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By introducing some parameters and estimating the weight functions, we build a new Hilbert’s
inequality with the homogeneous kernel of 0 order and the integral in whole plane. The equivalent

inequality and the reverse forms are considered. The best constant factor is calculated using
Complex Analysis.

1. Introduction

If f(x), g(x) > 0 and satisfy that 0 < [;° f*(x)dx < o0 and 0 < [;° g*(x)dx < oo, then we have
(1]

f jwdx dy < JT{J? fA(x)dx J:o gZ(x)dx}l/Z, (1.1)

xX+y

where the constant factor o is the best possible. Inequality (1.1) is well known as Hilbert’s
integral inequality, which has been extended by Hardy-Riesz as [2].

Ifp>11/p+1/9 =1, f(x), g(x) > 0, such that 0 < fgof”(x)dx < ooand 0 <
[o" 87(x)dx < oo, then we have the following Hardy-Hilbert's integral inequality:

(250 < ) ([ ]

where the constant factor or/ sin(or/p) also is the best possible.
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Both of them are important in Mathematical Analysis and its applications [3]. It
attracts some attention in recent years. Actually, inequalities (1.1) and (1.2) have many
generalizations and variations. Equation (1.1) has been strengthened by Yang and others
(including double series inequalities) [4-21].

In 2008, Xie and Zeng gave a new Hilbert-type Inequality [4] as follows.

Ifa>0b>0c¢>0p>11/p+1/9g =1, f(x),g(x) > 0 such that 0 <
Jo x P2 fP(x)dx < oo and 0 < [;° x7179/2¢9(x)dx < oo, then

I1; i g™
<K{[ e [ e

where the constant factor K = or/(a + b)(a + ¢)(b + ¢) is the best possible.

The main purpose of this paper is to build a new Hilbert-type inequality with
homogeneous kernel of degree 0, by estimating the weight function. The equivalent
inequality is considered.

In the following, we always suppose that: 1/p+1/g=1, p>1, r € (-1,0),0 < a <
p <.

(1.3)

2. Some Lemmas
We start by introducing some lemmas.

Lemma 2.1. If ky := [" ™" In((1+2ucosa +u?)/ (1 +2ucos p+u?))du, ky := [ u " In((1 -
2ucosf+u?)/(1—2ucosa+u?))du, then

4Jrs1n(r(ﬁ a)/2) sm(r(tx+ﬂ)/2)
4o sin(r (B - a)/Z) sin(rar — r(a+ﬂ)/2)

rsinrar

ko =

k I | |71+1”

4or sin(r (B —a)/2) cos((r/2)(or —a - ﬁ))

rcos(rar/2)

(2.1)
1+ 2ucos a + u?

u
1+2ucos,6+u2

=k1+k2

Proof. We have

[ee]

* 1
A = ’[ Xt lr1<x2 +2xcosa + 1>dx = —x" lr1<x2 +2xcosa + 1)
0 r

0

(2.2)

2J‘°° x"(x + cos a)
R y— 4
0 x*+2xcosa+1

= ——B.
r
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Setting f(z) = 2’ (z + cosa) /(z* + 2zcosa + 1), z; = —e'*, z = —e~™*, then

27r1
B= W[Res(f,zl) + Res(f, z2)]
2 z(z1 + cos a) . z7 (2 + cos a) _ _mcosra
T 1 - i Z1 — 2 75— 21 " sinrar
we find that A = -2B/r = 2ar cosra/r sinrur, then
K o J‘°° A n 1+2ucosa + uzdu _ A sin(r(f - a) /2) sin(r(a+p)/2) ,
0 1+2ucosp+u? rsinrar
ke J‘°° S 1 -2ucos f + u? = r" S 1+ 2ucos(r - f) + u?
0 1-2ucosa + u? 0 1+ 2ucos(or — a) + u?

_ 4 sin(r(p - a)/2) sin((r/2) (27 — a —ﬂ))/

rsinrir

1+2ucosa+u

k= I [ " |In

—0o0

@ 2
_ u_1+rlnl+2ucosa+u
0 1+2ucosp+u?

1+2ucosp+u

du + JO (_u)—1+r In
4z sin(r (B - @) /2) cos((r/2) (7 - a - )

2
2

1+2ucosa

=k1+k2=

The lemma is proved.

rcos(rar/2)

Lemma 2.2. Define the weight functions as follow:

x? +2xy cosa + y?

w(x) == f |x||1_r In

= |y

x% +2xy cos f + y?

x? +2xycosa + 2

7

~ > |y|
w(y) :=I | |1|+r In

-0 I.X'

x? +2xy cos f + y?

4

1+ 2ucos f + u?

+u?

then w(x) = w(y) = k = (4orsin(r(f — a)/2) cos((r/2)(or —a —p)))/[r cos(rar/2)].

