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We consider a linear programming problem in which the right-hand side vector depends on
multiple parameters. We study the characters of the optimal value function and the critical regions
based on the concept of the optimal partition. We show that the domain of the optimal value
function f can be decomposed into finitely many subsets with disjoint relative interiors, which is
different from the result based on the concept of the optimal basis. And any directional derivative
of f at any point can be computed by solving a linear programming problemwhen only an optimal
solution is available at the point.

1. Introduction

Parametric and sensitivity analyses are classic subject in linear programming problems. They
are of great importance in the analysis of practical linear models. Almost any textbook
includes a section about them and many commercial optimization package offer an option
to perform postoptimal analysis. Over the years we have learned to use an optimal basic
solution to perform parametric and sensitivity analyses. However, this approach has led
to the existing misuse of parametric optimization in commercial packages [1]. This misuse
is of course a shortcoming of the packages and by no means a shortcoming in the model
existing theoretical literature. In [2–4], an alternative optimal partition approach to one-
parameter linear programming and sensitivity analysis was proposed, which is based on the
concept of an optimal partition. The optimal partition corresponding to a pair of primal-dual
strictly complementary optimal solutions is uniquely determined (unlike the optimal basis).
The approach has the advantage that contains the information needed to defined the local
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behavior of the optimal solutions and the optimal objective function value of a parametric
linear programming, and avoids any misunderstanding. Goldfarb and Scheinberg [5] extend
the optimal partition approach to one-parameter semidefinite programming and Yildirim
[6] to one-parameter conic optimization. They investigate mainly the range of perturbations
for which the optimal partition remains constant. In this paper, we extend this approach to
multiple parameters linear programming. Our special attention is paid to investigate some
properties of the whole range of perturbations for which the given problem has a finite
optimal solution and the optimal value function on it.

The paper is organized as follows. In the next section we introduce the related
concepts. In Section 3 the property of optimal value function is discussed. In Section 4
the character of the critical region is described. In the last section our conclusions are
summarized.

2. Preliminaries

In this paper we deal with a problem (P) in standard format:

min
{
cTx : Ax = b, x ≥ 0

}
, (P)

and the dual problem (D) is written as

max
{
bTy : ATy + s = c, s ≥ 0

}
, (D)

where matrix A ∈ Rm×n with rank m, vector x, c, s ∈ Rn and y, b ∈ Rm. x ≥ 0 means that each
coordinate of x is greater than or equal to zero. We assume that (P) and (D) are both feasible
hereafter. The feasible regions of (P) and (D) are denoted, respectively, by

P := {x : Ax = b, x ≥ 0},

D :=
{(

y, s
)
: ATy + s = c, s ≥ 0

}
.

(2.1)

The optimal solutions set of (P) and (D) are denoted by P ∗ and D∗, respectively. We define
the index sets B and N by

B := {i : xi > 0 for somex ∈ P ∗},
N =:

{
i : si > 0 for some

(
y, s

) ∈ D∗}.
(2.2)

Then from [4], we have B ∩N = ∅ and B ∪N = {1, 2, . . . , n}. Thus B and N form a partition
of the full index set. This partition, denoted by π = (B,N), is called the optimal partition of
(P) and\or (D).

Given the optimal partition π = (B,N) of (P) and\or (D), the optimal solutions x
and (y, s) such that xi > 0, si = 0, for i ∈ B and xi = 0, si > 0, for i ∈ N are called
strictly complementary optimal solutions of (P) and (D), respectively. The unique strictly
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complementary optimal solutions x and (y, s) generated from the interior point method are
called the central solutions of (P) and (D), respectively.

It is well known that the optimal partition is uniquely determined by the central
solution and the converse is true. We have a one-to-one correspondence between the optimal
partition and the central solution. The following lemmas come from [4] and are stated
without proof.

Lemma 2.1. Let x∗ ∈ P ∗ and (y∗, s∗) ∈ D∗. Then

P ∗ =
{
x : x ∈ P, xTs∗ = 0

}
,

D∗ =
{(

y, s
)
:
(
y, s

) ∈ D, sTx∗ = 0
}
.

(2.3)

Lemma 2.2. Let π = (B,N) be the optimal partition of (P) and (D). Then

P ∗ = {x : x ∈ P, xN = 0},
D∗ =

{(
y, s

)
:
(
y, s

) ∈ D, sB = 0
}
,

(2.4)

where xN and sB refer to the restriction of vectors x and s to the coordinate setsN and B, respectively.

3. The Optimal Value Function

In this section we consider multiple parameters perturbation of b and investigate the effect of
change in b on the optimal value function.

