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The definitions and properties of moment of gλ random variable are provided on Sugeno measure
space. Then some important moment estimation inequalities based on gλ random variable are
presented and proven.

1. Introduction

In 1974, the Japanese scholar Sugeno [1] presented a kind of typical nonadditive measure,
Sugeno measure, which is an important generalization of probability measure [2–6]. As we
all know, the definitions and properties of moment of random variable play an important role
in probability theory [7–9]. Likewise, they are also very important for Sugenomeasure. In this
paper we present the analogous definitions and properties based on gλ random variable on
Sugeno measure space. Then some important moment estimation inequalities based on gλ
random variable are presented and proven.

2. Preliminaries

Let us recall some definitions and facts from [5].

Definition 2.1. Let X be a nonempty set, let ζ be a nonempty class of subsets of X, and let μ be
a nonnegative real valued set function defined on ζ. Therefore μ satisfies the σ-λ rule (on ζ)
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if and only if there exists

λ ∈
(
− 1
supμ

,∞
)
∪ {0} (2.1)

such that

μ

( ∞⋃
i=1

Ei

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
λ

{ ∞∏
i=1

[
1 + λ · μ(Ei)

] − 1

}
, as λ/= 0,

∞∑
i=1

μ(Ei), as λ = 0,

(2.2)

for any disjoint sequence {Ei} of sets in ζ whose union is also in ζ.

Definition 2.2. Let F be a σ-algebra of subsets of X. And μ is called Sugeno measure on F if
and only if it satisfies the σ-λ rule and μ(X) = 1. Usually, Sugeno measure on F is denoted by
gλ.

We call the triple (X,F, gλ) a Sugeno measure space, denoted by gλ space, where λ ∈
(−1,∞). In the following, our discussion will be restricted to this space.

Theorem 2.3. For all E, F ∈ F, E ⊂ F imply that gλ(E) ≤ gλ(F) (monotonicity).

Theorem 2.4. Let gλ be a Sugeno measure on F. Then, for any E ∈ F and F ∈ F,

gλ(E ∪ F) =
gλ(E) + gλ(F) − gλ(E ∩ F) + λgλ(E)gλ(F)

1 + λgλ(E ∩ F)
,

gλ(E − F) =
gλ(E) − gλ(E ∩ F)
1 + λgλ(E ∩ F)

,

gλ(Ec) =
1 − gλ(E)
1 + λgλ(E)

.

(2.3)

In order to present the analogous definitions and properties based on gλ random
variable on Sugeno measure space, we recall some definitions and facts from [10].

Definition 2.5. Let ξ be a function mapping from (X,F, gλ) to real line R. Then ξ is called a gλ
random variable.

Definition 2.6. Let ξ be a gλ random variable. Then the distribution function of ξ is defined by

Fgλ(x) = gλ{ξ ≤ x}, ∀x ∈ R. (2.4)
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Definition 2.7. Let Fgλ(x) be the distribution function of gλ random variable ξ. Then ξ is called
continuous gλ random variable if there exists a nonnegative real valued function fgλ(x) such
that

Fgλ(x) =
∫x

−∞
fgλ(t)dt, ∀x ∈ R (2.5)

is valid. The function fgλ(x) is called a density function of ξ.

In the following, our discussion will be restricted to the continuous gλ random
variable.

Definition 2.8. Let Fgλ(x) be the distribution function of gλ random variable ξ. If∫∞
−∞|x|dFgλ(x) < ∞, then we call

∫∞
−∞xdFgλ(x) an expected value of gλ random variable ξ,

denoted by Egλ(ξ).

Theorem 2.9. Let ξ,η be gλ random variables; let C and D be constants. Then

Egλ

(
Cξ +Dη

)
= CEgλ(ξ) +DEgλ

(
η
)
. (2.6)

Definition 2.10. Let ξ be a gλ random variable. If Egλ{[ξ−Egλ(ξ)]
2} exists, then Egλ{[ξ−Egλ(ξ)]

2}
is called the variance of ξ, denoted by Dgλ(ξ).

