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Received 17 December 2009; Revised 20 May 2010; Accepted 27 June 2010

Academic Editor: Andrei Volodin
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Gauss-Markov theorem reduces linear unbiased estimation to the Least Squares Solution of
inconsistent linear equations while the normal equations reduce the second one to the usual
solution of consistent linear equations. It is rather surprising that the second algebraic result is
usually derived in a differential way. To avoid this dissonance, we state and use an auxiliary result
on equivalence of two systems of linear equations. This places us in a convenient position to attack
on the main problems in the Gauss-Markov model in an easy way.

1. Introduction

The Gauss-Markov theorem is the most classical achievement in statistics. Its role in statistics
is comparable with that of the Pythagorean theorem in geometry. In fact, there are close
relations between both of them.

The Gauss-Markov theorem is presented in many books and derived in many ways.
The most popular approaches involve

(i) geometry (cf., Kruskal [1, 2]),

(ii) differential calculus (cf., Scheffé [3], Rao [4]),

(iii) generalized inverse matrices (cf., Rao and Mitra [5], Bapat [6]),

(iv) projection operators (see Seber [7]).

We presume that such a big market has many clients. This paper is intended for some
of them. Our consideration is straightforward and self-contained. Moreover, it needs only
moderate prerequisites.

The main tool used in this paper is equivalence of two systems of linear equations.



2 Journal of Inequalities and Applications

2. Preliminaries

For any matrix A of n × p define the sets

R(A) = {a ∈ Rn : a = Ax for some x ∈ Rp} (
i.e., the range of A

)
,

N(A) = {x ∈ Rp : Ax = 0} (i.e., the kernel of A).
(2.1)

We note that

aTb = 0, ∀a ∈ R(A), b ∈ N
(
AT

)
. (2.2)

It is clear that the range R(A) constitutes r-dimensional linear space in Rn spanned by
the columns of A, where r = rank(A), while N(AT ) constitutes (n − r)-dimensional space of
all vectors being orthogonal to any vector in R(A) relative to the usual inner product (a,b) =
aTb. Thus, any vector y ∈ Rn may be presented in the form

y = y1 + y2, where y1 ∈ R(A), y2 ∈ N
(
AT

)
are orthogonal. (2.3)

Since ATAx = 0 if and only if xTATAx = 0 and, hence, Ax = 0, we get N(AAT ) = N(AT ).
Denote by P = PA the linear operator from Rn onto R(A) defined by

Py =

⎧
⎨

⎩

y, if y ∈ R(A),

0, if y ∈ N(
AT

) (2.4)

(i.e., the orthogonal projector onto R(A)). It follows from definition (2.4) that PP = P. The
following lemma (see [8]) will be a key tool in the further consideration.

Lemma 2.1. For any matrix A and for any vector b ∈ R(A), the following are equivalent:

(i) Ax = b,

(ii) ATAx = ATb.

Proof. (i)⇒(ii) is evident (without any condition on b).
(ii)⇒(i). By the assumption that b ∈ R(A), we get b = Ac for some c. Thus, (ii) reduces

toATAx = ATAc and its general solution is x = c+x0, where x0 ∈ N(ATA) = N(A). Therefore,
x is a solution of (i).

Remark 2.2. The assumption that b ∈ R(A) in Lemma 2.1 is essential. To see this, let us set

A =

⎡

⎣
1 0
0 1
1 0

⎤

⎦, b =

⎡

⎣
1
0
−1

⎤

⎦. (2.5)

Then,ATA =
[ 2 0
0 1

]
andATb =

[
0
0

]
. Thus,ATAx = ATb has a solution x = [0, 0]T , whileAx = b

is inconsistent.
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3. Least Squares Solution

For any matrix A of n × p and for any vector b ∈ Rn, consider the linear equation

Ax = b. (3.1)

Equation (3.1) may be consistent (if b ∈ R(A)) or inconsistent (if not). In the second case we
are seeking for such x that the residual vector b −Ax be as small as possible.