Proof. We only prove that w(x) = k for x € (-o0,0).
Using Lemma 2.1, setting v = ux andy = —ux,

( )_J‘O (=x)7" . x*+2xycosa+y?
= » (_y)l" x2+2xy cos f+y?

~1+r
0 1+2ucosp + u?

J‘°° 1+ 2ucos a + u?
In

and the lemma is proved.

du+f

0

u

*® (-x)7" n x2+2xycosﬂ+y2d

0

~1+r In

yir  x?4+2xy cos a+y?

1-2u cos f+u?

1 —2u cos a+u?

du=k1+k2 =k.

(2.3)

(2.4)

(2.5)

(2.6)



4 Journal of Inequalities and Applications

Lemma 2.3. For ¢ >0, and (r — max{2¢/p,2¢/q}) € (-1,0), define both functions f , g as follows:

x 172/, if x € (1,00), x'1-2/q, if x € (1,00),
fy=10, if x € [-1,1], g(x) =40, if x € [-1,1],
(~x)EP,if x € (—o0,-1), (=x)1, i x € (—o0,-1),
2.7)
then
w© - 1/p o 1/9
1o =e{ [ et o] [ e g -1,
- i - . 2.8)
= Rl X“+2xycosa+y .
I(e) = gff_wf(x)g(y) ‘ln 1oy cosfr g dxdy —k (e —0%).
Proof. Easily, we get the following:
o 1/p o9 1/q
I(e) = 5{2[ xilezedx} {ZI xilezgdx} =1. (2.9)
1 1
Lety = =Y, using f(—x) = f(x),g(—x) = g(x) and
Flex) J‘°° 3(y) |in x? - 2xycosa + y? dy = F(x) f‘” (V) |In x? +2xY cosa + Y? ey
,wgy x2 = 2xy cos f + y? y= ,wg x2+2xYcosf+Y2|
(2.10)

we have that f(x) 17, g(y)| In((x?+2xy cos a+y?) / (x*+2xy cos f+y?))|dy is an even function

on x, then
dy) dx

® -1 2 2
e U r-1-Ce/p) <J (_y)r—1—(25/q) X +2xy cos f+y dy> i

= * o x? +2xy cos a + y?
Tey =26 [ f <f_wg(y)'ln e

1 x? +2xy cos a + y?

© o 242 + 12
N J' 1 r1-2e/p) < J‘ 1 el g X+ 2y cos @ y2 dy> dx]

(2.11)

X2 +2xy cos p+y

=1 + Ip.
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Setting v = tx then

[ o0 w© 2 2
I = 26 I r1-Ce/p) < J‘ Y-/ In x?-2xycosf+y dy> dx]
1

1 x% —2xy cosa + y?

- 0 fo'e) 2

. J' 12 f r-1-2e/9) 1 LWdt dx
) 1x 1-2tcosa+t
- - 2

o J‘ e J‘ pri-e/g) g LT 2HCOSPHE LN

) . 1-2tcosa + 12
N J‘ 172 f r=1-Qe/q) | Mdt dx
) s 1-2tcosa +t2

_ J‘°° pr1-Ce/) 1y 1-2tcosp + 1t 2t (2.12)
1 1-2tcosa + 12

1 _ 2 o
+ 25’[ tr_l_(ZE/q) ln M (I x_l_zgdx> dt
0 1-2tcosa+t>\)/

2 1 2
_ Jaoo el 1 1-2tcosp+t dt+f pr1+2e/p) 1y 1-2tcosp+t gt
1 1-2tcosa + 12 0 1-2tcosa + 2

o 2 1 2
- f pri-e/q) g LT 2HCOSPHE L f (107 - G011 1-2tcosp+t”
0 1-2tcosa + 12 0 1-2tcosa + 12

_ 4orsin((r— (2¢/q)) (- a)/2) sin((r - (2¢/q)) (2w —a - p)/2)

+17(¢),
(r - (22/q)) sin(r - (2e/q))r e
where lim, _,p-77(¢) =0, and we have I — k; (¢ — 0%).
Similarly, I, — ki(¢ — 07). The lemma is proved. O

Lemma 2.4. If f(x) is a nonnegative measurable function and 0 < [_|x[P*)71 P (x)dx < oo, then

pe (e

x% + 2xy cos a + 1
x% +2xy cos f + y?

In

P o
dx> dy < kr’f |x P71 £7 (x) dx.
(2.13)

Proof. By Lemma 2.2, we find that

<[’; In
. U“’ In

x? +2xy cosa + y?

