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On the hypothesis that the (2k)th moments of the Hardy Z-function are correctly predicted by
random matrix theory and the moments of the derivative of Z are correctly predicted by the
derivative of the characteristic polynomials of unitary matrices, we establish new large spaces
between the zeros of the Riemann zeta-function by employing some Wirtinger-type inequalities.
In particular, it is obtained thatΛ(15) ≥ 6.1392 which means that consecutive nontrivial zeros often
differ by at least 6.1392 times the average spacing.

1. Introduction

The Riemann zeta-function is defined by

ζ(s) =
∞∑

n=1

1
ns

=
∏

p

(
1 − 1

ps

)−1
, for Re(s) > 1, (1.1)

and by analytic continuation elsewhere except for a simple pole at s = 1. The identity between
the Dirichlet series and the Euler product (taken over all prime numbers p) is an analytic
version of the unique prime factorization in the ring of integers and reflects the importance
of the zeta-function for number theory. The functional equation

π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s), (1.2)
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implies the existence of so-called trivial zeros of ζ(s) at s = −2n for any positive integer n; all
other zeros are said to be nontrivial and lie inside the so-called critical strip 0 < Re(s) < 1. The
numberN(T) of nontrivial zeros of ζ(s)with ordinates in the interval (0,T] is asymptotically
given by the Riemann-von Mangoldt formula (see [1])

N(T) =
T

2π
log

T

2πe
+O

(
log T

)
. (1.3)

Consequently, the frequency of their appearance is increasing and the distances between their
ordinates is tending to zero as T → ∞.

The Riemann zeta-function is one of themost studied transcendental functions, having
in view its many applications in number theory, algebra, complex analysis, and statistics
as well as in physics. Another reason why this function has drawn so much attention is
the celebrated Riemann conjecture regarding nontrivial zeros which states that all nontrivial
zeros of the Riemann zeta-function ζ(s) lie on the critical line Re(s) = 1/2. The distribution
of zeros of ζ(s) is of great importance in number theory. In fact any progress in the study
of the distribution of zeros of this function helps to investigate the magnitude of the largest
gap between consecutive primes below a given bound. Clearly, there are no zeros in the half
plane of convergence Re(s) > 1, and it is also known that ζ(s) does not vanish on the line
Re(s) = 1. In the negative half plane, ζ(s) and its derivative are oscillatory and from the
functional equation there exist so-called trivial (real) zeros at s = −2n for any positive integer
n (corresponding to the poles of the appearing Gamma-factors), and all nontrivial (nonreal)
zeros are distributed symmetrically with respect to the critical line Re(s) = 1/2 and the real
axis.

There are three directions regarding the studies of the zeros of the Riemann zeta-
function. The first direction is concerned with the existence of simple zeros. It is conjectured
that all or at least almost all zeros of the zeta-function are simple. For this direction, we refer
to the papers by Conrey [2] and Cheer and Goldston [3].

The second direction is the most important goal of number theorists which is the
determination of themoments of the Riemann zeta-function on the critical line. It is important
because it can be used to estimate the maximal order of the zeta-function on the critical line,
and because of its applicability in studying the distribution of prime numbers and divisor
problems. For more details of the second direction, we refer the reader to the papers in [4–6]
and the references cited therein. For further classical results from zeta-function theory, we
refer to the monograph [7] of Ivić and the papers by Kim [8–11].

For completeness in the following we give a brief summary of some of these results in
this direction that we will use in the proof of the main results. It is known that the behavior
of ζ(s) on the critical line is reflected by the Hardy Z-function Z(t) as a function of a real
variable, defined by

Z(t) = eiθ(t)ζ

(
1
2
+ it

)
, where θ(t) := π−it/2 Γ(1/4 + (1/2)it)

|Γ(1/4 + (1/2)it)| . (1.4)

It follows from the functional equation (1.2) that Z(t) is an infinitely often differentiable
function which is real for real t and moreover |Z(t)| = |ζ(1/2 + it)|. Consequently, the zeros of
Z(t) correspond to the zeros of the Riemann zeta-function on the critical line. An important
problem in analytic number theory is to gain an understanding of the moments of the Hardy
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Z-function Z(t) function Ik(T) and the moments of its derivative Mk(T) which are defined
by