Suppose that b(t) = b + Ht, where matrix H ∈ Rm×s with rank s, t ∈ Rs. Parametric
linear programming problems are defined as follows:

min
{
cTx : Ax = b(t), x ≥ 0

}
, (Pt)

max
{
b(t)Ty : ATy + s = c, s ≥ 0

}
. (Dt)

The feasible regions of (Pt) and (Dt) are denoted by Pt and Dt, and the optimal solutions set
by P ∗

t and D∗
t , respectively. The optimal value of (Pt) and (Dt) is denoted by f(t) which is

a function of the parameter t, with f(t) = −∞ if (Pt) is unbounded and (Dt) infeasible; and
f(t) = +∞ if (Dt) is unbounded and (Pt) infeasible. If (Pt) and (Dt) are both infeasible then
f(t) is undefined. The region, in which f(t) is finite, is called the domain of f , denoted byK.
By the Linear Programming theory, we have that f(t) is finite if and only if (Pt) and (Dt) are
both feasible. Thus

K = {t ∈ Rs : Pt /= ∅, Dt /= ∅},

f(t) = min
{
cTxt : t ∈ K,xt ∈ Pt

}
= max

{
b(t)Tyt : t ∈ K,

(
yt, st

) ∈ Dt

}
= cTx∗

t = b(t)Ty∗
t ,

(3.1)

where t ∈ K, x∗
t ∈ P ∗

t , and (y∗
t , s

∗
t ) ∈ D∗

t .
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To characterizeK, we use the following sets, The polyhedral convex set inRn is defined
as the intersection of finitely many closed half-spaces of Rn, that is, as the set of the form

{x ∈ Rn : Bx ≤ b}, (3.2)

where B ∈ Rp×n, b ∈ Rp. The polyhedral convex cone in Rn is defined as the set which is a
polyhedral convex set and a cone. It is clear that a set is a polyhedral convex cone if and only
if it can be expressed as the set of the form

{x ∈ Rn : Bx ≤ 0}, (3.3)

where B ∈ Rp×n.
Here is the assumption that (P0) and (D0) are both feasible. It follows that (Dt) is

feasible for all values of t. Therefore, the domain K of f consists of all t for which (Pt) is
feasible.

Theorem 3.1. The domain K of f is a polyhedral convex set in Rs.

Proof. Note that the domain K of f consists of all t for which (Pt) is feasible. (Pt) is feasible if
and only if b +Ht ∈ {Ax : x ≥ 0}. Since the set {Ax : x ≥ 0} is a polyhedral convex cone, it
may be represented in the form of {x ∈ Rm : Bx ≤ 0},where B ∈ Rp×m. Thus t ∈ K if and only
if B(b +Ht) = Bb + (BH)t ≤ 0. This means that

K = {t : (BH)t ≤ −Bb}, (3.4)

where BH ∈ Rp×s and -Bb ∈ Rp. The result now follows by the definition of the polyhedral
convex set.

It is convenient to introduce another notation. Let K be a convex subset of Rs. We
define a function f to be piecewise linear on K if there exist finitely many convex subsets
Ri, i = 1, 2, . . . , p of K such that K =

⋃p

i=1 Ri and f is an affine function on every Ri.

Theorem 3.2. The optimal value function f is continuous, convex, and piecewise linear on K.

Proof. By definition,

f(t) = max
{
b(t)Ty(t) :

(
y(t), s(t)

) ∈ Dt

}
. (3.5)

For each t ∈ K, due to the feasibilities of (Pt) and (Dt), we have P ∗
t /= ∅ and D∗

t /= ∅. Further,
there is a unique optimal partition of (Pt) and\or (Dt), and then a unique central solution
(y∗(t), s∗(t)) of (Dt). We may assume now that the maximum value is attained at the central
solution and write

f(t) = b(t)Ty∗(t). (3.6)
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Noting that the number of partition of the full index {1, 2, . . . , n} is finite and that there is a
unique optimal partition of (Dt) for any t ∈ K, we may define the index set Γ by

Γ :=
{
i : πi = (Bi,Ni) is an optimal partition for some (Dt) with t ∈ K

}
. (3.7)

It is obvious that Γ is a finite set. Due to the definition of (Dt), the feasible region of (Dt) is
constant when t varies. We have that Dt = D0 and (y∗(t), s∗(t)) ∈ D0 for all t. By Lemma 2.2,
we have that if central solutions (y∗(t1), s∗(t1)) and (y∗(t2), s∗(t2)) associate with same πi,
then these two central solutions are central solutions of (Dt1) and (Dt2) each other. Thus, we
may take a representative, say (yi, si), among all the central solutions associated with same
πi. Further, the optimal solution of (Dt) must be attained at some (yi, si) for any t ∈ K. The
set {(yi, si) : i ∈ Γ} is a finite subset of D0 clearly. We may write

f(t) = max
{
b(t)Tyi : i ∈ Γ

}
. (3.8)

For each i ∈ Γ, we have

b(t)Tyi = bTyi + (Ht)Tyi, (3.9)

which is an affine function of t. Thus f(t) is the maximum of a finite set of affine functions.
Let t1, t2 ∈ K and t = λt1 + (1 − λ)t2, where λ ∈ [0, 1]. Recalling that K is convex,

we have t ∈ K. By (3.8), there exist i1, i2, j ∈ Γ such that f(t1) = b(t1)Tyi1 , f(t
2) = b(t2)Tyi2 ,

f(t) = b(t)Tyj , and

f
(
t1
)
≥ b

(
t1
)T

yi, ∀i ∈ Γ,

f
(
t2
)
≥ b

(
t2
)T

yi, ∀i ∈ Γ.

