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We denote by Iν and Kν the Bessel functions of the first and third kind, respectively. Motivated
by the relevance of the function wν(t) = t(Iν−1(t)/Iν(t)), t > 0, in many contexts of applied
mathematics and, in particular, in some elasticity problems Simpson and Spector (1984), we
establish new inequalities for Iν(t)/Iν−1(t). The results are based on the recurrence relations for Iν
and Iν−1 and the Turán-type inequalities for such functions. Similar investigations are developed
to establish new inequalities for Kν(t)/Kν−1(t).

1. Introduction

Inequalities for modified Bessel functions Iν(t) and Kν(t) have been established by many
authors. For example, Bordelon [1] and Ross [2] proved the bounds
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The lower bound was also proved by Laforgia [3] for larger domain ν > −1/2. In [3] also the
following bounds:
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have been established; see also [4]
In this paper we continue our investigations on new inequalities for Iν(t) and Kν(t),

but now our results refer not only to a function Iν or Kν at two different points x and y, as in
(1.1)–(1.4), but to two functions Iν(t) and Iν−1(t) (Kν(t) and Kν−1(t)) and, more precisely, to
the ratio (Iν(t)/Iν−1(t))(Kν(t)/Kν−1(t)). This kind of ratios appears often in applied sciences.
Recently, for example, the ratio Iν(t)/Iν−1(t) has been used by Baricz to prove an important
lemma (see [5, Lemma 1]) which provides new lower and upper bounds for the generalized
Marcum Q-function

Qν(a, b) =
1

aν−1

∫∞

b

tνe−(t
2+a2)/2Iν−1(at)dt, b ≥ 0, a, ν > 0 (1.5)

(see also [6]). This generalized function and the classical one, Q1(a, b), are widely used in
the electronic field, in particular in radar communications [7, 8] and in error performance
analysis of multichannel dealing with partially coherent, differentially coherent, and
noncoherent detections over fading channels [7, 9, 10].

The results obtained in this paper are proved as consequence of the recurrence
relations [11, page 376; 9.6.26]

Iν+1(t) = Iν−1(t) − 2ν
t
Iν(t), (1.6)

Kν+1(t) = Kν−1(t) +
2ν
t
Kν(t), (1.7)

and the Turán-type inequalities

Iν−1(t)Iν+1(t) < I2
ν(t), t > 0, ν ≥ −1

2
, (1.8)

Kν−1(t)Kν+1(t) > K2
ν(t), t > 0, ∀ν ∈ R (1.9)

proved in [12, 13], respectively (see also [14] for (1.9)). Inequalities (1.8)-(1.9) have been
used, recently, by Baricz in [15], to prove, in different way, the known inequalities
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The results are given by the following theorems.
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Theorem 1.1. For real ν let Iν(t) be the modified Bessel function of the first kind and order ν. Then

−ν +
√
ν2 + t2

t
<

Iν(t)
Iν−1(t)

, ν ≥ 0. (1.12)

In particular, for ν ≥ 1/2, the inequality Iν(t)/Iν−1(t) < 1 holds also true.

Theorem 1.2. For real ν letKν(t) be the modified Bessel function of the third kind and order ν. Then
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<
ν +

√
ν2 + t2

t
, ∀ν ∈ R. (1.13)

In particular, for ν > 1/2, the inequality Kν(t)/Kν−1(t) > 1 holds also true.

2. The Proofs

Proof of Theorem 1.1. The upper bound for the ratio Iν(t)/Iν−1(t) follows from the inequality

Iν(t) < Iν−1(t), ν ≥ 1
2

(2.1)

proved by Soni for ν > 1/2 [16], and extended by Näsell to ν = 1/2 [17].
To prove the lower bound in (1.12), we substitute the function Iν+1(t) given by (1.6) in

the Turán-type inequality (1.8). We get, for ν ≥ −1/2,
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We denote Iν(t)/Iν−1(t) by u and observe that for ν ≥ 1/2, by (2.1), u < 1. With this notation
(2.3) can be written as

u2 +
2ν
t
u − 1 > 0, (2.4)

which gives, for ν ≥ 0,
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+ 1 < u, (2.5)
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that is,

[
−ν +

√
ν2 + t2

]
Iν−1(t) < tIν(t) (2.6)

which is the desired result.