Ik(T) :=
∫T

0
|Z(t)|2kdt, Mk(T) :=

∫T

0

∣∣Z′(t)
∣∣2kdt. (1.5)

For positive real numbers k, it is believed that

Ik(T) ∼ CkT
(
log T

)k2

,

Mk(T) ∼ LkT
(
log T

)k2+2k
,

(1.6)

for positive constants Ck and Lk will be defined later.
Keating and Snaith [12] based on considerations from random matrix theory

conjectured that

Ik(T) ∼ a(k)bkT
(
log T

)k2

, (1.7)

where

ak :=
∏

p

(
1 − 1

p2

) ∞∑

m=0

(
Γ(m + k)
m!Γ(k)

)2

p−m, bk :=
G2(k + 1)
G(2k + 1)

=
k−1∏

j=0

j!
(
j + k

)
!
, (1.8)

where G is the Barnes G-function (for the definition of the Barnes G-function and its
properties, we refer to [5]).

Hughes [5] used the Random Matrix Theory (RMT) and stated an interesting
conjecture on the moments of the Hardy Z-function and its derivatives at its zeros subject
to the truth of Riemann’s hypothesis when the zeros are simple. This conjecture includes for
fixed k > −3/2 the asymptotic formula of the moments of the form

∫T

0
Z2k−2h(t)

(
Z

′
(t)

)2h
dt ∼ a(k)b(h, k)T

(
log T

)k2+2h
, (1.9)

where a(k) is defined as in (1.8) and the product is over the primes. Hughes [5] was able to
establish the explicit formula

b(h, k) = b(0, k)
(
(2h)!
8hh!

)
H(h, k), (1.10)
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in the range min(h, k − h) > −1/2, where H(h, k) is an explicit rational function of k for each
fixed h. The functions H(h, k) as introduced by Hughes [5] are given in the following:

H(0, k) = 1,

H(1, k) =
1

K2 − 1
,

H(2, k) =
1

(K2 − 1)(K2 − 9)
,

H(3, k) =
1

(K2 − 1)2(K2 − 25)
,

H(4, k) =
K2 − 33

(K2 − 1)2(K2 − 9)(K2 − 25)(K2 − 49)
,

H(5, k) =
K4 − 90K2 + 1497

(K2 − 1)2(K2 − 9)2(K2 − 25)(K2 − 49)(K2 − 81)

H(6, k) =
K6 − 171K4 + 6867K2 − 27177

(K2 − 1)3(K2 − 9)2(K2 − 25)(K2 − 49)(K2 − 81)(K2 − 121)
,

H(7, k) =
K8 − 316K6 + 30702K4 − 982572K2 + 6973305

(K2 − 1)3(K2 − 9)2(K2 − 25)2(K2 − 49)(K2 − 81)(K2 − 121)(K2 − 169)
,

(1.11)

where K = 2k. This sequence is continuous, and it is believed that both the nominator and
denominator are monic polynomials in k2. Using (1.10) and the definitions of the functions
H(h, k), we can obtain the values of b(0, k)/b(k, k) for k = 1, 2, . . . , 7. As indicated in
[13] Hughes [5] evaluated the first four functions and then writes a numerical experiment
suggesting the next three. The values of b(0, k)/b(k, k) for k = 1, 2, . . . , 7 have been collected
in [6]. To the best of my knowledge there is no explicit formula to find the values of the
functionH(h, k) for k, h ≥ 8. This limitation of the values ofH(h, k) leads to the limitation of
the values of the lower bound between the zeros of the Riemann zeta-function by applying
the moments (1.9). To overcame this restriction, we will use a different explicit formula of the
moments to establish new values of the distance between zeros.

