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Some improvements of classical Jensen’s inequality are used to define the weighted mixed
symmetric means. Exponential convexity and mean value theorems are proved for the differences
of these improved inequalities. Related Cauchy means are also defined, and their monotonicity is
established as an application.

1. Introduction and Preliminary Results

For n ∈ N, let x = (x1, . . . , xn) and p = (p1, . . . , pn) be positive n-tuples such that
∑n

i=1 pi = 1.
We define power means of order r ∈ R, as follows:

Mr(x,p) = Mr

(
x1, . . . , xn; p1, . . . , pn

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
n∑

i=1

pix
r
i

)1/r

, r /= 0,

(
Πn

i=1x
pi
i

)
, r = 0.

(1.1)

We introduce the mixed symmetric means with positive weights as follows:
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M1
s,t(x,p; k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ 1
Cn−1

k−1

∑

1≤i1<···<ik≤n

⎛

⎝
k∑

j=1

pij

⎞

⎠Ms
t

(
xi1 , . . . xik ; pi1 , . . . pik

)
⎞

⎠

1/s

, s /= 0,

(

Π1≤i1<···<ik≤n
(
Mt(xi1 , . . . , xik ; pi1 , . . . , pik)

)(
∑k

j=1 pij )
)1/Cn−1

k−1
, s = 0.

(1.2)

We obtain the monotonicity of these means as a consequence of the following improvement
of Jensen’s inequality [1].

Theorem 1.1. Let I ⊆ R, x = (x1, . . . , xn) ∈ In, p = (p1, . . . , pn) be a positive n-tuple such that
∑n

i=1 pi = 1. Also let f : I → R be a convex function and

f1
k,n(x,p) :=

1
Cn−1

k−1

∑

1≤i1<···<ik≤n

⎛

⎝
k∑

j=1

pij

⎞

⎠f

⎛

⎝

∑k
j=1 pij xij
∑k

j=1 pij

⎞

⎠, (1.3)

then

f1
k+1,n(x,p) ≤ f1

k,n(x,p), k = 1, 2, . . . , n − 1, (1.4)

that is

f

(
n∑

i=1

pixi

)

= f1
n,n(x,p) ≤ · · · ≤ f1

k,n(x,p) ≤ · · · ≤ f1
1,n(x,p) =

n∑

i=1

pif(xi). (1.5)

If f is a concave function, then the inequality (1.4) is reversed.

Corollary 1.2. Let s, t ∈ R such that s ≤ t, and let x and p be positive n-tuples such that
∑n

i=1 pi = 1,
then, we have

M1
t = M1

t,s(x,p; 1) ≥ · · · ≥ M1
t,s(x,p; k) ≥ · · · ≥ M1

t,s(x,p;n) = M1
s, (1.6)

M1
s = M1

s,t(x,p; 1) ≤ · · · ≤ M1
s,t(x,p; k) ≤ · · · ≤ M1

s,t(x,p;n) = M1
t . (1.7)

Proof. Let s, t ∈ R such that s ≤ t, if s, t /= 0, then we set f(x) = xt/s, xij = xs
ij
in (1.4) and raising

the power 1/t, we get (1.6). Similarly we set f(x) = xs/t, xij = xt
ij
in (1.4) and raising the

power 1/s, we get (1.7).
When s = 0 or t = 0, we get the required results by taking limit.



Journal of Inequalities and Applications 3

Let I ⊆ R be an interval, x, p be positive n-tuples such that
∑n

i=1 pi = 1. Also let h, g :
I → R be continuous and strictly monotonic functions. We define the quasiarithmetic means
with respect to (1.3) as follows:

M1
h,g(x,p;k) = h−1

⎛

⎜
⎝

1
Cn−1

k−1

∑

1≤i1<···<ik≤n

⎛

⎝
k∑

j=1

pij

⎞

⎠h ◦ g−1

⎛

⎜
⎝

∑k
j=1 pij g

(
xij

)

∑k
j=1 pij

⎞

⎟
⎠

⎞

⎟
⎠, (1.8)

where h ◦ g−1 is the convex function.
We obtain generalized means by setting f = h ◦ g−1, xij = g(xij ) and applying h−1 to

(1.3).

