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We introduce a new composite iterative scheme by the viscosity approximation method for
nonexpansive mappings and monotone mappings in a Hilbert space. It is proved that the sequence
generated by the iterative scheme converges strongly to a common point of set of fixed points
of nonexpansive mapping and the set of solutions of variational inequality for an inverse-
strongly monotone mappings, which is a solution of a certain variational inequality. Our results
substantially develop and improve the corresponding results of [Chen et al. 2007 and liduka
and Takahashi 2005]. Essentially a new approach for finding the fixed points of nonexpansive
mappings and solutions of variational inequalities for monotone mappings is provided.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed convex subset of H. Recall that a
mapping f : C — Cis a contraction on C if there exists a constant k € (0,1) such that
If (x)=f W)l < kllx-yll, x,y € C. We use Z¢ to denote the collection of mappings f verifying
the above inequality. That is X¢c = {f : C — C | f is a contraction with constant k}. A
mapping S : C — C is called nonexpansive if ||Sx — Sy|| < ||[x - y||, x,y € C; see [1, 2] for
the results of nonexpansive mappings. We denote by F(S) the set of fixed points of S; that is,
F(S)={xeC:x=S5x}.

Let Pc be the metric projection of H onto C. A mapping A of C into H is called
monotone if for x, y € C, (x — y, Ax — Ay) > 0. The wvariational inequality problem is to find
au € C such that

(v-u,Au) >0 (1.1)
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for all v € C; see [3-6]. The set of solutions of the variational inequality is denoted by
VI(C, A). A mapping A of C into H is called inverse-strongly monotone if there exists a positive
real number a such that

(x—y, Ax— Ay) > af| Ax - Ay’ (1.2)

for all x, y € C; see [7-9]. For such a case, A is called a-inverse-strongly monotone.

In 2005, Iiduka and Takahashi [10] introduced an iterative scheme for finding a
common point of the set of fixed points of a nonexapnsive mapping and the set of solutions
of the variational inequality for an inverse-strong monotone mapping as follows. For an a-
inverse-strongly monotone mapping A of C to H and a nonexpansive mapping S of C into
itself such that F(S) N VI(C, A) #0, x1 = x € C, {a,} C [0,1), and {A,} C [0,2¢],

Xpi1 = apx + (1 — a,)SPc(x, — L, Axy,) (1.3)

for every n > 1. They proved that the sequence generated by (1.3) converges strongly to
Pr(s)rvi(c,a)x under the conditions on {a,} and {\,} : A, € [c,d] for some ¢,d with 0 < ¢ <
d<2a,

= = o0
lima, =0, Dan<o0, Dlani—an <00, D Aw1—Aul<oo. (1.4)
n=1 n=1 n=1

n—oo

On the other hand, the viscosity approximation method of selecting a particular fixed point
of a given nonexpansive mapping was proposed by Moudafi [11]. In 2004, in order to extend
Theorem 2.2 of Moudafi [11] to a Banach space setting, Xu [12] considered the the following
explicit iterative process. For S : C — C nonexpansive mappings, f € >, and a,, € (0,1),

Xpi1 = Anf(x) + (1 —a,)Sx,, n>1 (1.5)

Moreover, in [12], he also studied the strong convergence of {x,} generated by (1.5) asn —
oo in either a Hilbert space or a uniformly smooth Banach space and showed that the strong
lim,, _, o, x,, is a solution of a certain variational inequality.

In 2007, Chen et al. [13] considered the following iterative scheme as the viscosity
approximation method of (1.3). For an a-inverse-strongly-monotone mapping A of C to H
and a nonexpansive mapping S of C into itself such that F(S) N VI(C, A) #0, f € Z¢, xo € C,
{an} C[0,1),and {A,} C [0,2a],

Xn+1 = Onf (xy) + (1 — a,) SPc(x, — \yAxy,), n20, (1.6)

and showed that the sequence {x,} generated by (1.6) converges strongly to a point in F(S)N
VI(C, A) under condition (1.4) on {a,} and {1,}, which is a solution of a certain variational
inequality.

In this paper, motivated by above-mentioned results, we introduce a new composite
iterative scheme by the viscosity approximation method. For an a-inverse-strongly monotone
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mapping A of C to H and a nonexpansive mapping S of C into itself such that F(S) N
VI(C,A)#0, f € Z¢c, x0 € C, {a,} € [0,1),and {A,} C [0,2a],

Yn = A f(xn) + (1 = ay) SPc(xy — Ay Axy),

(1.7)
Xnt1 = (1 - ﬂn)yn + ﬂnSPC (]/n - )‘nAyn)/ n > 0.