Conrey et al. [4] established the moments of the derivative, on the unit circle, of
characteristic polynomials of random unitarymatrices and used this to formulate a conjecture
for the moments of the derivative of the Riemann zeta-function on the critical line. Their
method depends on the fact that the distribution of the eigenvalues of unitary matrices gives
insight into the distribution of zeros of the Riemann zeta-function and the values of the
characteristic polynomials of the unitary matrices give a model for the value distribution
of the Riemann zeta-function. Their formulae are expressed in terms of a determinant of a
matrix whose entries involve the I-Bessel function and, alternately, by a combinatorial sum.
They conjectured that

Mk(T) ∼ a(k)ckT
(
log T

)k2+2k
, (1.12)
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where a(k) is the arithmetic factor and defined as in (1.8) and

ck := (−1)k(k+1)/2
k∑

m∈Pk+1
o (2k)

(
2k

m

)(−1
2

)m0
(

k∏

i=1

1
(2k − i +mi)!

)
Mi,j , (1.13)

where

Mi,j :=

⎛

⎝
k∏

1≤i,j≤k

(
mj −mi + i − j

)
⎞

⎠, (1.14)

and Pk+1
o (2k) denotes the set of partitions m = (m0, . . . , mk) of 2k into nonnegative parts.

They also gave some explicit values of ck for k = 1, 2, . . . , 15. These values will be presented
in Section 2 and will be used to establish the main results in this paper.

The third direction in the studies of the zeros of the Riemann zeta-function is the gaps
between the zeros (finding small gaps and large gaps between the zeros) on the critical line
when the Riemann hypothesis is satisfied. In the present paper we are concerned with the
largest gaps between the zeros on the critical line assuming that the Riemann hypothesis is
true.

Assuming the truth of the Riemann hypothesis Montgomery [14] studied the
distribution of pairs of nontrivial zeros 1/2 + iγ and 1/2 + iγ ′ and conjectured, for fixed α, β
satisfying 0 < α < β, that

lim
T →∞

1
N(T)

#

{
0 < γ, γ ′ < T : α ≤ γ ′ − γ ′

(
2π/ log T

) ≤ β

}
=
∫β

α

(
1 −

(
sin πx

πx

)2
)
dx. (1.15)

This so-called pair correlation conjecture plays a complementary role to the Riemann
hypothesis. This conjecture implies the essential simplicity hypothesis that almost all zeros
of the zeta-function are simple. On the other hand, the integral on the right hand side is the
same as the one observed in the two-point correlation of the eigenvalues which are the energy
levels of the corresponding Hamiltonian which are usually not known with uncertainty. This
observation is due to Dyson and it restored some hope in an old idea of Hilbert and Polya
that the Riemann hypothesis follows from the existence of a self-adjoint Hermitian operator
whose spectrum of eigenvalues correspond to the set of nontrivial zeros of the zeta-function.

Now, we assume that (βn + iγn) are the zeros of ζ(s) in the upper half-plane (arranged
in nondecreasing order and counted according multiplicity) and γn ≤ γn+1 are consecutive
ordinates of all zeros and define

rn :=

(
γn+1 − γn

)
(
2π/ log γn

) , (1.16)

and set

λ := lim sup
n→∞

rn, μ := lim inf
n→∞

rn. (1.17)
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These numbers have received a great deal of attention. In fact, important results concerning
the values of them have been obtained by some authors. It is generally believed that μ = 0
and λ = ∞. Selberg [15] proved that

0 < μ < 1 < λ, (1.18)

and the average of rn is 1. Note that 2π/ log γn is the average spacing between zeros. Fujii
[16] also showed that there exist constants λ > 1 and μ < 1 such that

(
γn+1 − γn

)
(
2π/ log γn

) ≥ λ,

(
γn+1 − γn

)
(
2π/ log γn

) ≤ μ, (1.19)

for a positive proportion of n. Mueller [17] obtained

λ > 1.9, (1.20)

assuming the Riemann hypothesis. Montgomery and Odlyzko [18] showed, assuming the
Riemann hypothesis, that

λ > 1.9799, μ < 0.5179. (1.21)

Conrey et al. [19] improved the bounds in (1.21) and showed that, if the Riemann hypothesis
is true, then

λ > 2.337, μ < 0.5172. (1.22)