Corollary 1.3. By similar setting in (1.4), one gets the monotonicity of generalized means as follows:

M1
h(x,p) = M1

h,g(x,p; 1) ≥ · · · ≥ M1
h,g(x,p; k) ≥ · · · ≥ M1

h,g(x,p;n) = M1
g(x,p), (1.9)

where f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is decreasing;

M1
g(x,p) = M1

g,h(x,p; 1) ≤ · · · ≤ M1
g,h(x,p; k) ≤ · · · ≤ M1

g,h(x,p;n) = M1
h(x,p), (1.10)

where f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is increasing.

Remark 1.4. In fact Corollaries 1.2 and 1.3 are weighted versions of results in [2].

The inequality of Popoviciu as given by Vasić and Stanković in [3] (see also [4, page
173]) can be written in the following form:

Theorem 1.5. Let the conditions of Theorem 1.1 be satisfied for k ∈ N, 2 ≤ k ≤ n − 1, n ≥ 3. Then

f1
k,n(x,p) ≤

n − k

n − 1
f1
1,n(x,p) +

k − 1
n − 1

f1
n,n(x,p), (1.11)

where f1
k,n(x,p) is given by (1.3) for convex function f .

By inequality (1.11), we write

Ω4(x,p; f
)
=

n − k

n − 1
f1
1,n(x,p) +

k − 1
n − 1

f1
n,n(x,p) − f1

k,n(x,p) ≥ 0. (1.12)

Corollary 1.6. Let s, t ∈ R such that s ≤ t, and let x and p be positive n-tuples such that
∑n

i=1 pi = 1.
Then, we have

Mt
t,s(x,p; k) ≤

n − k

n − 1
Mt

t(x,p) +
k − 1
n − 1

Mt
s(x,p), (1.13)

Ms
s,t(x,p; k) ≥

n − k

n − 1
Ms

s(x,p) +
k − 1
n − 1

Ms
t (x,p). (1.14)
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Proof. Let s, t ∈ R such that s ≤ t, if s, t /= 0, then we set f(x) = xt/s, xij = xs
ij
in (1.11) to obtain

(1.13) and we set f(x) = xs/t, xij = xt
ij
in (1.11) to obtain (1.14).

When s = 0 or t = 0, we get the required results by taking limit.

Corollary 1.7. We set xij = g(xij ) and the convex function f = h ◦ g−1 in (1.11) to get

h
(
Mh,g(x,p; k)

) ≤ n − k

n − 1
h(Mh(x,p)) +

k − 1
n − 1

h
(
Mg(x,p)

)
. (1.15)

The following result is valid [5, page 8].

Theorem 1.8. Let f be a convex function defined on an interval I ⊆ R, x, p be positive n-tuples such
that

∑n
i=1 pi = 1 and x1, . . . , xn ∈ I. Then

f

(
n∑

i=1

pixi

)

≤ · · · ≤ f2
k+1,n(x,p) ≤ f2

k,n(x,p) ≤ · · · ≤ f2
1,n(x,p) =

n∑

i=1

pif(xi), (1.16)

where

f2
k,n(x,p;k) =

1

Cn+k−1
k−1

∑

1≤i1≤···≤ik≤n

⎛

⎝
k∑

j=1

pij

⎞

⎠f

⎛

⎝

∑k
j=1 pij xij
∑k

j=1 pij

⎞

⎠. (1.17)

If f is a concave function then the inequality (1.16) is reversed.

We introduce the mixed symmetric means with positive weights related to (1.17) as
follows:

M2
s,t(x,p; k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ 1

Cn+k−1
k−1

∑

1≤i1≤···≤ik≤n

⎛

⎝
k∑

j=1

pij

⎞

⎠Ms
t

(
xi1 , . . . , xik ; pi1 , . . . pik

)
⎞

⎠

1/s

, s /= 0;

(

Π1≤i1≤···≤ik≤n
(
Mt(xi1 , . . . , xik ; pi1 , . . . pik)

)(
∑k

j=1 pij )
)1/Cn+k−1

k−1
, s = 0.