If B, = 0, then the iterative scheme (1.7) reduces to the iterative scheme (1.6). Under
condition (1.4) on the sequences {a,} and {1,} and appropriate condition on sequence
{Bn}, we show that the sequence {x,} generated by (1.7) converges strongly to a point in
F(5) nVI(C, A), which is a solution of a certain variational inequality. Using this result, we
also obtain a strong convergence result for finding a common fixed point of a nonexpansive
mapping and a strictly pseudocontractive mapping. Moreover, we investigate the problem
of finding a common point of the set of fixed points of a nonexpansive mapping and the set
of zeros of an inverse-strongly monotone mapping. The main results develop and improve
the corresponding results of Chen et al. [13] and liduka and Takahashi [10]. We point out
that the iterative scheme (1.7) is a new approach for finding the fixed points of nonexpansive
mappings and solutions of variational inequalities for monotone mappings.

2. Preliminaries and Lemmas

Let H be a real Hilbert space with inner product (:,-) and norm || - ||, and C a closed convex
subset of H. We write x, — x to indicate that the sequence {x,} converges weakly to x.
x, — x implies that {x,} converges strongly to x. For every point x € H, there exists a
unique nearest point in C, denoted by Pcx, such that

[lx = Pex||< ||x - y| (2.1)
for all y € C. P¢ is called the metric projection of H to C. It is well known that P¢ satisfies
(x -y, Pex - Pey) > || Pex - Pey||? (2.2)
for every x,y € H. Moreover, Pcx is characterized by the properties

(x=Pcx,Pcx—y) >0, (2.3)

e = yII* >l = Pex|* + [ly = Pex|) (24)
forall x € H, y € C. In the context of the variational inequality problem, this implies that

u € VI(C,A) & u = Pc(u—-LAu), forany A>0. (2.5)
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We state some examples for inverse-strongly monotone mappings. If A = I — T, where T is
a nonexpansive mapping of C into itself and I is the identity mapping of H, then A is 1/2-
inverse-strongly monotone and VI(C, A) = F(T). A mapping A of C into H is called strongly
monotone if there exists a positive real number # such that

(x -y, Ax - Ay) 2 7l x - y|* (2.6)

for all x,y € C. In such a case, we say that A is 7-strongly monotone. If A is 7-strongly
monotone and x-Lipschitz continuous, that is, [|Ax — Ay|| < x||x — y|| for all x,y € C, then A is
1/x*-inverse-strongly monotone.

If A is an a-inverse-strongly monotone mapping of C into H, then it is obvious that A
is 1/a-Lipschitz continuous. We also have that for all x,y € Cand A > 0,

1T = AA)x = (1 = 1Ay |* = || (x - ) - MAx - Ay) |
= -yl -2Mx -y, Ax - Ay) + P Ax - Ay|P @27)

<Jlx - y||2 + (A - 2a)||Ax - Ay||2.

So, if A < 2a, then I — 1A is a nonexpansive mapping of C into H. The following result for the
existence of solutions of the variational inequality problem for inverse-strongly monotone
mappings was given in Takahashi and Toyoda [14].

Proposition 2.1. Let C be a bounded closed convex subset of a real Hilbert space and A an a-inverse-
strongly monotone mapping of C into H. Then, VI(C, A) is nonempty.

A set-valued mapping T : H — 2 is called monotone if for all x,yy € H, f € Tx and
g € Ty imply (x -y, f — g) > 0. A monotone mapping T : H — 2H is maximal if the graph
G(T) of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f) e H x H,{(x -y, f - g) >0
for every (y,g) € G(T) implies f € Tx. Let A be an inverse-strongly monotone mapping of
C into H and let Ncv be the normal cone to C at v, thatis, Ncv = {w € H : (v—-u,w) >
0, for all u € C}, and define

Av+ Ncov, veC,
To = (2.8)
0, v¢C.

Then T is maximal monotone and 0 € Tv if and only if v € VI(C, A); see [15, 16].
We need the following lemmas for the proof of our main results.