3. Moment Estimation Inequalities Based on gλ Random Variable

We begin this section with a short lemma (see [11]), which will be useful in the sequel.

Lemma 3.1. Let ξ be a gλ random variable whose Sugeno density function fgλ exists. If the Lebesgue
integral

∫+∞

0
gλ{ξ ≥ r}dr −

∫0

−∞
gλ{ξ ≤ r}dr + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}dr (3.1)

is finite, then

Egλ(ξ) =
∫+∞

0
gλ{ξ ≥ r}dr −

∫0

−∞
gλ{ξ ≤ r}dr + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}dr. (3.2)



4 Journal of Inequalities and Applications

Theorem 3.2. Let ξ be a nonnegative gλ random variable. When λ ≥ 0, the inequality

∞∑
i=1

gλ{ξ ≥ i} ≤ Egλ(ξ) ≤ (1 + λ)

(
1 +

∞∑
i=1

gλ{ξ ≥ i}
)

(3.3)

is valid; when λ < 0, the inequality

(1 + λ)
∞∑
i=1

gλ{ξ ≥ i} ≤ Egλ(ξ) ≤ 1 +
∞∑
i=1

gλ{ξ ≥ i} (3.4)

holds true.

Proof. (I)When λ ≥ 0, since gλ{ξ ≥ r} is a monotone decreasing function of r, we have

Egλ(ξ) =
∫+∞

0
gλ{ξ ≥ r}dr + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}dr

≥
∫+∞

0
gλ{ξ ≥ r}dr

=
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ r}dr

≥
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ i}dr

=
∞∑
i=1

gλ{ξ ≥ i},

Egλ(ξ) =
∫+∞

0
gλ{ξ ≥ r}dr + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}dr

≤
∫+∞

0
gλ{ξ ≥ r}dr + λ

∫+∞

0
gλ{ξ ≥ r}dr

= (1 + λ)
∫+∞

0
gλ{ξ ≥ r}dr

= (1 + λ)
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ r}dr

≤ (1 + λ)
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ i − 1}dr

= (1 + λ)

(
1 +

∞∑
i=1

gλ{ξ ≥ i}
)
.

(3.5)
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(II)When λ < 0, owing to the monotonicity of gλ{ξ ≥ r}we also have

Egλ(ξ) =
∫+∞

0
gλ{ξ ≥ r}dr + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}dr

≥
∫+∞

0
gλ{ξ ≥ r}dr + λ

∫+∞

0
gλ{ξ ≥ r}dr

= (1 + λ)
∫+∞

0
gλ{ξ ≥ r}dr

= (1 + λ)
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ r}dr

≥ (1 + λ)
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ i}dr

= (1 + λ)
∞∑
i=1

gλ{ξ ≥ i},

Egλ(ξ) =
∫+∞

0
gλ{ξ ≥ r}dr + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}dr

≤
∫+∞

0
gλ{ξ ≥ r}dr

=
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ r}dr

≤
∞∑
i=1

∫ i

i−1
gλ{ξ ≥ i − 1}dr

= 1 +
∞∑
i=1

gλ{ξ ≥ i}.

(3.6)

Definition 3.3. Let ξ be a gλ random variable and k a positive number. Then (1) the expected
value Egλ(ξ

k) is called the kth moment, (2) the expected value Egλ(|ξ|k) is called the
kth absolute moment, (3) the expected value Egλ{[ξ − Egλ(ξ)]

k} is called the kth central
moment, and (4) the expected value Egλ{[|ξ − Egλ(ξ)|]k} is called the kth absolute central
moment.