(1.18)

Corollary 1.9. Let s, t ∈ R such that s ≤ t, and let x and p be positive n-tuples such that
∑n

i=1 pi = 1.
Then, we have

M2
t = M2

t,s(x,p; 1) ≥ · · · ≥ M2
t,s(x,p; k) ≥ · · · ≥ M2

s, (1.19)

M2
s = M2

s,t(x,p; 1) ≤ · · · ≤ M2
s,t(x,p; k) ≤ · · · ≤ M2

t . (1.20)

Proof. Let s, t ∈ R such that s ≤ t, if s, t /= 0, then we set f(x) = xt/s, xij = xs
ij
in (1.16) and

raising the power 1/t, we get (1.19). Similarly we set f(x) = xs/t, xij = xt
ij
in (1.16) and

raising the power 1/s, we get (1.20).
When s = 0 or t = 0, we get the required results by taking limit.
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We define the quasiarithmetic means with respect to (1.17) as follows:

M2
h,g(x,p;k) = h−1

⎛

⎜
⎝

1

Cn+k−1
k−1

∑

1≤i1≤···≤ik≤n

⎛

⎝
k∑

j=1

pij

⎞

⎠h ◦ g−1

⎛

⎜
⎝

∑k
j=1 pij g

(
xij

)

∑k
j=1 pij

⎞

⎟
⎠

⎞

⎟
⎠, (1.21)

where h ◦ g−1 is the convex function.
We obtain these generalized means by setting f = h◦g−1, xij = g(xij ) and applying h−1

to (1.17).

Corollary 1.10. By similar setting in (1.16), we get the monotonicity of these generalized means as
follows:

M2
h(x,p) = M2

h,g(x,p; 1) ≥ · · · ≥ M2
h,g(x,p; k) ≥ · · · ≥ M2

g(x,p), (1.22)

where f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is decreasing;

M2
g(x,p) = M2

g,h(x,p; 1) ≤ · · · ≤ M2
g,h(x,p; k) ≤ · · · ≤ M2

h(x,p), (1.23)

where f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is increasing.

The following result is given in [4, page 90].

Theorem 1.11. Let M be a real linear space, U a non empty convex set in M, f : U → R a convex
function, and also let p be positive n-tuples such that

∑n
i=1 pi = 1 and x1, . . . , xn ∈ U. Then

f

(
n∑

i=1

pixi

)

≤ · · · ≤ f3
k,n(x,p) ≤ · · · ≤ f3

1,n(x,p), (1.24)

where 1 ≤ k ≤ n and for I = {1, . . . , n},

f3
k,n(x,p) =

∑

i1,...,ik∈I
pi1 · · · pikf

⎛

⎝ 1
k

k∑

j=1

xij

⎞

⎠. (1.25)
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The mixed symmetric means with positive weights related to (1.25) are

M3
s,t(x,p; k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∑

i1,...,ik∈I

(
Πk

j=1pij

)
Ms

t (xi1 , . . . , xik)

)1/s

, s /= 0,

Πi1,...,ik∈I(Mt(xi1 , . . . , xik))
(Πk

j=1pij ), s = 0.
(1.26)

Corollary 1.12. Let s, t ∈ R such that s ≤ t, and let x and p be positive n-tuples such that
∑n

i=1 pi = 1.
Then, we have

M3
t = M3

t,s(x,p; 1) ≥ · · · ≥ M3
t,s(x,p; k) ≥ · · · ≥ M3

s, (1.27)

M3
s = M3

s,t(x,p; 1) ≤ · · · ≤ M3
s,t(x,p; k) ≤ · · · ≤ M3

t . (1.28)

Proof. Let s, t ∈ R such that s ≤ t, if s, t /= 0, then we set f(x) = xt/s, xij = xs
ij
in (1.24) and

raising the power 1/t, we get (1.27). Similarly we set f(x) = xs/t, xij = xt
ij
in (1.25) and

raising the power 1/s, we get (1.28).
When s = 0 or t = 0, we get the required results by taking limit.

