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We state, prove, and discuss new general inequality for convex and increasing functions. As
a special case of that general result, we obtain new fractional inequalities involving fractional
integrals and derivatives of Riemann-Liouville type. Consequently, we get the inequality of H.
G. Hardy from 1918. We also obtain new results involving fractional derivatives of Canavati and
Caputo types as well as fractional integrals of a function with respect to another function. Finally,
we apply our main result to multidimensional settings to obtain new results involving mixed
Riemann-Liouville fractional integrals.

1. Introduction

First, let us recall some facts about fractional derivatives needed in the sequel, for more details
see, for example, [1, 2].

Let0 < a < b < o. By C"([a, b]), we denote the space of all functions on [a, b] which
have continuous derivatives up to order m, and AC([a,b]) is the space of all absolutely
continuous functions on [a,b]. By AC™([a,b]), we denote the space of all functions g €
C™([a,b]) with g1 € AC([a,b]). For any a € R, we denote by [a] the integral part of a (the
integer k satisfying k < a < k + 1), and [a] is the ceiling of & (min{n € N,n > a}). By Li(a, b),
we denote the space of all functions integrable on the interval (a, b), and by L. (a, b) the set
of all functions measurable and essentially bounded on (a, b). Clearly, L,(a,b) C Li(a,b).

We start with the definition of the Riemann-Liouville fractional integrals, see [3]. Let
[a,b], (o0 < a < b < o) be a finite interval on the real axis R. The Riemann-Liouville
fractional integrals I f and I f of order a > 0 are defined by

(12 F) (x) = ﬁ f FO -t dt, (x> a), (L.1)
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b
(12 1)) = 5 | £o@=0a, x <) 12)

respectively. Here I'(a) is the Gamma function. These integrals are called the left-sided and
the right-sided fractional integrals. We denote some properties of the operators I7 f and I, f
of order a > 0, see also [4]. The first result yields that the fractional integral operators I§ f
and I f arebounded in L,(a,b), 1 <p < oo, that is

I fllp < Klifllp, 1y fllp < Kl fllp, (1.3)
where
(b~ a)”
= @) (1.4)

Inequality (1.3), that is the result involving the left-sided fractional integral, was proved by
H. G. Hardy in one of his first papers, see [5]. He did not write down the constant, but the
calculation of the constant was hidden inside his proof.

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable, and expressions of the form 0- oo, o0 /o0, and 0/0 are
taken to be equal to zero. Moreover, by a weight u = u(x), we mean a nonnegative measurable
function on the actual interval or more general set.

The paper is organized in the following way. After this Introduction, in Section 2 we
state, prove, and discuss new general inequality for convex and increasing functions. As a
special case of that general result, we obtain new fractional inequalities involving fractional
integrals and derivatives of Riemann-Liouville type. Consequently, we get the inequality
of H. G. Hardy since 1918. We also obtain new results involving fractional derivatives
of Canavati and Caputo types as well as fractional integrals of a function with respect
to another function. We conclude this paper with new results involving mixed Riemann-
Liouville fractional integrals.

2. The Main Results

Let (€1,%1, 1) and (Lo, 35, po) be measure spaces with positive o-finite measures, and let
k: Q1 xQ, — Rbe anonnegative function, and

K(x) = Lz k(x,y)du:(y), xeQ. (2.1)

Throughout this paper, we suppose that K(x) > 0 a.e. on Q;, and by a weight function
(shortly: a weight), we mean a nonnegative measurable function on the actual set. Let U (k)
denote the class of functions g : Q1 — R with the representation

80 = [ k), @2)

where f : Q; — R is a measurable function.
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Our first result is given in the following theorem.

Theorem 2.1. Let u be a weight function on Q1, k a nonnegative measurable function on Q1 x Q,
and K be defined on €y by (2.1). Assume that the function x — u(x)(k(x,y)/K(x)) is integrable
on Qq for each fixed y € €. Define v on Q, by

k(x,
v(y) = fQ u(x) I(<x(xy)) dpi(x) < co. (2.3)

If ¢ : (0,00) — R is convex and increasing function, then the inequality

f o ”(x)¢<| Ig<((§)) >d#1(3€) < fQ o(y)¢(|f W) )du2(y) (2.4)

holds for all measurable functions f : Q» — Rand for all functions g € U (k).

Proof. By using Jensen’s inequality and the Fubini theorem, since ¢ is increasing function, we
find that

[ we(| g |)ame= [ u(x)gb(‘ Ko |, KNG daw) de @)

u(x)

= o, K(x) <L22 k(x, y)¢(|f(y)|)d#2(y)>dy1 (x)
(2.5)

- [ otren(J, v D o) Yae)

- j o)$(|f W) )k (v),

and the proof is complete. ]
As a special case of Theorem 2.1, we get the following result.