Theorem 3.4. Let ξ be a nonnegative gλ random variable and k a positive number. Then

Egλ

(
ξk
)
= k

∫+∞

0
rk−1gλ{ξ ≥ r}dr + kλ

∫+∞

0
rk−1gλ{ξ ≥ r} · gλ{ξ ≤ r}dr. (3.7)
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Proof. From Lemma 3.1, we infer

Egλ

(
ξk
)
=
∫+∞

0
gλ
{
ξk ≥ x

}
dx + λ

∫+∞

0
gλ
{
ξk ≥ x

}
· gλ

{
ξk ≤ x

}
dx

=
∫+∞

0
gλ{ξ ≥ r}drk + λ

∫+∞

0
gλ{ξ ≥ r} · gλ{ξ ≤ r}drk

= k

∫+∞

0
rk−1gλ{ξ ≥ r}dr + kλ

∫+∞

0
rk−1gλ{ξ ≥ r} · gλ{ξ ≤ r}dr.

(3.8)

Similar to the case of credibility theory [12], we have the following: Theorems 3.5, 3.6,
and 3.7.

Theorem 3.5. Let ξ be a gλ random variable that takes values in [m,n] and has expected value Egλ(ξ),
and let f(x) be a convex function on [m,n]. Then

Egλ

[
f(ξ)

] ≤ n − Egλ(ξ)
n −m

f(m) +
Egλ(ξ) −m

n −m
f(n). (3.9)

Theorem 3.6. Let ξ be a gλ random variable that takes values in [m,n] and has expected value Egλ(ξ).
Then

Dgλ(ξ) ≤
[
Egλ(ξ) −m

][
n − Egλ(ξ)

]
. (3.10)

Theorem 3.7. Let ξ be a gλ random variable that takes values in [m,n] and has expected value μ.
Then, for any positive integer k,

Egλ

(
|ξ|k

)
≤ n − μ

n −m
|m|k + μ −m

n −m
|n|k,

Egλ

(∣∣ξ − μ
∣∣k) ≤ n − μ

n −m

∣∣μ −m
∣∣k + μ −m

n −m

∣∣n − μ
∣∣k.

(3.11)

Theorem 3.8. Let ξ be a gλ random variable and t > 0. Then Egλ(|ξ|t) < ∞ if and only if
∑∞

i=1 gλ{|ξ| >
i1/t} < ∞.

Proof. From gλ{|ξ|t ≥ i} = gλ{|ξ| ≥ i1/t} and Theorem 3.2, the conclusion is valid.

Theorem 3.9. Let ξ be a gλ random variable and t > 0. If Egλ(|ξ|t) < ∞, then limx→∞xtgλ{|ξ| ≥
x} = 0. Conversely, if there exists one positive number t such that limx→∞xtgλ{|ξ| ≥ x} = 0, then
Egλ(|ξ|s) < ∞ for any s, where 0 ≤ s < t.
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Proof. (1) When λ ≥ 0, we have

Egλ

(
|ξ|t

)
=
∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr + λ

∫+∞

0
gλ
{
|ξ|t ≥ r

}
· gλ

{
|ξ|t ≤ r

}
dr

≥
∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr.

(3.12)

Since Egλ(|ξ|t) < ∞,we obtain
∫+∞
0 gλ{|ξ|t ≥ r}dr < ∞. Consequently,

lim
x→∞

∫∞

xt/2
gλ
{
|ξ|t ≥ r

}
dr = 0. (3.13)

Since

∫∞

xt/2
gλ
{
|ξ|t ≥ r

}
dr ≥

∫xt

xt/2
gλ
{
|ξ|t ≥ r

}
dr ≥ 1

2
xtgλ{|ξ| ≥ x}, (3.14)

we have

lim
x→∞

xtgλ{|ξ| ≥ x} = 0. (3.15)

(2) When λ < 0, we have

Egλ

(
|ξ|t

)
=
∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr + λ

∫+∞

0
gλ
{
|ξ|t ≥ r

}
· gλ

{
|ξ|t ≤ r

}
dr

≥
∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr + λ

∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr

= (1 + λ)
∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr.