We define the quasiarithmetic means with respect to (1.25) as follows:

M3
h,g(x,p;k) = h−1

⎛

⎝
∑

i1,...,ik∈I
pi1 · · · pikh ◦ g−1

⎛

⎝ 1
k

k∑

j=1

g
(
xij

)
⎞

⎠

⎞

⎠, (1.29)

where h ◦ g−1 is the convex function.
We obtain these generalized means be setting f = h ◦g−1, xij = g(xij ) and applying h−1

to (1.25).

Corollary 1.13. By similar setting in (1.24), we get the monotonicity of generalized means as follows:

M3
h(x,p) = M3

h,g(x,p; 1) ≥ · · · ≥ M3
h,g(x,p; k) ≥ · · · ≥ M3

g(x,p), (1.30)

where f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is decreasing;

M3
g(x,p) = M3

g,h(x,p; 1) ≤ · · · ≤ M3
g,h(x,p; k) ≤ · · · ≤ M3

h(x,p), (1.31)

where f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is increasing.

The following result is given at [4, page 97].
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Theorem 1.14. Let I ⊆ R, f : I → R be a convex function, σ be an increasing function on [0, 1]
such that

∫1
0 dσ(x) = 1, and u : [0, 1] → I be σ-integrable on [0, 1]. Then

f

(∫1

0
u(x)dσ(x)

)

≤
∫1

0
· · ·

∫1

0
f

(
1

k + 1

k+1∑

i=1

u(xi)

)
k+1∏

i=1

dσ(xi)

≤
∫1

0
· · ·

∫1

0
f

(
1
k

k∑

i=1

u(xi)

)
k∏

i=1

dσ(xi)

≤ · · ·

≤
∫1

0
· · ·

∫1

0
f

(
1
2

2∑

i=1

u(xi)

)
2∏

i=1

dσ(xi)

≤
∫1

0
f(u(x))dσ(x),

(1.32)

for all positive integers k.

We write (1.32) in the way that Ω5 ≥ 0, where

Ω5 :=
∫1

0
· · ·

∫1

0
f

(
1
m

m∑

i=1

u(xi)

)
m∏

i=1

dσ(xi) −
∫1

0
· · ·

∫1

0
f

(
1
k

k∑

i=1

u(xi)

)
k∏

i=1

dσ(xi), (1.33)

for any positive integer k > m ≥ 1.
The mixed symmetric means with positive weights related to

∫1

0
· · ·

∫1

0
f

(
1
k

k∑

i=1

u(xi)

)
k∏

i=1

dσ(xi) (1.34)

are defined as:

M5
s,t(x; k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∫1

0
· · ·

∫1

0
Ms

t (u(x1), . . . , u(xk))
k∏

i=1

dσ(xi)

)1/s

, s /= 0,

exp

((∫1

0
· · ·

∫1

0
logMt(u(x1), . . . , u(xk))

k∏

i=1

dσ(xi)

))

, s = 0.

(1.35)

Corollary 1.15. Let s, t ∈ R such that s ≤ t, and let x and p be positive n-tuples such that
∑n

i=1 pi = 1.
Then, we have

M5
t = M5

t,s(x,p; 1) ≥ · · · ≥ M5
t,s(x,p; k) ≥ · · · ≥ M5

s, (1.36)

M5
s = M5

s,t(x,p; 1) ≤ · · · ≤ M5
s,t(x,p; k) ≤ · · · ≤ M5

t . (1.37)
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Proof. Let s, t ∈ R such that s ≤ t, if s, t /= 0, then we set f(x) = xt/s, u = us in (1.32) and raising
the power 1/t, we get (1.36). Similarly we set f(x) = xs/t, u = ut in (1.32) and raising the
power 1/s, we get (1.37).