P
dx>

x? +2xy cosa + 2

x% +2xy cos f + y?

r 1-r/p P
o |yl
< |y|(1—1’)/pf(x) |x|(1+r)/q dx

x2 + 2xy cos f + y?
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Sj In
x<’[ In

|x| (1+7)(p-1)

ly|"™

1-r)(g-1) p-1
|l dx)

|x|1+r

x? +2xy cosa + y?

fP(x)dx

x? + 2xy cos f + y?

x? +2xy cosa + 2

x% +2xy cos f + y?

147) (p-1
_ g |y|_rp+1 J‘°° x% +2xy cosa + y? | |x| TP )f’”(x)dx
| XH2xycosfry’| |y ’
x% + 2xy cosa + y2 | |x| T P-1)

e[
e

= kP f |x[POL£P (x)dx.

—0o0

e f’”(x)dx] dy
y

x? +2xy cos f + y?

|(1+r)(P—1)

el P
|y

x?+2xycosa +y?||x

In

x? + 2xy cos f + y?

(2.14)

3. Main Results

Theorem 3.1. If both functions, f(x) and g(x), are nonnegative measurable functions and
satisfy 0 < [%_ x| fP(x)dx < o0 and 0 < [%_|x|107)"1 ¢4 (x)dx < oo, then

x% + 2xy cos a + 1

I = 1
ff_mf(x)g(y)‘ ey 2xy cos f + y? dx dy
(3.1)
© 1/p o 1/q
k([ o) ([ k0 gieodx)
© © 2 2 P
3 pr-1 x°+2xycosa+y
]_J‘oo |y| <J‘oof(x) In x2+2xyCOSﬁ+y2 dx> d]/ (3 2)

< kP f |x P71 P (x) dx.

—0o0

Inequalities (3.1) and (3.2) are equivalent, and where the constant factors k and kP are the best
possibles.

Proof. If (2.13) takes the form of equality for some y € (-o0,0) U (0, o), then there exists
constants M and N, such that they are not all zero, and

|x| (1+7)(p-1)

MH—l_,fp(x) =N
Yy

|y| (1-r)(g-1)

| |1+r a.e. in (—oo, 00) x (—00, 0). (3.3)
x
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Hence, there exists a constant C, such that

Mx| 7P fP(x) = N|y|" ™ = C  ae. in (~o0,00) x (—00, 00). (3.4)

We claim that M = 0. In fact, if M #0, then |x[P(*)-1fP(x) = C/(M|x|™) a.e. in (o0, 0)
which contradicts the fact that 0 < [%_[x[P*")~1 fP(x)dx < co. In the same way, we claim that
N = 0. This is too a contradiction and hence by (2.13), we have (3.2).

By Holder’s inequality with weight [22] and (3.2), we have the following:

® _ * 242 + 12
r :J [|y| 1+r+(1/q)J f(x)‘lnx Xy cosa+y

x2 + 2xy cos f + y?

dx] [y g ()] dy
(3.5)

<o ([ Z [0 g9 <y)dy>”",

Using (3.2), we have (3.1).

Setting g(y) = [y[""'(J° f(x)|In((x? + 2xy cos a + y2) / (x? + 2xy cos f + y2))|dx)P ",
then J = [% |y[10-")1¢4(y)dy by (2.13), we have | < oo. If J = 0 then (3.2) is proved. If
0 < J < oo, by (3.1), we obtain

0 < J ly|"“ i (y)dy = T =1

o 1/p o 1/q
k([ retpeoan) ([ gieodr) 56
* q(1-r)-1_gq vp _7l/p “ p(1+r)-1 cp r
| x| g7 (x)dx =J"P <k | x| fP(x)dx .

Inequalities (3.1) and (3.2) are equivalent.
If the constant factor k in (3.1) is not the best possible, then there exists a positive h
(with h < k), such that

x? +2xy cosa + 2

dxdy

[ rest) ‘m

x2 + 2xy cos f + y?

o 1/p 0 1/q
<h<j |x|P<1+’>-1fP(x)dx> q |x|"(1_r)_1gq(x)dx> .

—00

(3.7)

For € > 0, by (3.7), using Lemma 2.3, we have

k+o0(1) < eh < f B |x| ™! fp(x)dx)l/p<fm x| §q(x)dx>1/q = k. (3.8)

—0o0 —o0

Hence, we find k + 0(1) < h. For ¢ — 07, it follows that k < h, which contradicts the fact that
h < k. Hence the constant k in (3.1) is the best possible.
Thus we complete the proof of the theorem. O
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Remark 3.2. For a = /4, = or/3in (3.1), we have the following particular result:

. x?+V2xy + y?
Jj_wf(x)g(y)'lnm dxdy
4or sin(arr /24) sin(5arr /24) J‘°° p(1+r)-1 gp )1/P <J<w 0 g >1/q
< rsin(orr/2) < _Oo ] fP(x)dx B |x] gix)dx ) .

(3.9)
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