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The asymptotical mean-square stability analysis problem is considered for a class of Cohen-
Grossberg neural networks (CGNNs) with random delay. The evolution of the delay is modeled
by a continuous-time homogeneous Markov process with a finite number of states. The main
purpose of this paper is to establish easily verifiable conditions under which the random
delayed Cohen-Grossberg neural network is asymptotical mean-square stability. By employing
Lyapunov-Krasovskii functionals and conducting stochastic analysis, a linear matrix inequality
(LMI) approach is developed to derive the criteria for the asymptotical mean-square stability,
which can be readily checked by using some standard numerical packages such as the Matlab
LMI Toolbox. A numerical example is exploited to show the usefulness of the derived LMI-based
stability conditions.

1. Introduction

It has been widely known that many biological and artificial neural networks contain an
inherent time delay, whichmay cause oscillation and instability (see, e.g., [1]). Recently, many
important results have been published on various analysis aspects for Cohen-Grossberg
neural networks (CGNNs) with delay. In particular, the existence of equilibrium point,
global asymptotic stability, global exponential stability, and the existence of periodic solutions
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have been intensively investigated in recent publications on the broad topics of time-delay
systems (see, e.g., [2–26]). Generally speaking, the time delay considered can be categorized
as constant delay, time-varying delay, and distributed delay, and the methods used include
the linear matrix inequality (LMI) approach, Lyapunov functional method,M-matrix theory,
topological degree theory, and techniques of inequality analysis.

On the other hand, it can be seen from the existing references that only the
deterministic time-delay case was concerned, and the stability criteria were derived based
only on the information of variation range of the time delay. In practice, the delay in some
NNs is due to multiple factors (e.g., synaptic transmission delay, neuroaxon transmission
delay), one natural paradigm for treating it is to use a probabilistic description (see, e.g.,
[22, 26–30]). For example, to control and propagate the stochastic signals through universal
learning networks (ULNs), a probabilistic universal learning network (PULN)was proposed
in [30]. In a PULN, the output signal of the node is transferred to another node by
multibranches with arbitrary time delay which is random and its probabilistic characteristic
can often be measured by the statistical methods. For this case, if some values of the time
delay are very large but the probabilities of the delay taking such large values are very small,
it may result in a more conservative result if only the information of variation range of the
time delay is considered.

In many situations, the delay process can be modeled as aMarkov process with a finite
number of states (see, e.g., [27, 28]). References [27, 28] argue in favor of such representation
of the delay in communication networks. The discrete values of the delay may correspond
to “low”, “medium”, “high” network loads. However, to the best of the authors’ knowledge,
so far, the stability analysis of CGNNs with random delay modeled by a continuous-time
homogeneous Markov process with a finite number of states has received little attention in
the literature. This situation motivates our present investigation.

Motivated by the above discussions, the aim of this paper is to investigate the stability
of CGNNs with random delay in mean square. By using a Markov chain with a finite
number of states, we propose a new model of CGNNs with random delay. By employing
Lyapunov-Krasovskii functionals and conducting stochastic analysis, we develop a linear
matrix inequality (LMI) approach to derive the stability criteria that can be readily checked
by using some standard numerical packages. A simple example is provided to demonstrate
the effectiveness and applicability of the proposed testing criteria.

1.1. Notations

The notations are quite standard. Throughout this paper, Rn and R
n×m denote, respectively,

the n dimensional Euclidean space and the set of all n ×m real matrices. The superscript “T”
denotes the transpose and the notation X ≥ Y (resp., X > Y ) where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (resp., positive definite). I is the identity
matrix with compatible dimension. For h > 0,C([−h, 0];Rn) denotes the family of continuous
functions ϕ from [−h, 0] toR

n with the norm ‖ϕ‖ = sup−h≤θ≤0 |ϕ(θ)|, where | · | is the Euclidean
norm in R

n. If A is a matrix, denote by ‖A‖ its operator norm, that is, ‖A‖ = sup{|Ax| : |x| =
1} =

√
λmax(ATA)where λmax(·) (resp., λmin(·))means the largest (resp., smallest) eigenvalue

of A. Moreover, let (Ω,F, {Ft}t≥0, P) be complete probability space with a filtration {Ft}t≥0
(i.e., it is right continuous and F0 contains all P-null sets). Denote by Cb

F0
([−h, 0];Rn) the

family of all bounded, F0-measurable, C([−h, 0];Rn)-valued random variables. For p > 0
and h > 0, denote by L

p

F0
([−h, 0];Rn) the family of all F0-measurable C([−h, 0];Rn)-valued
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random variables φ = {φ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|φ(θ)|p < ∞ where E stands
for the mathematical expectation operator with respect to the given probability measure P .
In symmetric block matrices, we use an asterisk “∗” to represent a term that is induced by
symmetry and diag{· · · } stands for a block-diagonal matrix. Sometimes, the arguments of a
function will be omitted in the analysis when no confusion can be arise.