Conrey et al. [20] obtained a new lower bound and proved that

λ > 2.68, (1.23)

assuming the generalized Riemann hypothesis for the zeros of the Dirichlet L-functions. Bui
et al. [21] improved (1.23) and obtained

λ > 2.69, μ < 0.5155, (1.24)

assuming the Riemann hypothesis. Ng in [22] improved (1.24) and proved that

λ > 3, (1.25)

assuming the generalized Riemann hypothesis for the zeros of the Dirichlet L-functions.
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Hall in [23] (see also Hall [24]) assumed that {tn} is the sequence of distinct positive
zeros of the Riemann zeta-function ζ(1/2 + it) arranged in nondecreasing order and counted
according multiplicity and defined the quantity

Λ := lim sup
n→∞

tn+1 − tn(
2π/ log tn

) , (1.26)

and showed that Λ ≥ λ, and the lower bound for Λ bear direct comparison with such bounds
for λ dependent on the Riemann hypothesis, since if this were true the distinction between Λ
and λ would be nugatory. Of course Λ ≥ λ and the equality holds if the Riemann hypothesis
is true. Hall [23] used a Wirtinger-type inequality of Beesack and proved that

Λ ≥
(
105
4

)1/4

= 2.2635. (1.27)

In [25]Hall proved a Wirtinger inequality and used the moment

∫T

0
Z4(t)dt =

1
2π2

T log4(t) +O
(
T log3

)
, (1.28)

due to Ingham [26], and the moments

∫T

0

(
Z′(t)

)4
dt =

1
1120π2

T log8(t) +O
(
T log7

)
,

∫T

0
Z2(t)

(
Z′(t)

)2
dt =

1
120π2

T log6(t) +O
(
T log5

)
,

(1.29)

due to Conrey [27], and obtained

Λ ≥
√

11
2

= 2.3452. (1.30)

Hall [24] proved a new generalized Wirtinger-type inequality by using the calculus of
variation and obtained a new value of Λ which is given by

Λ ≥
√

7533
901

= 2.8915. (1.31)

Hall [28] employed the generalized Wirtinger inequality obtained in [24], simplified the
calculus used in [24] and converted the problem into one of the classical theory of equations
involving Jacobi-Schur functions. Assuming that the moments in (1.9) are correctly predicted
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by RMT, Hall [28] proved that

Λ(4) ≥ 3.392272 . . . , Λ(5) ≥ 3.858851 . . . , Λ(5) ≥ 4.2981467 . . . . (1.32)

In [29] the authors applied a technique involving the comparison of the continuous global
average with local average obtained from the discrete average to a problem of gaps between
the zeros of zeta-function assuming the Riemann hypothesis. Using this approach, which
takes only zeros on the critical line into account, the authors computed similar bounds under
assumption of the Riemann hypothesis when (1.9) holds. They then showed that for fixed
positive integer r

(
γn+r − γn

) ≥ θ

(
2πr
log γn

)
, (1.33)

holds for any θ ≤ 4k/πre for more than c(log T)−4k
2
proportion of the zeros γn ∈ [0, T] with

a computable constant c = c(k, θ, r).
Hall [13] developed the technique used in [28] and proved that

Λ(7) ≥ 4.215007. (1.34)

The improvement of this value as obtained in [13] is given by

Λ(7) ≥ 4.71474396 . . . . (1.35)

In this paper, first we apply some well-known Wirtinger-type inequalities and the
moments of the HardyZ-function and themoments of its derivative to establish some explicit
formulas for Λ(k). Using the values of bk and ck, we establish some lower bounds for Λ(15)
which improves the last value of Λ(7). In particular it is obtained that Λ(15) ≥ 6.1392 which
means that consecutive nontrivial zeros often differ by at least 6.1392 times the average
spacing. To the best of the author knowledge the last value obtained for Λ in the literature is
the value obtained by Hall in (1.35) and nothing is known regarding Λ(k) for k ≥ 8.