Lemma 2.2 (see [17]). Let {s,} be a sequence of nonnegative real numbers satisfying

Spe1 S (1 =Ay)Su+Pn, n20, (2.9)
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where {A,} and {P,} satisfy the following conditions:

(i) {Aa} € [0,1] and 377 Ay = oo or, equivalently, T (1 —A,) =0;

(ii) imsup, ,  Pu/An <001 3770 |Bn] < oo.
Then lim,, _, x5, = 0.

Lemma 2.3 (see [1], demiclosedness principle). Let H be a real Hilbert space, C a nonempty
closed convex subset of H, and T : C — E a nonexpansive mapping. Then the mapping I — T is
demiclosed on C, where I is the identity mapping; that is, x, — x in E and (I - T)x, — y imply
that x e Cand (I -T)x = y.

Lemma 2.4. In a real Hilbert space H, there holds the following inequality:
[l + y]|* < x> + 2(y, x + ), (2.10)

forallx,y € H.

3. Main Results

In this section, we introduce a new composite iterative scheme for nonexpansive mappings
and inverse-strongly monotone mappings and prove a strong convergence of this scheme.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be an a-inverse-
strongly monotone mapping of C to H and S a nonexpansive mapping of C into itself such that
F(S)NVI(C,A)#0,and f € Zc. Let {x,} be a sequence generated by
xo € C,
Yn = Anf(xn) + (1 = ay) SPc(xy — A AXy), (3.1)
Xnt+1 = (1 - ﬂn)yn + ﬂnSPC (yn - )‘nAyn)/ n>0,

where {A,} C [0,2a], {a,} C [0,1), and {B,} C [0,1]. If {a,}, {An} and {B,} satisfy the following
conditions:

(i) limy— oo an = 0; 3720 an = 00;

(ii) Bn C [0, a) for all n > 0 and for some a € (0,1);

(iii) Ay € [c, d] for some ¢, dwith 0 < ¢ <d <2a;

(iv) 3520 lana — an| < 007 3520 |Brs1 = Pul < 007 3520 [Ane1 = Au| < o0,
then {x,} converges strongly to q € F(S) N VI(C, A), which is a solution of the following variational
inequality:

((I-f)(4),qa-p) <0, peF(S)NVI(C, A). (3.2)
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Proof. Let z, = Pc(x, — \yAx,) and wy, = Pc(y, — A\yAy,) for every n > 0. Let u € F(S) N
VI(C, A). Since I — 1, A is nonexpansive and u = Pc(u — A, Au) from (2.5), we have
|z — ul|l = [|Pc(xn — AnAxy) = Pc(u— A, Au)||
< CGen = AnAxy) = (1= A Au)| (3.3)
< lxn = ul.
Similarly we have ||w, — u|| < ||y, —ul|.
We divide the proof into several steps.

Step 1. We show that {x,} is bounded. In fact, since

lyn = u|| = ||an (f (xn) — ) + (1 = ) (Szw — u) ||
< “n”f(xn) - u” + (1= an)||lzn —ull

S an”f(xn) _f(u)” + “n”f(u) - u” + (1 - “n)”xn - u“

< @kl =l + (1= @)l = ll + | F () - ] G4
= (1= (1= k)an)l|xn — ul| + || f (1) = u|
1
< max{ |, —ul], m”f(u) —ul| },
we have
2ns1 = ull = |[(1=Pn) (yn — 1) + Pu(Swn — )|
< (1 _ﬂn) ”]/n - u” + Pullwn — ul|
< (1= ) lyn — ull + Bullyn — (33)
1
< max{ |, —ul|, m”f(u) —ul| }
By induction, we get
1
llxc, — ul| < max{”xo —ul|, ﬁ”f(u) —u| }, n>0. (3.6)

This implies that {x,} is bounded and so {v,}, {z.}, {w.}, {Ax,}, and {Ay,} are bounded.
Moreover, since ||Sz, — u|| < ||x, — u|| and ||Sw, — u|| < ||y, — ul|, {Sz,} and {Sw,} are also
bounded. By condition (i), we also obtain

lyn — Szal|| = anl| f(xn) = Szu]| — 0 (as n — o0). (3.7)
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Step 2. We show that limy, _, oo || xp+1 — X,|| = 0. From (3.1), we have