2. Problem Formulation

In this section, we will introduce the model of Cohen-Grossberg neural networks with
random delay, give the definition of stability related, and put forward the problem to be
dealt with in this paper.

Let {η(t), t ≥ 0} be a right-continuous homogeneousMarkov process on the probability
space which take values in the finite space S = {η1, η2, . . . , ηN} satisfying 0 ≤ η1, η2, . . . , ηN ≤
h and its generator Π = (πij)N×N is given by

P
{
η(t + Δ) = ηj | η(t) = ηi

}
=

⎧
⎨

⎩

πijΔ + o(Δ) if ηi /=ηj ,

1 + πii + o(Δ) if ηi = ηj ,
(2.1)

where Δ > 0 and limΔ→ 0 o(Δ)/Δ = 0, πij ≥ 0 is the transition rate from ηi to ηj if ηi /=ηj and

πii = −
∑

ηj /=ηi

πij . (2.2)

Consider the following Cohen-Grossberg neural network with constant delay model
described by

dui(t)
dt

= −ai(ui(t))

⎡

⎣bi(ui(t)) −
n∑

j=1

aijgj
(
uj(t)

) −
n∑

j=1

bijgj
(
uj(t − h)

)
+ Vi

⎤

⎦, (2.3)

where ui(t) is the state of the ith unit at time t, ai(ui(t)) is the amplification function,
bi(ui(t)) denotes the behaved function, and gi(ui(t)) is the activation function. The matrices
A = (aij)n×n, B = (bij)n×n are, respectively, the connection weight matrix and the discretely
delayed connection weight matrix. V = [V1, V2, . . . , Vn]

T is a constant external input vector.
The scalar h > 0, which may be unknown, denotes the discrete time delay.

Let

u(t) = (u1(t), u2(t), . . . , un(t) )T , a(u) = diag(a1(u1), . . . , an(un)),

b(u) = (b1(u1), . . . , bn(un))
T , g(u(·)) = (

g1(u1(·)), g2(u2(·)), . . . , gn(un(·))
)T
.

(2.4)

The model (2.3) can be rewritten the following matrix form:

du(t)
dt

= −a(u(t))[b(u(t)) −Ag(u(t)) − Bg(u(t − h)) + V
]
. (2.5)
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In this paper, we make the following assumptions on the amplification function, the
behaved function, and the neuron activation functions.

Assumption 1. For each i ∈ {1, 2, . . . , n}, the amplification function ai(·) is positive, bounded,
and satisfies

0 < αi ≤ ai(·) ≤ αi (2.6)

where αi and αi are known positive constants.

Assumption 2. The behaved function bi(x) : R → R is continuous and differentiable, and

b′i(x) ≥ γi > 0 ∀x ∈ R, i = 1, 2, . . . , n. (2.7)

Assumption 3. For i ∈ {1, 2, . . . , n}, the neuron activation function in (2.3) satisfies

0 ≤ gi(x) − gi
(
y
)

x − y
≤ k (2.8)

for any x, y ∈ R, x /=y, where k is a positive constant.

Remark 2.1. It is obvious that, the condition in Assumption 3 is more general than the usual
sigmoid functions and the recently commonly used Lipschitz conditions, see, for example,
[4–10].

Assumption 4. The neuron activation function in (2.3), gj satisfies the following condition

gj
(
xj

(
t − ηi

))
xj(t − ηi) ≤ ρ(xj(t − ηi))

2, j = 1, 2, . . . , n, 0 ≤ ηi ≤ h, (2.9)

where ρ is a positive constant.
For notational convenience, we shift the equilibrium point u∗ = (u∗

1, u
∗
2, . . . , u

∗
n)

T to the
origin by translation x(t) = u(t) − u∗ which yields the following system:

dx(t)
dt

= −α(x(t))[β(x(t)) −Al(x(t)) − Bl(x(t − h))
]
, (2.10)
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where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ R

n is the state vector of the transformed system and

α(x(t)) = diag(α1(x1(t)), α2(x2(t)), . . . , αn(xn(t)))

αi(xi(t)) = ai

(
xi(t) + u∗

i

)

β(x(t)) =
(
β1(x1(t)), β2(x2(t)), . . . , βn(xn(t))

)

βi(xi(t)) = bi
(
xi(t) + u∗

i

) − bi
(
u∗
i

)

l(x(·)) = (l1(x1(·)), l2(x2(·)), . . . , ln(xn(·)))

lj
(
xj(·)

)
= gj

(
xj(·) + u∗

j

)
− gj

(
u∗
j

)
.