When s = 0 or t = 0, we get the required results by taking limit.

We define the quasiarithmetic means with respect to (1.32) as follows:

M5
h,g(x; k) = h−1

(∫1

0
· · ·

∫1

0
h ◦ g−1

(
1
k

k∑

i=1

g ◦ u(xi)

)
k∏

i=1

dσ(xi)

)

, (1.38)

where h ◦ g−1 is the convex function.
We obtain these generalized means by setting f = h◦g−1, u(x) = g ◦u(x) and applying

h−1 to (1.34).

Corollary 1.16. By similar setting in (1.32), we get the monotonicity of generalized means, given in
(1.38):

M5
h(x,p) = M5

h,g(x,p; 1) ≥ · · · ≥ M5
h,g(x,p; k) ≥ · · · ≥ M5

g(x,p), (1.39)

where f = h ◦ g−1 is convex and h is increasing, or f = h ◦ g−1 is concave and h is decreasing;

M5
g(x,p) = M5

g,h(x,p; 1) ≤ · · · ≤ M5
g,h(x,p; k) ≤ · · · ≤ M5

h(x,p), (1.40)

where f = g ◦ h−1 is convex and g is decreasing, or f = g ◦ h−1 is concave and g is increasing.

Remark 1.17. In fact unweighted version of these results were proved in [6], but in Remark
2.14 from [6], it is written that the same is valid for weighted case.

For convex function f , we define

Ωi(x,p, f
)
= fi

m,n(x,p) − fi
k,n(x,p), for i = 1, 3; 1 ≤ m < k ≤ n, for i = 2, ; 1 ≤ m < k

(1.41)

from (1.4), (1.16), and (1.24), in the way that

Ωi(x,p, f
) ≥ 0, i = 1, 2, 3, (1.42)

combining (1.42) with (1.12) and (1.33), we have

Ωi(x,p, f
) ≥ 0, i = 1, . . . , 5, (1.43)

for any convex function f .
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The exponentially convex functions are defined in [7] as follows.

Definition 1.18. A function f : (a, b) → R is exponentially convex if it is continuous and

n∑

i,j=1

ξiξjf
(
xi + xj

) ≥ 0 (1.44)

for all n ∈ N and all choices ξi ∈ R and xi + xj ∈ (a, b), 1 ≤ i, j ≤ n.

We also quote here a useful propositions from [7].

Proposition 1.19. Let f : (a, b) → R be a function, then following statements are equivalent;

(i) f is exponentially convex.

(ii) f is continuous and

n∑

i,j=1

ξiξjf

(
xi + xj

2

)

≥ 0, (1.45)

for every ξi ∈ R and every xi, xj ∈ (a, b), 1 ≤ i, j ≤ n.

Proposition 1.20. If f : (a, b) → R
+ is an exponentially convex function then f is a log-convex

function.

Consider ϕs : (0,∞) → R, defined as

ϕs(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xs

s(s − 1)
, s /= 0, 1,

− logx, s = 0,

x logx, s = 1.

(1.46)

and φs : R → [0,∞), defined as

φs =

⎧
⎪⎪⎨

⎪⎪⎩

1
s2
esx, s /= 0,

1
2
x2, s = 0.

(1.47)

It is easy to see that both ϕs and φs are convex.
In this paper we prove the exponential convexity of (1.43) for convex functions defined

in (1.46) and (1.47) and mean value theorems for the differences given in (1.43). We also
define the corresponding means of Cauchy type and establish their monotonicity.

2. Main Result

The following theorems are the generalizations of results given in [6].
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Theorem 2.1. (i) Let the conditions of Theorem 1.1 be satisfied. Consider

Ωi
t =

(
ϕt

)
m,n −

(
ϕt

)
k,n, i = 1, . . . , 5, (2.1)

where Ωi
s is obtained by replacing convex function f with ϕs for s ∈ R, in Ωi(x,p, f) (i = 1, . . . , 5).