Remark 2.1. For ν > 0, Jones [18] proved stronger result than (2.1) that the function Iν(t)
decreases with respect to ν, when t > 0.

Proof of Theorem 1.2. The proof is similar to the one used to prove Theorem 1.1. By

Kν+1(t) > Kν(t), ν > −1
2
, (2.7)

we get Kν(t)/Kν−1(t) > 1, for ν > 1/2.
We substitute the function Kν+1(t) given by (1.7) in (1.9). We get

Kν−1(t)
[
Kν−1(t) +

2ν
t
Kν(t)

]
≥ K2

ν(t), ∀ν ∈ R (2.8)

or, equivalently

1 +
2ν
t

Kν(t)
Kν−1(t)

−
(

Kν(t)
Kν−1(t)

)2

≥ 0, (2.9)

that is,

u2 − 2ν
t
u − 1 ≤ 0, u =

Kν(t)
Kν−1(t)

. (2.10)

Finally, we obtain
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t
, ∀ν ∈ R (2.11)

which is the desired result (1.13).

Remark 2.2. By means the integral formula [11, page 181]

Kν(t) =
∫∞

0
e−t cosh z cosh(νz)dz, ν > −1, (2.12)

follows immediately the inequality

Kν−1(t) > Kν(t), 0 < ν <
1
2
, (2.13)
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and consequently
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< 1, 0 < ν <
1
2
. (2.14)

Since 1 < (ν +
√
ν2 + t2)/t when 0 < ν < 1/2, only in this case the above upper bound for

Kν(t)/Kν−1(t) improves the (1.13) one.

Remark 2.3. We observe that by Theorem 1.1 we obtain an upper bound for the function
wν(t) = t(Iν−1(t)/Iν(t)), ν ≥ −1/2. The investigations of the properties of wν(t) are motivated
by some problems of finite elasticity [19, 20]. By (1.12) we find

wν(t) <
t2

−ν +
√
t2 + ν2

, ν ≥ −1
2
, (2.15)

in particular, for ν ≥ 1/2, we also have t < wν(t).

3. Numerical Considerations

Baricz obtained, for each ν ≥ 1, the following similar lower bound for the ratio Iν(t)/Iν−1(t)
(see [5, formula (5)])

t

t + 2ν − 1
≤ Iν(t)

Iν−1(t)
, t ≥ ρν, (3.1)

where ρν is the unique simple positive root of the equation (t + 2ν − 1)Iν = tIν−1. Inequality
(3.1) is reversed when 0 < t ≤ ρν. It is possible to prove that, for ν > 1, our lower bound in
(1.12) for the ratio Iν(t)/Iν−1(t) provides an improvement of (3.1).

Proposition 3.1. Let be ν > 1. Putting fν(t) = (−ν +
√
ν2 + t2)/t and gν(t) = t/(t + 2ν − 1), one

has fν(t) > gν(t), for all t > max{1/(2 − ν)/(1 − ν), ρν}.

Proof. From the inequality fν(t) > gν(t) we obtain, by simple calculations, the following one
t(1 − ν) + ν − 1/2 < 0 which is satisfied for all t > 1/(2 − ν)/(1 − ν) when ν > 1.

We report here some numerical experiments, computed by using mathematica.

Example 3.2. In the first case we assume ν = 8. In Figure 1 we report the graphics of the
functions Iν(t)/Iν−1(t) (solid line) and the respective lower bounds fν(t) (short dashed line)
and gν(t) (long dashed line) on the interval [100, 600].

In Table 1 we report also the respective numerical values of the differences
Iν(t)/Iν−1(t) − fν(t) and Iν(t)/Iν−1(t) − gν(t) in some points t.