Corollary 2.2. Let u be a weight function on (a,b) and a > 0. I f denotes the Riemann-Liouville
fractional integral of f. Define v on (a,b) by

b _ a-1
v(y) = af u(x)%dx < oo. (2.6)

If ¢ : (0,00) — R is convex and increasing function, then the inequality

b b
[ uep( Lz ) ax < [ 0ol Dy @7

(x-a)"

holds.
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Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du1(x) = dx, du»(y) = dy,
a-1
(x-y)

Kry) =1 T
0, x<y<b,

asysx (2.8)

we get that K(x) = (x —a)"/T(a + 1) and g(x) = I§ f(x), so (2.7) follows. I

Remark 2.3. In particular for the weight function u(x) = (x — a)”, x € (a,b) in Corollary 2.2,
we obtain the inequality

b b
[ w-arg( LR s )ax < [ 0-9)"9 (1) Ddy. 29)

(x-a)"

Although (2.4) holds for all convex and increasing functions, some choices of ¢ are of
particular interest. Namely, we will consider power function. Let g4 > 1 and the function
¢ : R. — Rbe defined by ¢(x) = x9, then (2.9) reduces to

f (x - (F(a+1)|1 f(x)|> dx<f (b-y)°|f()|"dy. (2.10)

Since x € (a,b) and a(1 - q) < 0, then we obtain that the left hand side of (2.10) is

b
f (x - (““ g S 2 (b= @) 1)1 [z ferax e
and the right-hand side of (2.10) is
b b
[ @-wrireray < e-ar [ 17wy @12)

Combining (2.11) and (2.12), we get

b b-a)* q b
L |15 f ()] 7dx < G(a fi)> f lf ()| "dy. (2.13)

Taking power 1/4 on both sides, we obtain (1.3).

Corollary 2.4. Let u be a weight function on (a,b) and a > 0. I} f denotes the Riemann-Liouville
fractional integral of f. Define v on (a,b) by

(y-0""

v(y) = af u(x) TER dx < co. (2.14)
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If ¢ : (0,00) — Ris convex and increasing function, then the inequality

f (o )¢<F(a+1)

I“f<ﬂ)dx<j'v@0¢uf@nndy (215

holds.

Proof. Similar to the proof of Corollary 2.2. [

Remark 2.5. In particular for the weight function u(x) = (b - x)%, x € (a,b) in Corollary 2.4,
we obtain the inequality

f(b 0 (s

Let g > 1 and the function ¢ : R, — R be defined by ¢(x) = x9, then (2.16) reduces to

J‘ (b- <F(a+1)

Since x € (a,b) and a(1 - q) < 0, then we obtain that the left hand side of (2.17) is

flo-or (G2

and the right-hand side of (2.17) is

Nizsw|)ar< [ w-asdroihay. @6

Vf(ﬂ)dx<f(y a)* | f)|'dy. (217)

B f)'ax (@18)

I“f(x)|> dx > (b - a)*"” q)(F(a+1))qu

b b
[ w-aylrwliay < e-ar [ 1rw)ay @19)

Combining (2.18) and (2.19), we get

)

Taking power 1/g on both sides, we obtain (1.3).

I fx )| dx < (ﬁ?afi“))qu |fw)|"dy. (2.20)

Theorem 2.6. Let p,q >1,1/p+1/q=1,a > 1/q, I f and I} f denote the Riemann-Liouville
fractional integral of f, then the following inequalities

b
f |12 f(x)|7dx < CI |f (v)|"dy, (2.21)

)

hold, where C = (b — a)™ /(T'(a))ga(p(a - 1) + 1)1

It f(x)| dx<C f |f(v)|"dy (2.22)
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Proof. We will prove only inequality (2.21), since the proof of (2.22) is analogous. We have
1 (" .
a < _ a . .
[CRHGIET f |F®)] (e — 1) at (223)

Then by the Holder inequality, the right-hand side of the above inequality is

ety ([ o) ([vona)

1 (xma) e e N
T@ (pa-1)+ 1) <—[ 7o dt) (2.24)

L (x_a)(a—l)ﬂ/p < b , >1/q
: r(a) (P(“—l) i 1)1/p J‘a |f(t)| dt .

Thus, we have

_ Na=D)+1/p b 1/q
|(Ig+f) (x)| < ﬁ ((i a)l) N 1>1/P <f |f(t)|th> , for every x € [a,b]. (2.25)
pla— a

Consequently, we find

1 _ \qla=1)+q/p b
|(I5 H(x)]T < T@) ((:(a f)l) T <f If(t)lth>, (2.26)

and we obtain

b q(a=1)+q/p+1
|12 )| dx < Sk /
a (T(@)?(qa-1)+q/p+1)(pla—1) +1)%7

b
f |f ()| at. (2.27)

Remark 2.7. For a > 1, inequalities (2.21) and (2.22) are refinements of (1.3) since

ga(p(a-1) + 1)(1_1 >qal>al, soC< <(1;1:(Z;a>q' (2.28)

We proved that Theorem 2.6 is a refinement of (1.3), and Corollaries 2.2 and 2.4 are
generalizations of (1.3).