Then the following statements are valid.

(a) For every p ∈ N and s1, . . . , sp ∈ R, the matrix [Ωi
(sl+sm)/2

]p
l,m=1

is a positive semidefinite
matrix. Particularly

det
[
Ωi

(sl+sm)/2

]k

l,m=1
≥ 0, for k = 1, 2, . . . , p. (2.2)

(b) The function s 	→ Ωi
s is exponentially convex on R.

Proof. (i) Consider a function

μ(x) =
k∑

l,m=1

ulumϕslm(x), (2.3)

for k = 1, 2, . . . , p, ul ∈ R, ul, and um are not simultaneously zero and slm = (sl + sm)/2. We
have

μ′′(x) =
k∑

l,m=1

ulumx
slm−2,

=⇒ μ′′(x) =

(
k∑

l=1

ulx
sl/2−1

)2

≥ 0.

(2.4)

It follows that μ is a convex function. By taking f = μ in (1.43), we have

0 ≤
(

k∑

l,m=1

ulumϕ
i
slm

)

m,n

−
(

k∑

l,m=1

ulumϕslm

)

k,n

=
k∑

l,m=1

ulum

((
ϕslm

)
m,n −

(
ϕslm

)
k,n

)

=
k∑

l,m=1

ulumΩi
slm

.

(2.5)

This means that the matrix [Ωi
(sl+sm)/2

]p
l,m=1

is a positive semidefinite, that is, (2.2) is valid.

(ii) It was proved in [6] that Ωi
s is continuous for s ∈ R. By using Proposition 1.19, we

get exponential convexity of the function s 	→ Ωi
s.
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Theorem 2.2. Theorem 2.1 is still valid for convex functions φs = ϕs.

Theorem 2.3. Let n ≥ 3 and k be positive integers such that 2 ≤ k ≤ n − 1 and let f ∈ C2[a, b],
Ωi

s(x,p;x
2)/= 0, then there exists ξ ∈ [a, b] such that

Ωi(x,p, f
)

=
1
2
f ′′(ξ)Ωi

(
x,p, x2

)
, i = 1, . . . , 5. (2.6)

Proof. Since f ∈ C2[a, b] therefore there exist real numbers m = minx∈[a,b]f ′′(x) and M =
maxx∈[a,b]f ′′(x). It is easy to show that the functions φ1(x), φ2(x) defined as

φ1(x) =
M

2
x2 − f(x),

φ2(x) = f(x) − m

2
x2

(2.7)

are convex.
We use φ1 in (1.43),

Ωi

(

x,p,
M

2
x2 − f(x)

)

≥ 0,

Ωi(x,p, f(x)
) ≤ M

2
Ωi

(
x,p, x2

)
.

(2.8)

Similarly, by using φ2 in (1.43), we get

Ωi
(
x,p, f(x) − m

2
x2
)

� 0,

m

2
Ωi

(
x,p, x2

)
≤ Ωi(x,p, f(x)

)
.

(2.9)

From (2.8) and (2.9), we get

m

2
Ωi

(
x,p, x2

)
≤ Ωi(x,p, f(x)

) ≤ M

2
Ωi

(
x,p, x2

)
. (2.10)

Since Ωi(x,p, x2)/= 0, therefore

=⇒ m ≤ 2Ωi
(
x,p, f(x)

)

Ωi(x,p, x2)
≤ M. (2.11)

Hence, we have

Ωi(x,p, f
)
=

1
2
f ′′(ξ)Ωi

(
x,p, x2

)
. (2.12)
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Theorem 2.4. Let n ≥ 3 and k be positive integer such that 2 ≤ k ≤ n − 1 and f, g ∈ C2[a, b], then
there exists ξ ∈ [a, b] such that

Ωi
(
x,p, f

)

Ωi
(
x,p, g

) =
f ′′(ξ)
g ′′(ξ)

, (2.13)

provided that the denominators are non zero.