(2.11)

It follows, respectively, Assumptions 1 and 2 that

0 < αi ≤ αi(·) ≤ αi, (i = 1, 2, . . . , n) (2.12)

xi(t)βi(xi(t)) ≥ γix
2
i (t), (i = 1, 2, . . . , n). (2.13)

Note that Assumption 3 implies the following condition:

0 ≤ li(xi)
xi

≤ k, ∀xi /= 0, i = 1, 2, . . . , n, (2.14)

and from (2.14), we have

li(xi)(li(xi) − kxi) ≤ 0, i = 1, 2, . . . , n. (2.15)

Assumption 4 implies that

lj
(
xj

(
t − ηi

))
xj

(
t − ηi

) ≤ ρ
(
xj

(
t − ηi

))2
, j = 1, 2, . . . , n, 0 ≤ ηi ≤ h. (2.16)

Now we consider the following Cohen-Grossberg neural network with random delay,
which is actually a modification of (2.10):

dx(t)
dt

= −α(x(t))[β(x(t)) −Al(x(t)) − Bl
(
x
(
t − η(t)

))]
(2.17)

where η(t) is a Markov process with a finite number of states 0 ≤ η1, η2, . . . , ηN ≤ h.
Nowwe shall work on the network mode η(t) = ηi, for all ηi ∈ S. Let x(t; ξ) denote the

state trajectory from the initial data x(θ) = ξ(θ) on −h ≤ θ ≤ 0 in L2
F0
([−h, 0];Rn). According to

[31], for any initial value ξ, (2.17) has only a globally continuous state. Clearly, the network
(2.17) admits an equilibrium point (trivial solution) x(t; 0) ≡ 0 corresponding to the initial
data ξ = 0.
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Remark 2.2. It is noted that the introduction of random delay modeled by a continuous-time
homogeneous Markov process with a finite number of states was first introduced in [27,
28]. Unlike the common assumptions on the delay in published literature, the probability
distribution of the delay taking some values is assumed to be known in advance in this paper,
and then a new model of the neural system (2.17) has been derived, which can be seen as an
extension of the common neural system (2.10).

The following stability concept is needed in this paper.

Definition 2.3. For system (2.17) and every ξ ∈ L2
F0
([−h, 0];Rn), η(0) = ηi0 ∈ S, the equilibrium

point is asymptotically stable in the mean-square sense if

lim
t→∞

E
∣
∣x
(
t, ξ, ηi0

)∣∣2 = 0, (2.18)

where x(t, ξ, ηi0) is the solution of system (2.17) at time t under the initial state ξ and initial
mode ηi0 .

3. Main Results and Proofs

The following lemma is needed in deriving our main results.

Lemma 3.1 (see [8]). Let x ∈ R
n, y ∈ R

n and ε > 0. Then we have

xTy + yTx ≤ εxTx + ε−1yTy. (3.1)

Lemma 3.2 (see (Schur Complement) [32]). Given constant matrices Ω1, Ω2, Ω3 where Ω1 =
ΩT

1 and 0 < Ω2 = ΩT
2 , then

Ω1 + ΩT
3Ω

−1
2 Ω3 < 0 (3.2)

if and only if

[
Ω1 ΩT

3

Ω3 −Ω2

]

< 0, or

[−Ω2 Ω3

ΩT
3 Ω1

]

< 0. (3.3)

Before stating our main results, let us denote

α := min
1≤i≤n

αi α := max
1≤i≤n

αi,

Υ := diag
{
γ1, γ2, . . . , γn

}
Pi : = diag

{
pi1, p

i
2, . . . , p

i
n

}

Ω1 = −αPiΥ − αΥPi,

, (3.4)

where αi, αi are defined in (2.12), γi is defined in (2.13), the diagonal positive definite matrix Pi is a
parameter to be designed.
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We are now ready to derive the conditions under which the network dynamics of (2.17) is
asymptotic mean square stability. The main theorem given below shows that the stability criteria can
be expressed in terms of the feasibility of two LMIs.