Remark 3.3. By some numerical experiments we can conjecture that the lower bound (3.1)
holds true also when 1/2 ≤ ν < 1 and, in particular, for these values of ν we have fν(t) < gν(t).
See, for example, in Figure 2 the graphics of the functions Iν(t)/Iν−1(t) (solid line) and the
respective lower bounds fν(t) (short dashed line) and gν(t) (long dashed line) on the interval
[100, 600] when ν = 0.7.
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Table 1

t = 600 t = 6000 t = 60000
Iν(t)/Iν−1(t) − fν(t) 0.00081226756 0.00008312164 8.3312153 × 10−6

Iν(t)/Iν−1(t) − gν(t) 0.01195806306 0.00124444278 0.00012494429

Table 2

t = 600 t = 6000 t = 60000
hν(t) −Kν(t)/Kν−1(t) 0.000854625 0.0000835453 8.33545 × 10−6
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Figure 2

Example 3.4. In this case we assume ν = 1/3, then we report, in Figure 3, the graphics of the
functions Iν(t)/Iν−1(t) (solid line) and the respective lower bounds fν(t) (short dashed line)
on the interval [100, 600].

In Table 3 we report also the respective numerical values of the differences
Iν(t)/Iν−1(t) − fν(t) in some points t.

Example 3.5. Also in this case we assume ν = 8. In Figure 4 we report the graphics of the
functions Kν(t)/Kν−1(t) (solid line) and the respective upper bound hν(t) = (ν +

√
ν2 + t2)/t

(short dashed line) on the interval [100, 600].
In Table 2, we report also the respective numerical values of the difference hν(t) −

Kν(t)/Kν−1(t) in some points t.



Journal of Inequalities and Applications 7

Table 3

t = 600 t = 6000 t = 60000
Iν(t)/Iν−1(t) − fν(t) 0.00083345 0.0000833345 8.33334 × 10−6

Table 4

t = 600 t = 6000 t = 60000
hν(t) −Kν(t)/Kν−1(t) 0.000821238 0.0000832119 8.33212 × 10−6
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Figure 5
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Table 5

ν = 0.3 ν = 8 ν = 30
aν(x, y) 0.109926 0.000528653 1.26041 × 10−10

bν(x, y) 0.133826 0.00272121 8.42928 × 10−10

Iν(x)/Iν(y) 0.195323 0.00282361 8.45623 × 10−10

Table 6

ν = 0.2 ν = 0.4 ν = 8 ν = 30
cν(x, y) 8.4878 9.74992 — —
dν(x, y) 7.42604 7.53746 367.483 1.18634 × 109

Kν(x)/Kν(y) 10.2446 10.3615 384.34 1.19039 × 109

Example 3.6. In this last case we assume ν = −4. In Figure 5 we report the graphics of the
functions Kν(t)/Kν−1(t) (solid line) and the respective upper bound hν(t) = (ν +

√
ν2 + t2)/t

(short dashed line) on the interval [100, 600].
In Table 4 we report also the respective numerical values of the difference hν(t) −

Kν(t)/Kν−1(t) in some points t.

Remark 3.7. We conclude this paper observing that, dividing by t inequalities (1.10)-(1.11)
and integrating them from x to y (0 < x < y), we obtain the following new lower bounds for
the ratios Iν(x)/Iν(y) and Kν(x)/Kν(y):
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For a survey on inequalities of the type (3.2) and (3.3) see [4].
In the following Tables 5 and 6 we confront the lower bounds (1.1)–(3.2) and (1.4)–

(3.3), respectively, for different values of ν in the particular cases x = 2 and y = 4. Let
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then we have Tables 5 and 6.
By the values reported on Table 5 it seems that bν(x, y) is a lower bound much more

stringent with respect to aν(x, y) for every ν > 0 (moreover we recall that (3.2) holds true also
for −1/2 < ν ≤ 0), while by the values reported on Table 6 it seems that cν(x, y) is a lower
bound more stringent with respect to dν(x, y) for 0 < ν < 1/2 (but we recall that (3.3) holds
true also for ν ≤ 0 and ν ≥ 1/2).
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