Next, we give results with respect to the generalized Riemann-Liouville fractional
derivative. Let us recall the definition, for details see [1, page 448].
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We define the generalized Riemann-Liouville fractional derivative of f of order a > 0
by
Defx)= (i)nr (x—1)"" " f(y)d (2.29)
a I'(n-a)\dx B Y y)ay. '

wheren = [a] + 1, x € [a,b].
For a,b € R, we say that f € Li(a,b) has an L, fractional derivative D% f (a« > 0) in
[a,b], if and only if

1) D% f e C([a,b]), k=1,...,n=[a] +1,
(2) D' f € AC([a, b)),
(3) D% € L.(a,b).

Next, lemma is very useful in the upcoming corollary (see [1, page 449] and [2]).

Lemma 2.8. Let p > a > 0and let f € Li(a,b) have an L, fractional derivative Dgf in [a,b] and
let

DY fay=0, k=1,...,[f] +1, (2.30)

then
DL = o [ G0 Dy @3
SO - S |

foralla<x<b.

Corollary 2.9. Let u be a weight function on (a,b), and let assumptions in Lemma 2.8 be satisfied.
Define v on (a, b) by

)ﬁle

o) = (5= [ S0

dx < . (2.32)
If ¢ : (0,00) — Ris convex and increasing function, then the inequality

fu(x)qb( = a)ﬂa |Daf(x)|>dx<f v(y)¢( ) y (2.33)

holds.
Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), dui1(x) = dx, du, (y) = dy,
(x-p)™"

kvy)=9y T(f-a)
0, x<y<b,

asy=x, (2.34)
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we get that K (x) = (x — a)’ ™ /T( — a + 1). Replace f by Dgf Then, by Lemma 2.8, g(x) =
(D% f)(x) and we get (2.33). I

Remark 2.10. In particular for the weight function u(x) = (x— a)ﬂ ~, x € (a,b) in Corollary 2.9,
we obtain the inequality

fb (x - )P < (P- “); u) | D% £ (x) |>dx < fb (b-y)""p( Ydy. (235

Let g > 1 and the function ¢ : R, — R be defined by ¢(x) = x9, then after some calculation,

we obtain
b (B-a) \ 1 pb
« (b-a)
[(1psserax < <r(p—a+1)> [

Next, we define Canavati-type fractional derivative (v-fractional derivative of f), for details
see [1, page 446]. We consider

Tdy. (2.36)

C’([a,b]) = {f € C"([a,b]) : I"V" L F™ € CY([a, b])} (2.37)

v >0, n=[v]. Let f € C"([a, b]). We define the generalized v-fractional derivative of f over
[a,b] as

DYf = ( v f<n>>’, (2.38)

the derivative with respect to x.

Lemma 2.11. Let v > y + 1, where y > 0 and f € C"([a,b]). Assume that fD(a) = 0,i =
0,1,...,[v] =1, then

X

i = 1 _n\v-y-1 v
<Daf)(X>—r(v_Y)f (x =) (DL f) (B, (2.39)

a

forall x € [a,b].

Corollary 2.12. Let u be a weight function on (a, b), and let assumptions in Lemma 2.11 be satisfied.
Define v on (a, b) by

v-y-1

o(y) = (v- Y)f u(x) _y)o) dx < oo (2.40)
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If ¢ : (0,00) — Ris convex and increasing function, then the inequality

fmw¢<i——7¥@7uﬂ>u<fv@WﬂDf@HMy (2.41)

holds.
Proof. Similar to the proof of Corollary 2.9. [

Remark 2.13. In particular for the weight function u(x) = (x-a)”7, x € (a,b) in Corollary 2.12,
we obtain the inequality

r 1 .
f (x—a)” Y¢<M |DYf(x)|>dx < f (b-y)" "d(|DLf (v)|)dy. (2.42)
Let g > 1 and the function ¢ : R, — R be defined by ¢(x) = x9, then (2.42) reduces to
b g b
-y +))! [ G- plifax < [ - D@l @4
Since x € [a,b] and (v - y)(1 - g) <0, then we obtain

b N\ 1T b
f Tdx < <1£1(jv @ > f D ()| dy. (2.44)

r+1
Taking power 1/g on both sides of (2.44), we obtain

(b-a)”

Y v
IDLf @l < £ =5 1D W) 245)
When y = 0, we find that
b b
T+ 1) [ =@ fdr < [ 0-)" 102 )y, (2:46)
that is,
b-
151l < =D () @47)

In the next corollary, we give results with respect to the Caputo fractional derivative. Let
us recall the definition, for details see [1, page 449].
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Leta>0,n = [a], g € AC"([a,b]). The Caputo fractional derivative is given by

8" ()

g()-r(n a)f )" ————dy, (2.48)

for all x € [a, b]. The above function exists almost everywhere for x € [a, b].