Theorem 3.3. If there exist two sequences of positive scalars {ε1i, ε2i}, two symmetric positive
matrices Q, R and two positive diagonal matrix Pi, Λ = diag(λ1, λ2, . . . , λn) > 0 such that the
following LMIs hold:

M1 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢⎢
⎣

(1.1) kΛ 0 λ1/2max
(
AAT

)
αPi λ1/2max

(
BBT

)
αPi

∗ (1.2) 0 0 0

∗ ∗ −2Λ + ε2iI 0 0

∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ −ε2iI

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥⎥
⎦

< 0,

−R + 2ρkΛ ≤ 0,

(3.5)

where

(1.1) = −αPiΥ − αΥPi + R +
N∑

j=1

πijPj ,

(1.2) = −2Λ + ε1iI +Q.

(3.6)

Then the dynamics of the neural network (2.17) is asymptotic mean square stability.

Proof. Let C2,1(Rn × R+ × S;R+) denote the family of all nonnegative functions V (x, t, i) on
R

n × R+ × S which are continuously twice differentiable in x and differential in t. In order to
establish the stability conditions, we define a Lyapunov functional candidate V (x(t), t, η(t) =
ηi) := V (x(t), t, ηi) ∈ C2,1(Rn × R+ × S;R+) by

V
(
x(t), t, η(t) = ηi

)
= xT (t)Pix(t) +

∫ t

t−η(t)
xT (s)Rx(s)ds

+
∫ t

t−η(t)
lT (x(s))Ql(x(s))ds.

(3.7)
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It is known (see [27]) that {x(t), η(t)} is a C([−h, 0];Rn) × S-valued Markov process. From
(2.17) and (3.7), the weak infinitesimal operator L (see [27]) of the stochastic process
{x(t), η(t)} is given by

LV
(
x(t), t, η(t) = ηi

)
: = lim

Δ→ 0+

1
Δ
[
E
{
V
(
x(t + Δ), η(t + Δ)

) | x(t), η(t) = ηi
}

−V (
x(t), η(t) = ηi

)]

= ẋT (t)Pix(t) + xT (t)Piẋ(t) + xT (t)Rx(t)

− xT(t − ηi
)
Rx

(
t − ηi

)
+

N∑

j=1

πijx
T (t)Pjx(t)

+ lT (x(t))Ql(x(t)) − lT
(
x
(
t − ηi

))
Ql

(
x
(
t − ηi

))
.

(3.8)

Noticing that Pi and α(x(t)) are diagonal positive-definite matrices, we obtain from (2.12)
and (2.13) that

−2xT (t)Piα(x(t))β(x(t)) = −2
n∑

j=1

xj(t)pijαj

(
xj(t)

)
βj
(
xj(t)

)

≤ −2
n∑

j=1

pijαj

(
xj(t)

)
γjx

2
j (t)

≤ −2
n∑

j=1

pijαjγjx
2
j (t)

≤ −2α
n∑

j=1

pijγjx
2
j (t)

= −2αxT (t)PiΥx(t).

(3.9)

It follows from Lemma 3.1 that

2xT (t)Piα(x(t))Al(x(t)) ≤ ε−11i x
T (t)Piα(x(t))AATα(x(t))Pix(t) + ε1il

T (x(t))l(x(t))

≤ ε−11i λmax

(
AAT

)
α2xT (t)P 2

i x(t) + ε1il
T (x(t))l(x(t))

2xT (t)Piα(x(t))Bl
(
x
(
t − ηi

)) ≤ ε−12i λmax

(
BBT

)
α2xT (t)P 2

i x(t) + ε2il
T(x

(
t − ηi

))
l
(
x
(
t − ηi

))
.

(3.10)
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Substituting (3.9)-(3.10) into (3.8) leads to

LV
(
x(t), t, η(t) = ηi

)

≤ xT (t)
[
−αPiΥ − αΥPi + ε−11i λmax

(
AAT

)
α2P 2

i + ε−12i λmax

(
BBT

)
α2P 2

i

]

× x(t) + ε1il
T (x(t))l(x(t)) + ε2il

T(x
(
t − ηi

))
l
(
x
(
t − ηi

))
+ xT (t)Rx(t)

− xT(t − ηi
)
Rx

(
t − ηi

)
+

N∑

j=1

πijx
T (t)Pjx(t)

+ lT (x(t))Ql(x(t)) − lT
(
x
(
t − ηi

))
Ql

(
x
(
t − ηi

))

≤ xT (t)

⎡

⎣ − αPiΥ − αΥPi + ε−11i λmax

(
AAT

)
α2P 2

i + ε−12i λmax

(
BBT

)
α2P 2

i

+R +
N∑

j=1

πijPj

⎤

⎦x(t) + ε1il
T (x(t))l(x(t)) + ε2il

T(x
(
t − ηi

))
l
(
x
(
t − ηi

))