Yn = “nf(xn) +(1-a,)Sz,,
(3.8)
Yn-1= an—lf(xn—l) + (1 - ‘Xn—l)szn—ll n>1

Simple calculations show that

Yn—Yn1= (I -a,)(Szn— Szp-1) + (an - an—l)(f(xn—l) - Szn—l) + “n(f(xn) - f(xn—1)>~

(3.9)
Since
”Zn - Zn—l” < ||(xn - -)LnAxn) - (xn—l - )tn—len—l)”
S = XAxy) = (X1 = AnAxp) || + [ A1 = Al Axpa || (3.10)
< ”xn - xn—l” + Mn—l - )ln”len—lll
for every n > 1, we have
”yn - yn—lll < (1 =an)llzn = znall + | - an—1|||f(xn—1) - 5zp1 ” + ankl||xn — xp-1]|
< (1= an)([lxn = Xn-1ll + [An-1 = Aul | Axpa]])
(3.11)
+ |ty — aa|| f (xne1) = Szaaa || + ank||2n — x|
<(1-(1- k)ocn)||xn - xn_1|| + L]l)tn_l - J\n| + M1|0£n - Dln_1|
for every n > 1, where M = sup{||f(x,) — Szu-1|| : n > 1} and Ly = sup{||Ax,| : n > 0}.
On the other hand, from (3.1) we have
Xn+l = (1 - ﬂn)]/n + ﬂnswnl
(3.12)

Xn = (1 - ,Bn—l)yn—l + ﬂn—lswn—l-
Also, simple calculations show that
Xn4l — Xp = (1 - ﬂn) (yn - yn—l) + ,Bn(swn - Swn—l) + (ﬂn - ﬂn—l) (Swn—l - yn—l)- (313)

Since

”wn - wn—l“ < ” (]/n - -)LnAyn) - (]/n—l - )‘n—lA]/n—l) ”
< ” (yn - -)LnA]/n) - (]/n—l - -)LnA]/n—l) ” + A1 = Ayl ”A]/n—l ” (3.14)
< v =yl + ey = Al Aynea |
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for every n > 1, it follows that
”xn+1 - xn” < (1 - ﬁn) ”yn —Yn-1 ” + ﬁn”wn - wn—l” + |ﬁn - ﬁn—ll”swn—l —Yn ”
< (=) llyn = yn-1ll + B (lyn = Y | + ner = Ll | Ay )

+ |Bn = P || Swn-1 = yua |
< yn = ynt || + et = Ll | Ay || + |Br = Bu-a ||| Swn-1 = Y |-

(3.15)

Substituting (3.11) into (3.15), we derive

||xn+1 - xn“ < (1 - (1 - k)“n)“xn - xn—l” + Lan—l - )‘nl + Mll“n — -1

+ Mn—l - )‘n| ”Ayn—l ” + |ﬁn - ﬁn—l | ”Swn—l — Yn-1 ”

<SA-A=-Kan)|lxn — xp-1|l + Lo|buo1 = Au| + Milay, — apa| + M2|,Bn - ,Bn—l ’
(3.16)

where L, = sup{L; + ||[Ay,| : n > 1} and M, = sup{||Swy, — yx|| : n > 0}. From conditions (i)
and (iv), it is easy to see that

lim (1-K)a, =0,  D.(1-k)a, = oo,
n=0

n— oo
(3.17)
Z(M1|an+l - an| + MZlﬁrHl - ﬂnl + L2|~)‘n+1 - )tnl) < 0.
n=0
Applying Lemma 2.2 to (3.16), we have
|xn41 — X4]] — O as n— oo. (3.18)

By (3.11), we also have that |[/4+1 — yul| — Oasn — co.
Step 3. We show that limy, , »||x,, — Y|l = 0 and lim,, _, oo ||x, — Sz, || = 0. Indeed, it follows that
l|%ne1 = yu|l = Bul| Swn = yu|

< Bu(ISwy = Szull + ||Szn — v )
< a(”wn = Znl| + ”Szn - yn”) (3.19)

< a([lyn = xul| +[|S20 = yal)

< a(”yﬂ - xn+1“ + | = xa]| + ”Szn —Yn

),

which implies that

”xn+1 - yn” < %(”xnﬂ - xn“ + ”Szn - yn”) (3-20)
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Obviously, by (3.7) and Step 2, we have ||x,.1 — yx|| — 0 asn — oo. This implies that

”x" - yﬂ” < ”xn - xn+1“ + ”xn+1 - ]/n” — 0 as n— oo. (321)