Corollary 2.14. Let u be a weight function on (a,b) and a > 0. D, g denotes the Caputo fractional
derivative of g. Define v on (a, b) by

>na1

-y

—dx < . (2.49)
—a)"

v(y) = (n- a)f u(x)
If ¢ : (0,00) — R is convex and increasing function, then the inequality

[ wep(l s sol)axs [ owa(s @)y @)

holds.
Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du1(x) = dx, du»(y) = dy,

(x-y)""
k(x,y) =4 Tm-ay = *SY=% 2.51)

0, x<y<b,

we get that K(x) = (x —a)"*/T'(n — a + 1). Replace f by g, so ¢ becomes D%,¢ and (2.50)
follows. [

Remark 2.15. In particular for the weight function u(x) = (x — a)"™", x € (ab) in
Corollary 2.14, we obtain the inequality

f (x—a)""¢ (F((n Z)H)ID g(x)l>dx<f E-»""p(|s"W)|)dy. @5

Let g > 1 and the function ¢ : R, — R be defined by ¢(x) = x9, then after some calculation,
we obtain

_ Nm-a) \ 1 b
[imsor s (82050 [eolor o

Taking power 1/g on both sides, we obtain

(b - )(" D o 254
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Theorem 2.16. Let p,q > 1,1/p+1/q =1, n—-a > 1/q, DI, f(x) denotes the Caputo fractional
derivative of f, then the following inequality

(b- a)q(n—tl) J-b

b
D%, 1dx <
L IDzaf (o)) dx (Tn-a)!(p(n-a-1) +1)q/Pq(n—cx)

fOwl'ay @)

holds.
Proof. Similar to the proof of Theorem 2.6. ]
The following result is given [1, page 450].

Lemma2.17. Let a > y+1,y > 0, and n = [a]. Assume that f € AC"([a, b)) such that f*)(a) =0,
k=0,1,...,n—1,and D%,f € Lo, (a,b), then D!, f € C([a,b]), and

Y _ 1 * _ a=y-1a
DLf@ =, [ o DLy (256

foralla<x<b.

Corollary 2.18. Let u be a weight function on (a,b) and a > 0. D, f denotes the Caputo fractional
derivative of f, and assumptions in Lemma 2.17 are satisfied. Define v on (a, b) by

a-y-1

b —_
o(y) = (a-y) L u(x)%dx <. (2.57)

If ¢ : (0,00) — Ris convex and increasing function, then the inequality

b a—
f u(x)¢<u

(x-a)™”

b
DI, <x>|>dx <[owepsswbay @

holds.

Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), dui1(x) = dx, du,(y) = dy,

a-y-1

(x-y)
k(vy)=q T(a-y) '
0, x<y<b,

azysx (2.59)

we get that K(x) = (x —a)*"/T(a —y + 1). Replace f by D%, f, so g becomes Draf and (2.58)
follows. [
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Remark 2.19. In particular for the weight function u(x) = (x—a)*”, x € (a,b) in Corollary 2.18,
we obtain the inequality

(x-a)" "¢ MD Jf ()] )dx < (b y) 7o (D (y)|)dy. (2.60)
fre-oma(

Let g > 1 and the function ¢ : R, — R be defined by ¢(x) = x9, then after some calculation,
we obtain

b q (b-a)®
L DIaf(x)| de(F( Cye1) f |DZ.f(y)|"dy. (2.61)
For y = 0, we obtain
’ 1gx < (L= ’ D 9 (2.62)
[(1reortax < (F225) [ 1ossnay. -

We continue with definitions and some properties of the fractional integrals of a function
f with respect to given function g. For details see, for example, [3, page 99].

Let (a,b), —o0 < a < b < oo be a finite or infinite interval of the real line R and a > 0.
Also let g be an increasing function on (a, b] and g’ a continuous function on (a, b). The left-
and right-sided fractional integrals of a function f with respect to another function g in [a, b]
are given by

« gt f (t)df

<I“+8 (%) r(a).[ [g(x) - g(t) e (2.68)
« g f (t)df

<Ib of r(a)j [g(t) - g(x)]" x<b (2.64)

respectively.