Definition 3.1. Any vector x̂ ∈ Rp is said to be the Least Squares Solution (LSS) of (3.1) if

(b −Ax̂)T (b −Ax̂) ≤ (b −Ax)T (b −Ax), for any x ∈ Rp. (3.2)

The following theorem shows that this definition is not empty and reduces the LSS of
an inconsistent equation (3.1) to the ordinary solution of a consistent one.

Theorem 3.2. (a) Equation (3.1) has at least one LSS.
(b) Vector x ∈ RP is an LSS of (3.1) if and only if

ATAx = ATb. (3.3)

(c) Condition (3.3) is equivalent to

Ax = Pb, (3.4)

where P = PA is the orthogonal projector onto R(A) defined by (2.4).
(d) General solution of (3.3) may be presented in the form x = x0 + x1, where x0 is a particular

solution, while x1 ∈ N(A).

Remark 3.3. In the statistical literature, (3.3) is said to be normal.

Proof. By properties of the projector P, we get

(b −Ax)T (b −Ax) = [Pb + (I − P)b −Ax]T [Pb + (I − P)b −Ax]

= (Pb −Ax)T (Pb −Ax) + [(I − P)b]T [(I − P)b]

= (Pb −Ax)T (Pb −Ax) + bT (I − P)b

≥ bT (I − P)b

(3.5)

with the equality if and only if (3.4) holds. Moreover, by definition of P, (3.4) is consistent
and, by Lemma 2.1, it is equivalent to (3.3).

Statement (d) follows directly from definition of kernel.



4 Journal of Inequalities and Applications

4. Gauss-Markov Model and Gauss-Markov Theorem

Let y be an arbitrary random vector in Rn with finite second moment E(yTy). Then there exist
a unique vector μ ∈ Rn and a unique symmetric nonnegative definite matrix V of n × n such
that

E
(
aTy

)
= aTμ,

Cov
(
ATy,BTy

)
= ATVB

(4.1)

for all vectors a ∈ Rn and all matrices A and B of n rows. Traditionally, such μ and V are
called the expectation and the dispersion of the random vector y.

As usual, we will assume that μ and V have the representations

μ = Xβ,

V = σ2In,
(4.2)

where X is a given matrix of n × p while β ∈ Rp and σ2 > 0 are unknown parameters. We
will refer to the structure (y,Xβ, σ2In) as to the standard Gauss-Markov model. In the context
of the model we will consider unbiased estimation of the parametric vector Ψ = CTβ, where
C is of p × q, by estimators of the form Ψ̂ = DTy, where D is of n × p matrix. Since DTy is
unbiased if and only if DTXβ = CTβ for all β, CTβ is estimable if and only if

CT = DTX, for some D. (4.3)

Without loss of generality, we may and will assume that R(D) ⊆ R(X). We note that
such a matrix D is uniquely determined by C.

The well-known Gauss-Markov theorem provides a constructive way for estimation
of the function Ψ. It is based on a solution of the normal equation XTXβ = XTy which plays
the role of the estimator for β.

Theorem 4.1. For any estimableΨ = CTβ in the standard Gauss-Markov model (y,Xβ, σ2In), there
exists a unique linear unbiased estimator with minimal dispersion. This estimator, called the Least
Squares Estimator (LSE) of Ψ, may be presented in the form CT β̂, where β̂ is an arbitrary LSS of
Xβ = y or, equivalently, it is a solution of the normal equation

XTXβ̂ = XTy. (4.4)

Proof. By Theorem 3.2 the condition XTXβ = XTy is equivalent to PXy = Xβ = Ey. Therefore,
by (4.3), for any estimable Ψ = CTβ and for any solution β̂ of (4.4), the statistic CT β̂ = DTXβ̂
is unbiased. On the other hand,

E
(
DT

1y
)
= E

(
DT

2y
)
, iff R(D1 −D2) ⊆ N

(
XT

)
. (4.5)
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Hence, any unbiased estimator of Ψ may be presented in the form DTXβ̂ + BTy, where the
first component is the LSE of Ψ while BTD = BTX = 0. In particular the components are not
correlated. Therefore, the variance of the sum is greater than the variance of the LSE DTXβ̂,
unless BTy/= 0. Moreover, by Theorem 3.2(d) this estimator is invariant with respect to the
choice of the LSS β̂. In consequence, the LSE of the function Ψ is unique.
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