By (3.7) and (3.21), we also have

130 = Sznll < ||%n = Yul| + ||¥n — Szu]| — 0 as n— oo. (3.22)

Step 4. We show that lim,,_, ., ||x, — z,|| = 0. To this end, let u € F(S) N VI(C, A). Then, by
convexity of || - ||?, we have
lym = 2ll* = flonf Gen) + (1 = @) Sz = ]|
< ety || f () = u)* + (1 - @) 1Sz — u?
< aty | f () = ) + (1= ) [1za - ul? (3.23)
< | £ Gon) = 2P+ (1= ) [l = w4 2 O = 2) | A — Aut]?]

< anllf () = ull? + llocn = ull* + (1 = ) c(d — 2a) || Axy — Aull*.

So we obtain

- (1-an)c(d - 2a)||Ax, - Aul)®
< at| £ en) = ]|+ ([l = ull + |y = 2] (e = ull = [[n = ]} (3.24)

< ata| o) = ull” + (e = 2l + [l = wl]) [l =l

Since a, — 0 and ||x,, — yu|| — 0Dby condition (i) and (3.21), we have ||Ax, — Aul| — 0 (n —
o0). Moreover, from (2.2) we obtain
120 = ull® = I Pe(xn = AnAxy) = P(u = LuAu)|*
< A{xy — MgAxy — (U — M Au), z, — u)

1
= {6t = AnAxn) = (0 = Ly AW) P + 112, — ul

et = AnAx) = (1 = Ay Au) = (2 - )|} 02

2 2 2
< ol =l + N1z = P = v = zall

N =

#2052y — 2z, Ay — Au) = 13| Ax, — AulP},
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and so
Iz — w|* < |20 = ull® = |20 = Zall* + 200 (X — 20, AXy — Au) — 2| Ax,, — Aul. (3.26)
And hence

[ = ull” < | f (xn) = 2e]|* + (1 = @) |20 — 0
< || f (en) = ] + 1130 = 2] = (1 = @) |20 = 2| (3.27)

+2(1 = ap) A Xy — Zn, Axy — Au) — (1 — a,) A2 || Ax, — Au)
Then we have

(1= ap)l|xn - Zn||2 < “n”f(xn) - u||2 + (”xn —ul| + ”yn _u”)(”xn —ull - ”yn —u”)

+2(1 = ) An (X = Zn, Ay — Aut) — (1 = ) A2|| Ax, — Aul?
(3.28)

< || £ Gen) = u]|® + (e = 2l + [|yn = 2a]|) |20 = |
+2(1 = ) A (X = 2, Ay — Aut) = (1 - @) A3|| Ax, — Aull”.

Since a, — 0, ||x, —yn|| — 0and ||Ax, — Au|| — 0, we get [|x, — z,|| — 0. Also by (3.21), we
have

lvn = zn|| < |lym = 2| + ln = 2all — 0 (1 — 0). (3.29)

Step 5. We show that limsup, , _(f(q) - q,y» —q) < 0for g € F(S) nVI(C, A), where g is a
solution of the variational inequality

(I-£)(@).q-p)<0,  peF(S)NVICA). (3.30)
To this end, choose a subsequence {z,,} of {z,} such that

limsup(f (4) ~ 4, Szu ~q) = im (f(q) ~ 4, Sz, - q)- (331)

n—oo

Since {z,,} is bounded, there exists a subsequence {znij } of {z,,} which converges weakly to
z. We may assume without loss of generality that z,, — z. Since ||Sz,, — zZu,|| < |Szn, — X0, || +
I, = zn;|| — O by Steps 4 and 5, we have Sz,, — z. Then we can obtain z € F(S) N VI(C, A).
Indeed, let us first show that z € VI(C, A). Let

To = (3.32)

Av+ Ncv, veC,
0, v¢C.
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Then T is maximal monotone. Let (v, w) € G(T). Since w — Av € Ncv and z,, € C, we have

(v=z,,w—-Av) >0. (3.33)

On the other hand, from z, = Pc(x, — A,Ax,), we have (v — z,,, z, — (x, — A, Az,)) > 0 and
hence

<v -2z, Zn " Xn | Axn> > 0. (3.34)

Therefore we have

<7) - zn,.,w) > (U - Zni/AU>

Zy, — X,
> (v —2z,,Av) - <U—Zm, "’)L = +Axm>
n;

Zn,

- Xy
=<v—zni,Av—Axni— d '>
A,

(3.35)
= (V= 2zy, AV — Azy,) + (U — 2y, AZp, — AXp,)

<v 2y, >
-  Anis
1 A'ni

= Xy,
> <U - Zn,-/AZn,- - Axn,-> - <U ~ Zny, I)L N >
n;

Hence we have (v—z,w) > 0asi — oo. Since T is maximal monotone, we have z € T~'0 and
hence z € VI(C, A).