Corollary 2.20. Let u be a weight function on (a,b), and let g be an increasing function on (a, b],
such that g’ is a continuous function on (a,b) and a > 0. I ., f denotes the left-sided fractional
integral of a function f with respect to another function g in [a, b]. Define v on (a, b) by

oty [ 8~ ()™
v(y) =ag (v) L u(x) (30~ 3@)° dx < co. (2.65)

If ¢ : (0,00) — Ris convex and increasing function, then the inequality

b [(a+1)
J : ”(x)"b( (3(x) - g(@)"

b
Ig o f () |>dx < f o(v)o(|f (v)])dy (2.66)

holds.
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Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du1(x) = dx, du»(y) = dy,
1 g)

k(ry) = T@rD) (g -gy))™ 77 (2.67)
0, x<y<b,

afy<x

we get that K(x) = (1/T'(a +1))(g(x) — g(a))?, so (2.66) follows. ]

Remark 2.21. In particular for the weight function u(x) = ¢'(x)(g(x) - g(a))”, x € (a,b) in
Corollary 2.20, we obtain the inequality

b u T(a+1)
g0 (g(x) - g(@)) ¢< IR Is+;gf<x>|>dx
f a (g(x) - g(a)) (268)
b
<[ g0 (s®) - 509U @) Dy
Let g > 1 and the function ¢ : R, — R be defined by ¢(x) = x9, then (2.68) reduces to

b a(l-q) q

T+ 1) [ g/ (g0) = g(a) 7|1 f 0|
‘ (2.69)

= fb g'(W)(g®) -gW) | fw)|"dy.

Since x € (a,b) and a(1 - q) <0, g is increasing, then (g(x) — g(a))“(l_q) > (gb) - g(a))“(l‘q)
and (g(b) - ¢(v))" < (g(b) — g(a))” and we obtain

fb g'(x)

Remark 2.22. If g(x) = x, then I , f(x) reduces to I f(x) Riemann-Liouville fractional
integral and (2.70) becomes (2.13).

b) - “\N
12 f ()| "dx < <%> f W) |fW)|"dy. (2.70)

Analogous to Corollary 2.20, we obtain the following result.

Corollary 2.23. Let u be a weight function on (a,b), and let g be an increasing function on (a,b],
such that g' is a continuous function on (a,b) and a > 0. I, “f_g f denotes the right-sided fractional

integral of a function f with respect to another function g in [a, b]. Define v on (a, b) by

y _ a-1
v(y) =ag'(y) f u(x) (fgg) _i((’;))))a dx < w. 2.71)
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If ¢ : (0,00) — Ris convex and increasing function, then the inequality

b T(a+1)
L”“w<@wwgw»“

b
i) Jax< [0t hay e

holds.

Remark 2.24. In particular for the weight function u(x) = ¢'(x)(g(b) — g(x))%, x € (a,b) and
for function ¢(x) = x9, g > 1, we obtain after some calculation

fb g'(x)

Remark 2.25. 1f g(x) = x, then I f(x) reduces to Iy f(x) Riemann-Liouville fractional
integral and (2.73) becomes (2.20).

b) - “\7 (b
Ii,’,;gf(x)rdxs <%> f W |f )| dy. (2.73)

a

The refinements of (2.70) and (2.73) for a > 1/q are given in the following theorem.

Theorem 2.26. Let p,q > 1, 1/p+1/9=1,a > 1/q, 17 . f and Iz?,;g f denote the left-sided and
right-sided fractional integral of a function f with respect to another function g in [a,b], then the
following inequalities:

)
)

(g(b) - g(a))™
aq(T(a)? (pla 1) +1)77
(g(b) - g(a))™
aq(T(a)) (p(a—1) +1)77

b
12 f0)]'g (x)dx < f [fW)1'8 (v)dy,

(2.74)

b
I o f ()]s (x)x < f IfF ()18 (v)dy

hold.

We continue by defining Hadamard type fractional integrals.
Let (a,b), 0 < a < b < oo be a finite or infinite interval of the half-axis R, and a > 0.
The left- and right-sided Hadamard fractional integrals of order a are given by

« 1 (YT f(y)dy 575
(J&f)(x) = @) L <logy> o x> a, (2.75)
a 1Pyt f(y)dy
VL) = 5 L (tog ) o x<b (2.76)

respectively.
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Notice that Hadamard fractional integrals of order a are special case of the left- and
right-sided fractional integrals of a function f with respect to another function g(x) = log(x)
in [a,b], where 0 < a < b < oo, so (2.70) reduces to

b d log(b/a))*\? d
fal(]§+f)(x)|q7xs<%> f |f(y)|q?y, (2.77)
and (2.73) becomes
b d log(b/a))*\* (? d
[ 10z peors < (SRR e @79

Also, from Theorem 2.26 we obtain refinements of (2.77) and (2.78), fora > 1/4,
yx _ (logb/a)”
* 7 qa(T(@)" (pla—1) +1)"7

(log(b/a))™
qa(T (@) (p(a—1) + )77

b b d
@ (i
[0zl [,

(2.79)

b d b d
L UL NG < f If(y)qu-

Some results involving Hadamard type fractional integrals are given in [3, page 110].
Here, we mention the following result that can not be compared with our result.