− xT (
t − ηi

)
Rx

(
t − ηi

)
+ lT (x(t))Ql(x(t)) − lT

(
x
(
t − ηi

))
Ql

(
x
(
t − ηi

))

− 2
∑

i

λili(xi(t))(li(xi(t)) − kxi(t))

− 2
∑

j

λj lj
(
xj

(
t − ηi

))(
lj
(
xj

(
t − ηi

)) − kxj

(
t − ηi

))

=
[
xT (t) lT (x(t)) lT

(
x
(
t − ηi

))]

⎡

⎢⎢
⎣

(1.3) kΛ 0

kΛ −2Λ + ε1iI +Q 0

0 0 −2Λ + ε2iI

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

x(t)

l(x(t))

l
(
x
(
t − ηi

))

⎤

⎥⎥
⎦ − xT(t − ηi

)
Rx

(
t − ηi

) − lT
(
x
(
t − ηi

))
Ql

(
x
(
t − ηi

))

+ 2k
∑

j

λj lj
(
xj

(
t − ηi

))
xj

(
t − ηi

))

≤
[
xT (t) lT (x(t)) lT

(
x
(
t − ηi

))]

⎡

⎢⎢
⎣

(1.3) kΛ 0

kΛ −2Λ + ε1iI +Q 0

0 0 −2Λ + ε2iI

⎤

⎥⎥
⎦

×

⎡

⎢⎢
⎣

x(t)

l(x(t))

l
(
x
(
t − ηi

))

⎤

⎥⎥
⎦ + xT(t − ηi

)(−R + 2ρkΛ
)
x
(
t − ηi

)
, (3.11)
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where

(1.3) = −αPiΥ − αΥPi + ε−11i λmax

(
AAT

)
α2P 2

i + ε−12i λmax

(
BBT

)
α2P 2

i + R +
N∑

j=1

πijPj . (3.12)

It follows from the Schur Complement Lemma that the first item of (3.11) is negative which
is equivalent to the following

M1 : =

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

(1.1) kΛ 0 λ1/2max
(
AAT

)
αPi λ1/2max

(
BBT

)
αPi

∗ (1.2) 0 0 0

∗ ∗ −2Λ + ε2iI 0 0

∗ ∗ ∗ −ε1iI 0

∗ ∗ ∗ ∗ −ε2iI

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

< 0. (3.13)

In view of the LMIs (3.5) and Itô formula [31], we have

E
[
dV

(
x(t), t, η(t) = ηi

)]
= E

[LV
(
x(t), t, η(t) = ηi

)]
< 0. (3.14)

Therefore, the dynamics of the neural network (2.17) is asymptotical stable in the mean
square.

4. A Numerical Example

In this section, a numerical example is presented to demonstrate the effectiveness and
applicability of the developed method on the asymptotic mean square stability of the Cohen-
Grossberg neural network (2.17)with random delay.

Example 4.1. Consider a two-neuron neural network (2.17) with two modes. The network
parameters are given as follows:

A =

[
0.3 0.5

0.6 −0.8

]

; B =

[−0.2 0.8

0.5 0.3

]

;

Π =

[−6 6

1 −1

]

; Υ =

[
6 0

0 3

]

;

k = ρ = 0.3; α = 0.4; α = 0.8.

(4.1)
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By using the Matlab LMI toolbox [32], we solve the LMIs in Theorem 3.3 and obtain

P1 =

[
24.6783 0

0 34.8663

]

> 0; P2 =

[
24.4824 0

0 32.2167

]

> 0;

Q =

[
30.1665 0

0 28.0524

]

> 0; R =

[
51.8909 0

0 30.9299

]

> 0;

Λ =

[
59.0367 0

0 57.5684

]

> 0; ε11 = 46.1415;

ε12 = 46.1256; ε21 = 60.9479; ε22 = 62.0387.

(4.2)

Therefore, it follows from Theorem 3.3 that the Cohen-Grossberg neural network
(2.17)with random delay is asymptotical mean square stability.

5. Conclusions

In this paper, we have investigated the asymptotical mean square stability analysis problem
of CGNNs with random delay. By utilizing a markov chain to describe discrete delay, a new
neural network model has been presented. By employing a Lyapunov-Krasovskii functional
and conducting stochastic analysis, we have developed a linear matrix inequality (LMI)
approach to derive the stability criteria that can be readily checked by using some standard
numerical packages. A simple example has been provided to demonstrate the effectiveness
and applicability of the proposed testing criteria.
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