Proof. Define h ∈ C2[a, b] in the way that

h = c1f − c2g, (2.14)

where c1 and c2 are as follow;

c1 = Ωi(x,p, g
)

c2 = Ωi(x,p, f
)
.

(2.15)

Now using Theorem 2.3 with f = h, we have

(

c1
f ′′(ξ)
2

− c2
g ′′(ξ)
2

)

Ωi
(
x,p, x2

)
= 0. (2.16)

Since Ωi
k,n

(x,p, x2)/= 0, therefore (2.16) gives

Ωi
(
x,p, f

)

Ωi
(
x,p, g

) =
f ′′(ξ)
g ′′(ξ)

. (2.17)

Corollary 2.5. Let x and p be positive n-tuples, then for distinct real numbers l and r, different from
zero and 1, there exists ξ ∈ [a, b], such that

ξl−r =
r(r − 1)
l(l − 1)

Ωi
(
x,p;xl

)

Ωi(x,p;xr)
. (2.18)

Proof. Taking f(x) = xl and g(x) = xr , in (2.13), for distinct real numbers l and r, different
from zero and 1, we obtain (2.18).

Remark 2.6. Since the function ξ → ξl−r , l /= r is invertible, then from (2.18), we get

m ≤
(

r(r − 1)
l(l − 1)

Ωi(x,p;xl)
Ωi(x,p;xr)

)1/(l−r)
≤ M, r /= l, r, l /= 0, 1. (2.19)
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3. Cauchy Mean

In fact, similar result can also be find for (2.13). Suppose that f ′′/g ′′ has inverse function.
Then (2.13) gives

ξ =
(
f ′′

g ′′

)−1(Ωi
(
x,p, f

)

Ωi
(
x,p, g

)

)

. (3.1)

We have that the expression on the right hand side of above, is also a mean.We define Cauchy
means

Mi
l,r =

(
r(r − 1)
l(l − 1)

Ωi(x,p;xl)
Ωi(x,p;xr)

)1/(l−r)
, r /= l, r, l /= 0, 1,

=

(
Ωi(x,p;ϕl)
Ωi(x,p;ϕr)

)1/(l−r)
, r /= l.

(3.2)

Also, we have continuous extensions of these means in other cases. Therefore by limit, we
have the following:

Mi
r,r = exp

(
1 − 2r
r(r − 1)

− Ωi
(
x,p;ϕrϕ0

)

Ωi
(
x,p;ϕr

)

)

, r /= 0, 1,

Mi
1,1 = exp

(

−1 − Ωi
(
x,p;ϕoϕ1

)

2Ωi
(
x,p;ϕ1

)

)

,

Mi
0,0 = exp

(

1 − Ωi
(
x,p;ϕ2

0

)

2Ωi
(
x,p;ϕ0

)

)

.

(3.3)

The following lemma gives an equivalent definition of the convex function [4, page 2].

Lemma 3.1. Let f be a convex function defined on an interval I ⊂ R and l ≤ v, r ≤ u, l /= r, u /=v.
Then

f(l) − f(r)
l − r

≤ f(v) − f(u)
v − u

. (3.4)

Now, we deduce the monotonicity of means given in (3.2) in the form of Dresher’s
inequality, as follows.

Theorem 3.2. LetMi
r,l
be given as in (3.2) and r, l, u, v ∈ R such that r ≤ v, l ≤ u, then

Mi
r,l ≤ Mi

v,u. (3.5)
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Proof. By Proposition 1.20 Ωi
l is log-convex. We set f(l) = logΩi

l in Lemma 3.1 and get

logΩi
l
− logΩi

r

l − r
≤ logΩi

v − logΩi
u

v − u
. (3.6)

This together with (2.1) follows (3.5).