2. Main Results

In this section, we establish some explicit formulas for Λ(k) and by using the same explicit
values of bk and ck we establish new lower bounds for Λ(15). The explicit values of bk using
the formula

bk :=
k−1∏

j=0

j!
(
j + k

)
!
, (2.1)
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are calculated in the following for k = 1, 2, . . . , 15:

b1 = 1, b2 =
1
223

, b3 =
1

26335
,

b4 =
1

21235537
, b5 =

1
220395573

,

b6 =
1

230315577511
, b7 =

1
242321597711313

,

b8 =
1

25632851279115133
, b9 =

1
27233651671111713517

,

b10 =
1

29034452071311913717319
,

b11 =
1

21103535247161111139175193
,

b12 =
1

21323635287201113131117719523
,

b13 =
1

215637353472411151313179197233
,

b14 =
1

2182386542728111713151711199235
,

b15 =
1

22103102550732111913171713191123729
.

(2.2)

The explicit values of the parameter ck that has been determined by Conrey et al. [4] for
k = 1, 2, . . . , 15 are given in the following:

c1 =
1

22 · 3 , c2 =
1

26 · 3 · 5 · 7 , c3 =
1

212 · 32 · 52 · 72 · 11 , c4 =
31

220 · 310 · 54 · 72 · 11 · 13 ,

c5 =
227

230 · 312 · 56 · 74 · 11 · 132 · 17 · 19 , c6 =
67 · 1999

242 · 319 · 59 · 76 · 113 · 133 · 17 · 19 · 23 ,

c7 =
43 · 46663

256 · 328 · 513 · 78 · 114 · 133 · 172 · 192 · 23 ,

c8 =
46743947

272 · 334 · 516 · 711 · 116 · 134 · 173 · 192 · 23 · 29 · 31 ,

c9 =
19583 · 16249

290 · 342 · 521 · 714 · 118 · 136 · 173 · 193 · 232 · 29 · 31 ,

c10 =
3156627824489

2110 · 355 · 525 · 717 · 1110 · 138 · 175 · 194 · 233 · 29 · 31 · 37 ,

c11 =
59 · 11332613 · 33391

2132 · 363 · 531 · 718 · 1112 · 1310 · 175 · 195 · 234 · 292 · 312 · 37 · 41 · 43 ,
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c12 =
241 · 251799899121593

2156 · 375 · 537 · 723 · 1115 · 1312 · 178 · 197 · 234 · 293 · 312 · 41 · 43 · 47 ,

c13 =
285533 · 37408704134429

2182 · 390 · 542 · 728 · 1117 · 1314 · 1710 · 198 · 235 · 293 · 313 · 372 · 41 · 43 · 47 ,

c14 =
197 · 1462253323 · 6616773091

2210 · 3100 · 550 · 731 · 1120 · 1317 · 1712 · 1910 · 237 · 294 · 314 · 372 · 41 · 43 · 47 · 53 ,

c15 =
1625537582517468726519545837

2240 · 3117 · 557 · 737 · 1122 · 1319 · 1714 · 1911 · 239 · 295 · 315 · 373 · 412 · 432 · 47 · 53 · 59 .
(2.3)

Now, we are in a position to prove our first results in this section which gives an explicit
formula of the gaps between the zeros of the Riemann zeta-function. This will be proved by
applying an inequality due to Agarwal and Pang [30].

Theorem 2.1. Assuming the Riemann hypothesis, one has

Λ(k) ≥ 1
2π

(
bk
ck

2Γ(2k + 1)
Γ2((2k + 1)/2)

)1/2k

. (2.4)

Proof. To prove this theorem, we employ the inequality

∫π

0

(
x′(t)

)2k
dt ≥ 2Γ(2k + 1)

π2kΓ2((2k + 1)/2)

∫π

0
x2k(t)dt, for k ≥ 1, (2.5)

with x(t) ∈ C1[0, π] and x(0) = x(π) = 0, that has been proved by Agarwal and Pang [30].
As in [25] by a suitable linear transformation, we can deduce from (2.5) that if x(t) ∈ C1[a, b]
and x(a) = x(b) = 0, then