Leta>0,1<p < oo,and 0 < a < b < oo, then the operators J7, f and J;_ f are bounded
in Ly(a, b) as follows:

e fllp < Kall fllps W= fllp < Kall flp, (2.80)

where

1 log(b/a) 1 log(b/a)
Ky= — e let/rdr, Ky = —— t1g7t/p gt (2.81)
I'(a) Jo L(a) Jo

Now we present the definitions and some properties of the Erdélyi-Kober type fractional
integrals. Some of these definitions and results were presented by Samko et al. in [4].

Let (a,b), (0 < a < b < o) be a finite or infinite interval of the half-axis R*. Also let
a>0,0>0,and 17 € R. We consider the left- and right-sided integrals of order & € R defined

by

o B O.x—o(vcﬂl) x toq+c—1f(t) At

(15 of ) (20) = e f e (2.82)
. on (b po(l-n-a)-1 (t)dt

(1 f ) (%) = (;?a) . xoj; — (2.83)

respectively. Integrals (2.82) and (2.83) are called the Erdélyi-Kober type fractional integrals.
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Corollary 2.27. Let u be a weight function on (a,b), »F1(a,b;c;z) denotes the hypergeometric
function, and I3 .., f denotes the Erdélyi-Kober type fractional left-sided integral. Define v by

b x~o1 (xo _ y(f)"‘*l

. on+o-1
v(y) = acy”" L u(x) (x0 — a%)* oF; (a,~m;a+1;1 - (a/x)°)

dx < oo. (2.84)

If ¢ : (0,00) — Ris convex and increasing function, then the inequality

b [(ax+1) .
J‘a u(x)¢< (1 _ (a/x)o)a 2F1 (a, _7],'“ + 1; 1- (a/x)o') Ia+;0';71f(x)|>dx

(2.85)
b
<[ o1y
holds.
Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), dui1(x) = dx, du,(y) = dy,
1 O.x—o(vcﬂl) "
ol asy<x,
k(x,y) =4 T@) (xo - ycr)l*“y Y (2.86)
0, x<y<b,

we get that K(x) = (1/T(a+1))(1 - (a/x)°)* 2F1(a, —m; a+1;1-(a/x)?), so (2.85) follows. | |
Remark 2.28. In particular for the weight function u(x) = x°1(x° — a%)% ,F;(x) where

(2F1(x) = 2F1(a,-1m; 2+ 1;1 = (a/x)?) in Corollary 2.27, we obtain the inequality

Ia+1)
(1= (a/x)%)" 2F1(x)

b
f x07 (a7 = a%)* 2F1<x>¢< Is+;o;,1f<x>|>dx

a

b (2.87)
< f v (b =) 2R () d(|f (v)])dy,

where 2Fi(y) = 2Fi(a,;a+1;1 - (a/y)°).

Corollary 2.29. Let u be a weight function on (a,b), 2Fi(a,b;c; z) denotes the hypergeometric
function, and Igi;ml f denotes the Erdélyi-Kober type fractional right-sided integral. Define v by

xo(11+zx) (yo _ xo)”‘—l

d . 2.88
(b = x°)" yF1(a,a+ma+1;1- (b/x)°) T (2.88)

Yy
o(y) = a0y [ u
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If ¢ : (0,00) — Ris convex and increasing function, then the inequality

b
T(a+1)
u(x N .
fa ( )¢<((b/X) 1) 2F1(“,“+Tl,(l+ll bo’rlf( )|>
(2.89)
b
<[ owelr ) ay
holds.
Proof. Applying Theorem 2.1 with Q; = Q, = (a,b), du1(x) = dx, dux (y) = dy,
1 ox° oll-a-m-1  x <y <b,
k(xy) = T@ (yo - x)™ (2.90)
o asys<x,

we get that K(x) = (1/T(a+1))((b/x)° = 1)* 2F1 (a, a+1; a+1;1-(b/x)), so (2.89) follows. | |

Remark 2.30. In particular for the weight function u(x) = x°'(b° — x°)%,F;(x) where
(2F1(x) = 2Fi(a,a+;a+1;1— (b/x)?) in Corollary 2.29, we obtain the inequality

Ia+1)
((b/x)7 =1)" 2F1(x)

b
f %o (b° — x°)* 2131(x)(])< Ig‘i;a;qf(x) |>dx

a

b (2.91)
: f v (7 = a) 2F1 () (1 (v) Dy,

where (2F1(y) = 2Fi(a,—a—m;a+1;1-(b/y)°).

In the next corollary, we give some results related to the Caputo radial fractional
derivative. Let us recall the following definition, see [1, page 463].