On the another hand, by Steps 3 and 4, ||z, — Szl < ||zn — xul| + ||xn — Szl — 0. So,
by Lemma 2.3, we obtain z € F(S) and hence z € F(S) N VI(C, A). Then by (3.30) we have

limsup(f(q) = 4,5z, = q) = im (f(q) = 4,520, = q) = (f(9) =9,z - q)
- o (3.36)

=((I-£)(4).9-2) <0

Thus, from (3.7) we obtain

limsup(f(q) = 4, yn - q) < limsup(f(q) - 4, yn = Sza) + limsup(f(q) - 4,Szn - q)

n—oo n—oo n—oo

<limsup||f(q) - ql|||yn = Sza|| +limsup(f(q) - q, Szx - q)

<0.
(3.37)
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Step 6. We show that lim,,_, .-||x, — gl = 0 for g € F(S) N VI(C, A), where g is a solution of the
variational inequality

(I-£)@).q9-p) <0, peFES)NVIC, A). (3.38)

Indeed, from Lemma 2.4, we have

s = al” < v = 4l = llan(F ) = 4) + (1 = @) (520 - )|
< (1= an)[|Sz0 = ql|” + 2 (f () = 4, v — q)
< (1= a)’||zn = qll” + 200 (f (x2) = £(q), Y = q) + 202 (£ (9) = @, Y — q)
< (1= an)?||xn = q||* + 20k = || ||y = ql| + 22 (f (@) = 3, Y~ q)
< (1= a)?[|20 = ql|” + 200k ]| 50 = ql| ([lyn = %l + [} = 4]
+20,(f(q) =4, yn - q)
= (1-2(1 = K)ay)||xa = q1* + 2auk||ya = xall |0 = qll + 20 (f (4) = 4,y - )
< (1= [lxn = || + @,

(3.39)

where
_ 7 - KB ! 3.40
ay =2(1-k)ay, ﬂn=mllyn—xnll+m(f(q)—q,yn—q>r (3.40)

and B = sup{||x,—q|| : n > 0}.Itis easily seen thata,, — 0, >,,°; @, = oo, and limsupnﬂwﬁn <

0. Thus by Lemma 2.2, we obtain x, — g. This completes the proof. O

Remark 3.2. (1) Theorem 3.1 improves the corresponding results in Chen et al. [13] and liduka
and Takahashi [10]. In particular, if #, = 0 and f(x,) = x is constant in (3.1), then Theorem 3.1
reduces to Theorem 3.1 of liduka and Takahashi [10].

(2) We obtain a new composite iterative scheme for a nonexpansive mapping if A =0
in Theorem 3.1 as follows (see also Jung [18]):

xo € C,
Yn = anf(xn) + (1 - a,)Sxy, (3.41)
Xn+l = (1 - ,Bn)]/n + ﬂnsyn/ n > 0.

As a direct consequence of Theorem 3.1, we have the following result.
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Corollary 3.3. Let C be a closed convex subset of a real Hilbert space H. Let A be an a-inverse-
strongly monotone mapping of C to H such that VI(C, A) #0, and f € Zc. Let {x,} be a sequence
generated by

X € C,
Yn = nf (xn) + (1 — ay) Pc(x, — Ly AXy), (3.42)
Xn+l = (1 - ,Bn)yn + ,BnPC (yn - )‘nAyn)/ n>0,
where {A,} C [0,2a], {a,} C [0,1), and {B,} C [0,1]. If {a,}, {\v}, and {P,} satisfy the following
conditions:

(i) imy oy, =0; X2 gty = 00,
(ii) Bn € [0, a) for all n > 0 and for some a € (0,1),

(iii) An € [c, d] for some ¢, dwith0 < c < d < 2a,

)
)
)
(iv) Xoio lana = an| < 00; X720 [Bu1 = Pl < 007 2520 [Ane1 = Au| < o0,

then {x,} converges strongly to q € VI(C, A), which is a solution of the following variational
inequality:

((I-f)(q).9-p) <0, peVICA). (3.43)

4. Applications

In this section, as in [10, 13], we obtain two theorems in a Hilbert space by using Theorem 3.1.
A mapping T : C — Ciscalled strictly pseudocontractive if there exists a with0 < a < 1
such that

ITx = Tyl* < flx = y|I” + al| (1 = T)x = (1 - Ty’ (4.1)

for every x,y € C. If a = 0, then T is nonexpansive. Put A = I =T, where T : C — Cisa
strictly pseudocontractive mapping with a. Then A is (1 — a) /2-inverse-strongly monotone;
see [7]. Actually, we have, forall x,y € C,

17~ A)x = (1= Ay < [lx - y|” +afl Ax - Ay]|" (42)
On the other hand, since H is a real Hilbert space, we have
(= A)x - T -A)y|” = |x-y|I” + Al Ax - Ay|> - 2(x -y, Ax - Ay).  (43)
Hence we have

1-
(x-y, Ax - Ay) > Ta”Ax—Ay”z. (44)
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Using Theorem 3.1, we first get a strong convergence theorem for finding a common
fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let T be an a-strictly
pseudocontractive mapping of C into itself and S a nonexpansive mapping of C into itself such that
F(S)NF(T)#0,and f € Zc. Let {x,} be a sequence generated by

xo € C,
Yn = f(xn) + (1 —a,)S((1 = Ap)xy + A Txy), (4.5)
Xn+l = (1 - ,Bn)]/n + ﬂns((l - )ln)yn + /\nT]/n)/ n>0,

where {A,} C [0,1 - a), {a,} C [0,1), and {B,} C [0,1]. If {a,}, {Xn}, and {P,} satisfy the
conditions:
(1) limy,— o a0y = 0; 3,70 ety = 0,
(ii) Bn € [0, a) for all n > 0 and for some a € (0,1),
(iii) Ay € [c,d] for some c, dwith0 <c<d <1-a,
(iv) 3o lane1 — an| < 007 3720 [Brr = Pul < 007 25l Mt = Aul < oo,
}

then {x,
inequality:

converges strongly to g € F(S) N F(T), which is a solution of the following variational

((I-f)(@),9-p)<0, peF(S)NF(T). (4.6)

Proof. Put A = I-T. Then A is (1-a)/2-inverse-strongly monotone. We have F(T) = VI(C, A)
and Pc(x, — A, Axy,) = (1= ),)x, + 1, Tx,. Thus, the desired result follows from Theorem 3.1.
O

Using Theorem 3.1, we also have the following result.

Theorem 4.2. Let H be a real Hilbert space H. Let A be an a-inverse-strongly monotone mapping of
H into itself and S a nonexpansive mapping of H into itself such that F(S) N A™0#0, and f € Zc.
Let {x,} be a sequence generated by

xo € H,

Yn = anf(xn) + (1= a,)S(xn, — MAxy), (4.7)
Xn+1 = (1 - ﬂn)yn + ﬁns(yn - )‘nA]/n)/ n>0,

where {A,,} C [0,2a), {a,} C [0,1), and {B,} C [0,1]. If {a,}, {Xn}, and { B} satisfy the conditions:
(i) imy o0, =0; 02 p aty = 00,
(ii) Bn C [0, a) for all n > 0 and for some a € (0,1),
(iii) An € [c, d] for some ¢, dwith0 < ¢ <d < 2a,

(iv ZZO:O |otpi1 — | < oo; Z;;o:o |,Bn+1 - ﬁn| < oo, ZS;;O [Lps1 = Au] < 00,
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then {x,} converges strongly to g € F(S) N A0, which is a solution of the following variational
inequality:

((I-£)(q9),9-p)<0, peF©S)nAT0. (4.8)

Proof. We have A0 = VI(H, A). So, putting Py = I, by Theorem 3.1, we obtain the desired
result. O

Remark 4.3. If , = 0 in Theorems 4.1 and 4.2, then Theorems 4.1 and 4.2 reduce to Chen et
al. [13, Theorems 4.1 and 4.2]. Theorems 4.1 and 4.2 also extend in liduka and Takahashi [10,
Theorems 4.1 and 4.2] to the viscosity methods in composite iterative schemes.
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