ﬂ)6">] (3.15)

X {1_ <mz=1mn1+ﬂ> P O<(m +1ﬁ)6 1>}

If there exists a constant k < (a!™/T(1))[1%,T(A/1;:), such that (3.2) is still valid as we replace
(@ /T(A)TT~,T(A/7:) by k, then in particular, we have the following:

(3.16)

) ) 1/171' N
T T Someprt (@)} -x3

m;=1
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In virtue of (3.15) and (3.16), it follows that

ane (ANL (0 _1NO—1 k 3.17
T()L)g <Z> _<n§1mn+ﬁ> rg::l ((mn+[5)6"+1> < K. ( )

For N — oo, we have (a'™/T(A)[1%,T(A/7;) < k. Hence, k = (a'"/T(A) 1L, T(A/7;) is
the best value of (3.2).

We conform that the constant factor (a'™"/T(A))[T%T(A/7) in (3.3) is the best
possible, otherwise we can get a contradiction by (3.7) that the constant factor in (3.2) is
not the best possible. O

Remarks 3.3. (i) When 0 < a < 1, the assumption lamax{1/(2 — a),1} < minj<;<,{r;} of
two theorems becomes Aa < minjci<,{7;i}. (ii)) When 0 < a < 1, f = 0, (3.2) reduces to
(1.9). (iii) Forn =2, = 1,1, = s,p1 = p,p2 = g, settinga =1, = -1/2 in (3.2), then
IF(A/r)I(X/r2)/T(X) = B(A/r, A/s), we obtain (1.5). Setting f = -1/2, A =1in (3.2), we get
(1.7).
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