∫b

a

(
b − a

π

)2k(
x′(t)

)2k
dt ≥ 2Γ(2k + 1)

π2kΓ2((2k + 1)/2)

∫b

a

x2k(t)dt, for k ≥ 1. (2.6)

Now, we follow the proof of [24] and supposing that tl is the first zero of Z(t) not less than T
and tm the last zero not greater than 2T . Suppose further that for l ≤ n < m, we have

Ln = tn+1 − tn ≤ 2πκ
log T

, (2.7)

and apply the inequality (2.6), to obtain

∫ tn+1

tn

[(
Ln

π

)2k(
Z′(t)

)2k − 2Γ(2k + 1)
π2kΓ2((2k + 1)/2)

(Z(t))2k
]
dt ≥ 0. (2.8)
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Since the inequality remains true if we replace Ln/π by 2κ/ log T , we have

∫ tn+1

tn

[(
2κ

log T

)2k(
Z′(t)

)2k − 2Γ(2k + 1)
π2kΓ2((2k + 1)/2)

(Z(t))2k
]
dt ≥ 0. (2.9)

Summing (2.9) over n, applying (1.7), (1.12) and as in [24], we obtain

a(k)ck
(

2κ
log T

)2k

T
(
log T

)k2+2k − 2a(k)bkΓ(2k + 1)
π2kΓ2((2k + 1)/2)

T
(
log T

)k2

=
(
a(k)ckκ2k

(
22k

)
− 2a(k)bkΓ(2k + 1)
π2kΓ2((2k + 1)/2)

)
T
(
log T

)k2

≥ O
(
T logk

2
T
)
,

(2.10)

whence

κ2k ≥ a(k)bk
22ka(k)ck

2Γ(2k + 1)
π2kΓ2((2k + 1)/2)

=
bk

22kck

2Γ(2k + 1)
π2kΓ2((2k + 1)/2)

(as T −→ ∞). (2.11)

This implies that

Λ2k(k) ≥ bk
22kck

2Γ(2k + 1)
π2kΓ2((2k + 1)/2)

, (2.12)

and then we obtain the desired inequality (2.1). The proof is complete.

Using the values of bk and ck and (2.1) we have the new lower values for Λ(k) for
k = 1, 2, . . . , 15 in Table 1.

One can easily see that the value of Λ(7) in Table 1 does not improve the lower bound
in (1.35) due to Hall, but the the approach that we used is simple and depends only on a
well-known Wirtinger-type inequality and the asymptotic formulas of the moments. In the
following, we employ a different inequality due to Brnetić and Pečarić [31] and establish a
new explicit formula for Λ(k) and then use it to find new lower bounds.

Theorem 2.2. Assuming the Riemann hypothesis, one has

Λ(k) ≥ 1
2π

(
bk
ck

1
I(k)

)1/2k

, (2.13)

where Ik is defined by

I(k) :=
∫1

0

1
(
t1−2k + (1 − t)1−2k

)dt. (2.14)
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Table 1

Λ(1) Λ(2) Λ(3) Λ(4) Λ(5)
1.2442 1.7675 2.2265 2.6544 3.0545
Λ(6) Λ(7) Λ(8) Λ(9) Λ(10)
3.4259 3.7676 4.0806 4.3681 4.6342
Λ(11) Λ(12) Λ(13) Λ(14) Λ(15)
4.8827 5.1169 5.3393 5.5515 5.7550

Table 2

I(1) I(2) I(3) I(4) I(5)

16 667
100 000

2863
125000

19 581
5000 000

743
1000 000

14 961
100 000 000

I(6) I(7) I(8) I(9) I(10)

15 653
500 000 000

16 823
2500 000 000

7377
5000 000 000

8211
25000 000 000

37 001
500 000 000 000

I(11) I(12) I(13) I(14) I(15)

8419
500 000 000 000

19 311
5000 000 000 000

89 199
100 000 000 000 000

20 721
100 000 000 000 000

48 377
1000 000 000 000 000

Proof. To prove this theorem, we apply the inequality

∫π

0

(
x′(t)