Corollary 3.3. Let x and p be positive n-tuples, then for distinct real numbers l, r, and s, all are
different from zero and 1, there exists ξ ∈ I, such that

ξl−r =
r(r − s)
l(l − s)

(
Mi

l,s(x,p; k)
)l −

(
Mi

l,s(x,p; k + 1)
)l

(
Mi

r,s(x,p; k)
)r − (

Mi
r,s(x,p; k + 1)

)r .
(3.7)

Proof. Set f(x) = xl/s and g(x) = xr/s, then taking xi → xs
i in (2.13), we get (3.7) by the virtue

of (1.2), (1.18), (1.26) and (1.35) for non zero, distinct real numbers l, r and s.

Remark 3.4. Since the function ξ → ξl−r is invertible, then from (3.7)we get

m ≤

⎛

⎜
⎝

r(r − s)
l(l − s)

(
Mi

l,s(x,p; k)
)l −

(
Mi

l,s(x,p; k + 1)
)l

(
Mi

r,s(x,p; k)
)r − (

Mi
r,s(x,p; k + 1)

)r

⎞

⎟
⎠

1/(l−r)

≤ M, (3.8)

where l, r, and s are non zero, distinct real numbers.

The corresponding Cauchy means are given by

Mi
l,r;s =

⎛

⎜
⎝

r(r − s)
l(l − s)

(
Mi

l,s(x,p; k)
)l −

(
Mi

l,s(x,p; k + 1)
)l

(
Mi

r,s(x,p; k)
)r − (

Mi
r,s(x,p; k + 1)

)r

⎞

⎟
⎠

1/(l−r)

, (3.9)

where l, r, and s are non zero, distinct real numbers. We write (3.9) as

Mi
l,r;s =

(
Ωi

(
xs,p;ϕl/s

)

Ωi
(
xs,p;ϕr/s

)

)1/(l−r)
, l /= r, (3.10)
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where xs = (xs
1, . . . , x

s
n) and the limiting cases are as follows:

Mi
r,r;s = exp

(
(s − 2r)
r(r − s)

− Ωi
(
xs,p;ϕr/sϕ0

)

sΩi
(
xs,p;ϕr/s

)

)

, r(r − s)/= 0, s /= 0,

Mi
0,0;s = exp

(
1
s
− Ωi

(
xs,p;ϕ2

0

)

2sΩi
(
xs,p;ϕ0

)

)

, s /= 0,

Mi
s,s;s = exp

(
−1
s

− Ωi
(
xs,p;ϕ0ϕ1

)

2sΩi
(
xs,p;ϕ1

)

)

, s /= 0,

Mi
r,r;0 = exp

(
−2
r

+
Ωi

(
log x,p;xφr

)

Ωi
(
log x,p;φr

)

)

, r /= 0,

Mi
0,0;0 = exp

(
Ωi

(
log x,p;xφ0

)

3Ωi
(
log x,p;φ0

)

)

,

(3.11)

where log x = (logx1, . . . , logxn).
Now, we give the monotonicity of new means given in (3.10), as follows:

Theorem 3.5. Let l, r, u, v ∈ R such that l ≤ v, r ≤ u, then

Mi
l,r;s ≤ Mi

v,u;s, i = 1, . . . , n, (3.12)

whereMi
l,r is given in (3.10).

Proof. We take Ωi
l as defined in Theorem 2.1. Ωi

l are log-convex by Proposition 1.20, therefore
by Lemma 3.1 for l, r, u, v ∈ R, l ≤ v, r ≤ u, we get

(
Ωi

l

Ωi
r

)1/(l−r)
≤
(

Ωi
v

Ωi
u

)1/(v−u)
. (3.13)

For s > 0, we set xi = xs
i , l = l/s, r = r/s, u = u/s, v = v/s ∈ R such that l/s ≤ v/s, r/s ≤ u/s,

in (2.1) to obtain (3.12)with the help of (3.13).
Similarly for s < 0, we set xi = xs

i , l = l/s, r = r/s, u = u/s, v = v/s ∈ R such that
v/s ≤ l/s, u/s ≤ r/s, in (2.1) and get (3.12) again, by the virtue of (3.13).

In the case s = 0, since s → Ωi
s for s ∈ R is continuous therefore We get required result

by taking limit.
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