(3.16)

Since

Egλ

(
|ξ|t

)
< ∞, (3.17)

we obtain

(1 + λ)
∫+∞

0
gλ
{
|ξ|t ≥ r

}
dr < ∞. (3.18)

Consequently,

lim
x→∞

(1 + λ)
∫∞

xt/2
gλ
{
|ξ|t ≥ r

}
dr = 0. (3.19)
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Since

(1 + λ)
∫∞

xt/2
gλ
{
|ξ|t ≥ r

}
dr ≥ (1 + λ)

∫xt

xt/2
gλ
{
|ξ|t ≥ r

}
dr ≥ 1

2
(1 + λ)xtgλ{|ξ| ≥ x}, (3.20)

we have

lim
x→∞

xtgλ{|ξ| ≥ x} = 0. (3.21)

Conversely, if limx→∞xtgλ{|ξ| ≥ x} = 0, then there exists one number l such that xtgλ{|ξ| ≥
x} ≤ 1, for all x ≥ l.

(3)When λ ≥ 0, for any s,where 0 ≤ s < t, we have

Egλ

(|ξ|s) =
∫+∞

0
gλ
{|ξ|s ≥ r

}
dr + λ

∫+∞

0
gλ
{|ξ|s ≥ r

} · gλ{|ξ|s ≤ r
}
dr

≤
∫+∞

0
gλ
{|ξ|s ≥ r

}
dr + λ

∫+∞

0
gλ
{|ξ|s ≥ r

}
dr

= (1 + λ)
∫+∞

0
gλ
{|ξ|s ≥ r

}
dr

= (1 + λ)

(∫ l

0
gλ
{|ξ|s ≥ r

}
dr +

∫+∞

l

gλ
{|ξ|s ≥ r

}
dr

)

= (1 + λ)

(∫ l

0
gλ
{|ξ|s ≥ r

}
dr +

∫+∞

l

srs−1gλ{|ξ| ≥ r}dr
)

≤ (1 + λ)

(∫ l

0
gλ
{|ξ|s ≥ r

}
dr + s

∫+∞

l

rs−t−1dr

)

≤ (1 + λ)

(∫ l

0
gλ
{|ξ|s ≥ r

}
dr + s

∫+∞

0
rs−t−1dr

)
.

(3.22)

Since
∫+∞
0 rpdr < ∞ for any p < −1, we have

Egλ

(|ξ|s) ≤ (1 + λ)

(∫ l

0
gλ
{|ξ|s ≥ r

}
dr + s

∫+∞

0
rs−t−1dr

)
< ∞. (3.23)
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(4) When λ < 0, for any s,where 0 ≤ s < t, we have

Egλ

(|ξ|s) =
∫+∞

0
gλ
{|ξ|s ≥ r

}
dr + λ

∫+∞

0
gλ
{|ξ|s ≥ r

} · gλ{|ξ|s ≤ r
}
dr

≤
∫+∞

0
gλ
{|ξ|s ≥ r

}
dr

=
∫ l

0
gλ
{|ξ|s ≥ r

}
dr +

∫+∞

l

gλ
{|ξ|s ≥ r

}
dr

=
∫ l

0
gλ
{|ξ|s ≥ r

}
dr +

∫+∞

l

srs−1gλ{|ξ| ≥ r}dr

≤
∫ l

0
gλ
{|ξ|s ≥ r

}
dr + s

∫+∞

l

rs−t−1dr

≤
∫ l

0
gλ
{|ξ|s ≥ r

}
dr + s

∫+∞

0
rs−t−1dr.

(3.24)

Since
∫+∞
0 rpdr < ∞ for any p < −1, we have

Egλ

(|ξ|s) ≤
∫ l

0
gλ
{|ξ|s ≥ r

}
dr + s

∫+∞

0
rs−t−1dr < ∞. (3.25)
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