)2k
dt ≥ 1

π2kI(k)

∫π

0
x2k(t)dt, for k ≥ 1, (2.15)

that has been proved by Brnetić and Pečarić [31], where x(t) is continuous function on [0, π]
with x(0) = x(π) = 0. Proceeding as in the proof of Theorem 2.1 and employing (2.15), we
may have

κ2k ≥ a(k)bk
22ka(k)ck

1
π2kI(k)

=
bk

22kck

1
π2kI(k)

(as T −→ ∞). (2.16)

This implies that

Λ2k(k) ≥ bk
22kck

1
π2kI(k)

. (2.17)

which is the desired inequality (2.13). The proof is complete.

To find the new lower bounds for Λ(k) we need the values of I(k) for k = 1, . . . , 15.
These values are calculated numerically in Table 2.

Using these values and the values of bk,ck, and the explicit formula (2.13)we have the
new lower bounds for Λ(k) in Table 3.
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Table 3

Λ(1) Λ(2) Λ(3) Λ(4) Λ(5)
1.3505 1.9902 2.4905 2.9389 3.3508
Λ(6) Λ(7) Λ(8) Λ(9) Λ(10)
3.7287 4.0736 4.3875 4.6742 4.9384
Λ(11) Λ(12) Λ(13) Λ(14) Λ(15)
5.1845 5.4159 5.6353 5.8444 6.0449

We note from Table 3 that the value of Λ(15) improves the value Λ(7) that has been
obtained by Hall.

Finally, in the following we will employ an inequality to Beesack [32, page 59] and
establish a new explicit formula for Λ(k) and use it to find new values of its lower bounds.

Theorem 2.3. Assuming the Riemann hypothesis, one has

Λ(k) ≥ 1
2k sin(π/2k)

(
(2k − 1)

bk
ck

)1/2k

. (2.18)

Proof. To prove this theorem, we apply the inequality

∫π

0

(
x′(t)

)2k
dt ≥ 2k − 1

(k sin(π/2k))2k

∫π

0
x2k(t)dt, for k ≥ 1, (2.19)

that has been proved by Beesack [32, page 59], where x(t) is continuous function on [0, π]
with x(0) = x(π) = 0. Proceeding as in Theorem 2.1 by using (2.19), we may have

κ2k ≥ a(k)bk
22ka(k)ck

2k − 1

(k sin(π/2k))2k
=

bk
22kck

2k − 1

(k sin(π/2k))2k
(as T −→ ∞). (2.20)

This implies that

Λ2k(k) ≥ bk
22kck

2k − 1

(k sin(π/2k))2k
, (2.21)

which is the desired inequity (2.18). The proof is complete.

Using these values and the values of bk,ck, and the explicit formula in (2.18) we have
the new lower bounds for Λ(k) in Table 4.

We note from Table 4, that the values of Λ(k) for k = 1, . . . , 7 are compatible with the
values of Λ(k) for k = 1, . . . , 7 that has been obtained by Hall [13, Table 1(i)] and since there
is no explicit value of H(h, k) for h, k ≥ 8, to obtain the values of Λ(k) for k ≥ 8 the author in
[13] stopped the estimation for Λ(k) for k ≥ 8.
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Table 4

Λ(1) Λ(2) Λ(3) Λ(4) Λ(5)
1.7321 2.2635 2.7080 3.1257 3.5177
Λ(6) Λ(7) Λ(8) Λ(9) Λ(10)
3.8814 4.215 4.5196 4.7985 5.0560
Λ(11) Λ(12) Λ(13) Λ(14) Λ(15)
5.2962 5.5225 5.7373 5.9424 6.1392

We notice that the calculations can be continued as above just if one knows the explicit
values of ck for k ≥ 16 where the values

bk =
k−1∏

j=0

j!
(
j + k

)
!

(2.22)

are easy to calculate. Note that the values of ck that we have used in this paper are adapted
from the paper by Conrey et al. [4]. It is clear that the values of Λ(k) are increasing with the
increase of k and this may help in proving the conjecture of the distance between of the zeros
of the Riemann zeta-function.
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