Let f: A — R v >0,n:= [v], such that f(-w) € AC"([Ry,Ry]), for all w € SN,
where A = [Ry,Ry] x SN~ for N € Nand SN := {x € RN : |x| = 1}. We call the Caputo
radial fractional derivative as the following function:

*R f(x) ]. 1 anf(tw)
SO gy 292
orr  T(n-v) ( ) o (2.92)
where x € A, thatis, x = rw, r € [R, Ry], w € SN7L.
Clearly,
82R1f(x) - f(x)
oro ' (2.93)

Orf(x) _ 0" f(x)

3 B if v € N, the usual radial derivative.
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Corollary 2.31. Let u be a weight function on (R, Ry), and ale f(x)/0r” denotes the Caputo radial
fractional derivative of f. Define v on (Ry, Ry) by

Ry _ p\n—v-1
v(t) == (n—-v) ft u(r) ET )

T _dr<oo. (2.94)
r— Rl)n v

If ¢ : (0,00) — R is convex and increasing, then the inequality

R I'n-v+1) 6:R1f(x) R
J;14ﬂ¢< " >drsf&vaw(

0" f (tw)
-~ >dt (2.95)

(T - Rl)niv

holds.
Proof. Apply Theorem 2.1 with Q; = Q, = (Ry, Ry), dpi (x) = dr, duy(y) = dt, and

(T _ t)n—v—l
k()= 4 T—wy » Ristsr (2.96)

0, r<t<R,.

Then replace f(x) by 0" f (tw) /0r", so (2.95) follows. I

Remark 2.32. In particular for the weight function u(r) = (r — R1)"™", r € (R1, Rz), we obtain
the following inequality:

Ry

&' f (1)
or"

a:le (x)
orY

I'n-v+1)
(r = Ry)"™

(r - Rl)""qb< )dt. (2.97)

>m§ mmrﬂ”%<

Ry

R

Letg>1and ¢ : R, — R be defined by ¢(x) = x9, then (2.97) becomes

R, oY x) |7 Rz o™ f (¢ q
Tm-v+1)1| (r-Ry)"™a O f () dr<| (Ro-H™" GO (2.98)
R orY” R or™
Since r € (R, Rz) and (1 — g)(n — v) <0, we obtain
Re | 0 f(x) | (Ry - R)"™\? (R |0"f (tw) |
el . 2.
IRI or” dr < < IT'n-v+1) ) le orm dt (2.99)
Taking power 1/g on both sides, we get
O/, f (%) (R, — Ry)"™ || 0" f (tw) (2100
orv ] “T(n-v+1) orm |l 100)
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If v =0, then
(Ry— Ry)" || 0" f (tw)
If(x)llg < T 1) ol (2.101)
If v € N, then
0" f(x) (Ry — Ry)"™ || 0" f (fw)
or |,” T(n-v+1) orm |l (2.102)

Now, we continue with the Riemann-Liouville radial fractional derivative of fof order p,
but first we need to define the following: let Bx stand for the Borel class on space X and
define the measure Ry on ((0, o), B(0,0)) by

Rn(@T) = f rN-ldr, any T € Bg o). (2.103)
T

Now, let f €l (A) = Ll([Rl,Rz] X SN_l).
For a fixed w € SN1, we define

Sw(r) = f(rw) = f(x), (2.104)
where

x € A:=B(0,R) - B(0,Ry),
X (2.105)
0<R<r<Ry,, r=]|x|, w:TESN‘l.

The above led to the following definition of Riemann-Liouville radial fractional derivative.
For details see [1, page 466]. Let f > 0, m := [p] + 1, f € L1(A), and A is the spherical shell.
We define

O, f(x)
RaT = Df f(rew)
b ONTT L ymep N (2.106)
= r(m—p)<ar> Rl(r H™ T f(tw)dt, weS K(f),
0, w e K(f),
where

x=rwe€A, re[R,R] weSN,

(2.107)
K(f) = {we SN f(w)¢Li([R1, Ra], Bir, k.1, RN) }.
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If =0, define

O f ()
Ré{ﬂx - F). (2.108)

We call 65; f(x)/0rf the Riemann-Liouville radial fractional derivative of f of order .
The following result is given in [1, page 466].

Lemma 2.33. Letv >y +1,y>0,n:=[v], f: A — Ruwith f € Li(A). Assume that f(-w) €
AC™"([Ry, Ry]), for every w € SN, and that Ok, f(w)/0r” is measurable on [Ry, Ro] for every
w € SN=L. Also assume that there exists O, f(rw)/or” € R for every r € [Ry, Ry] and for every

w e SN and 6}’?1 f(w)/0rY is measurable on A. Suppose that there exists M; > 0,

Ok, f(w)

B <M, forevery (r,w) € [Ry, Ry] x SN-1, (2.109)

We suppose that 8/ f (Riw)/0ri =0,j=0,1,...,n—1, for every w € SN71, then

3 .
Rgffx) = Dy, f(rw) = (r— )77 (Dy, f ) (teo)dt (2.110)

1
r(V_Y) Ry

is valid for every x € A, that is, true for every r € [Ry, Ry] and for every w € SN1, y > 0.

Corollary 2.34. Let u be a weight function on (Ry, Ry). Let the assumption of the Lemma 2.33 be
satisfied, and D1Yel f(rw) denotes the Riemann-Liouville radial fractional derivative of f. Define v on
(R1, Ry) by

R, _ vyl
o(t) = (v—-y) L u(r) Er H™’ dr < oo. (2.111)

r— Rl)V*Y

If ¢ : (0,00) — R is convex and increasing, then the inequality

fRZ u(r)¢<%|D£1f(rw)|>dr < f: o()p(|(Dk, £) k)] ) at (2.112)

holds.

Proof. Applying Theorem 2.1 with ; = Qs = (Ry, Rp),

(r-t)" "
k(ry=9 T(v-y) = =~ (2.113)
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we get that K(r) = (r—Ry)”7/T(v—y+1). Replace f(-) by D}’elf('w), and then from the above
Lemma 2.33, we get g(r) = D%lf(rw). This will give us (2.112). I

Remark 2.35. In particular for the weight function u(r) = (r - R1)””", r € (R, R,) in above
Corollary 2.34 and for ¢(x) = x9, g > 1 we obtain, after some calculation, the following
inequality:

[P s, = FEs s e @114)
If y =0, then
If (reo)lly < (ri +R11)) | )] (2.115)

In the previous corollaries, we derived only inequalities over some subsets of R.
However, Theorem 2.1 covers much more general situations. We conclude this paper with
multidimensional fractional integrals. Such operations of fractional integration in the n-
dimensional Euclidean space R”, (n € N) are natural generalizations of the corresponding
one-dimensional fractional integrals and fractional derivatives, being taken with respect to
one or several variables.

Forx = (x1,...,x,) € R" and a = (ay, ..., a,), we use the following notations:

[(a) = ([(a1) ---T(an)), [a,b] = [a1,b1] x -+ x [an, by, (2.116)

and by x > a, we mean x1 > ai, ..., X, > ay.
The partial Riemann-Liouville fractional integrals of order aj > 0 with respect to the kth
variable xj are defined by

(I f)(x) = (o )I FO1, o) Xhot, b Xis, - -+, Xn) (6 — t) ™k, (x> ax),  (2.117)

N 1 (b -
(Ib:((,f> (x) = T(ar) J.xk fOxt, oo, Xk-1, b, Xkad, - -+ Xn) (B — x5) ™ Ldty, (xk <bg), (2.118)

respectively. These definitions are valid for functions f(x) = f(x1,...,x,) defined for x; > ax
and xj < by, respectively.
Next, we define the mixed Riemann-Liouville fractional integrals of order a > 0 as

@ (o _ el

1200 = g | [ rwe-vTan ooa),

) 1 by b, . (2.119)
(159w = 5 L;"L,,f“)“"‘) dt,  (x<b).
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Corollary 2.36. Let u be a weight function on (a,b) and a > 0. I f denotes the mixed partial
Riemann-Liouville fractional integral of f. Define v on (a,b) by

by b, a1
o(y) = af f u(x)()((x_—ya))adx < . (2.120)
1

If ¢ : (0,00) — Ris convex and increasing function, then the inequality

J‘b: fb u(x)¢<f,((a_+a)12 |I§+f(X)|>dx < J‘bj fb v (|f¥)|)dy (2.121)

holds for all measurable functions f : (a,b) — R
Proof. Applying Theorem 2.1 with ©; = Q, = (a, b),
(G AN

k(x,y) = T(a) ’
0, x<y<b,

<y<
asysx (2.122)

we get that K(x) = (x —a)"/T'(a + 1) and g(x) = I f(x), so (2.121) follows. I

Corollary 2.37. Let u be a weight function on (a,b) and a > 0. I f denotes the mixed partial
Riemann-Liouville fractional integral of f. Define v on (a,b) by

o(y) —afyl J%u(x) Y- )) dx < oo. (2.123)

If ¢ : (0,00) — R is convex and increasing function, then the inequality

fh f (s

holds for all measurable functions f : (a,b) — R

ﬂ)Dw<f" jvwwﬂﬂwbw (2124)

Remark 2.38. Analogous to Remarks 2.3 and 2.5, we obtain multidimensional version of
inequality (1.3) for g > 1 as follows:

fbl J' lqu(X)lgdKGlzcxfi:)qu f::lf(y)l"dy,

J.: L I{fﬁf(x)|gdxg (;lza—fi’;)qj'ml f: |f(y)]"dy.

(2.125)
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