(3.10)

Since b(t)Tyi is an affine function of t for each i ∈ Γ, we have

f
(
t
)
= b

(
t
)T

yj

= b
(
λt1 + (1 − λ)t2

)T
yj

= λb
(
t1
)T

yj + (1 − λ)b
(
t2
)T

yj

≤ λb
(
t1
)T

yi1 + (1 − λ)b
(
t2
)T

yi2

= λf
(
t1
)
+ (1 − λ)f

(
t2
)
.

(3.11)

We conclude that f is a convex function on K.
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For each i ∈ Γ, let

Ri =
{
t : f(t) = b(t)Tyi, t ∈ K

}
. (3.12)

Since, for any t ∈ K, there exists an i ∈ Γ such that f(t) = b(t)Tyi, we have K =
⋃

i∈Γ Ri. For
any t ∈ Ri, by (3.8), we obtain

b(t)Tyi − b(t)Tyj ≥ 0, j ∈ Γ, j /= i. (3.13)

This means that t ∈ Ei := {t : b(t)T (yi − yj) ≥ 0, for all j ∈ Γ, j /= i}. In turn, if t ∈ K and t ∈ Ei,
then f(t) is finite and f(t) = b(t)Tyi follows from the definition of f(t). Thus, we conclude
that Ri = Ei ∩K. Note that b(t)T (yi − yj) is an affine function of t for every j ∈ Γ (j /= i). So Ei

is a polyhedral convex set. By Theorem 3.1, Ri is a polyhedral convex set, of course a convex
set. Thus, f is an affine function on Ri. It follows that f is piecewise linear on K.

Let ε > 0. For each t0 ∈ K, since b(t)Tyi is continuous at the point t0 for every i ∈ Γ and
Γ is a finite set, there exists a positive number δ such that

b
(
t0
)T

yi − ε < b(t)Tyi < b
(
t0
)T

yi + ε (3.14)

for all i ∈ Γ and all points t in K with ‖t − t0‖ < δ. So from the inequalities above, we have

f
(
t0
)
− ε < f(t) < f

(
t0
)
+ ε (3.15)

for all points t inK with ‖t− t0‖ < δ. Thus, f is continuous at t0. It follows that f is continuous
on K.

Summarizing the above results, the proof of the theorem is completed.

From the arguments above, we have known that the domain K of f is a polyhedral
convex set and the union of finite polyhedral convex sets. To explore further the construction
properties of the domain K, we do the following. It is possible of course that the dimension
of Ri is less than the dimension of K. For this case, we have the result below.

Lemma 3.3. If dimRi < dimK, then K =
⋃

j∈Γ,j /= i Rj .

Proof. For any t0 ∈ Ri and natural number n, since dim{(t0 + (1/n)B)∩K} = dimK, (where B
is the Euclidean unit ball in Rs) thus there exists tn ∈ K with tn /∈Ri such that tn ∈ t0 + (1/n)B.
This means that t0 is the limit point of the sequence {tn} in

⋃
j∈Γ,j /= i Rj . As the set

⋃
j∈Γ,j /= i Rj is

closed, we have t0 ∈ ⋃
j∈Γ,j /= i Rj , as required.

We now define the new index set

Γ =
{
i : i ∈ Γ, dimRi = dimK

}
(3.16)
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and call Ri = {t : f(t) = b(t)Tyi, t ∈ K} with dimRi = dimK as a critical region of f . By
Lemma 3.3, we have K =

⋃
j∈Γ Rj , and Γ is a finite set clearly. The following result describes a

construction property of K.

Lemma 3.4. If Ri and Rj are two different critical regions of f , then riRi ∩ riRj = ∅.

Proof. To see this, we argue by contradiction. Suppose that there exists t0 ∈ K such that t0 ∈
riRi ∩ riRj. By affK = affRi = affRj , we may choose a positive number ε such that (t0 + εB)∩
(affK) ⊂ Ri and (t0 + εB) ∩ (affK) ⊂ Rj. For any t ∈ K, as (1 − λ)t0 + λt ∈ K ⊂ affK for any
number 0 ≤ λ ≤ 1, we may choose a number 0 ≤ λ0 ≤ 1 such that (1 − λ0)t0 + λ0t ∈ Ri and
(1 − λ0)t0 + λ0t ∈ Rj. Due to definitions of Ri and Rj , we have

f
(
(1 − λ0)t0 + λ0t

)
=
(
b +H

(
(1 − λ0)t0 + λ0t

))T
yi,

f
(
(1 − λ0)t0 + λ0t

)
=
(
b +H

(
(1 − λ0)t0 + λ0t

))T
yj ,

(3.17)

that is,

(
b +H

(
(1 − λ0)t0 + λ0t

))T
yi =

(
b +H

(
(1 − λ0)t0 + λ0t

))T
yj . (3.18)

Using (b +Ht0)Tyi = (b +Ht0)Tyj , we have (b +Ht)Tyi = (b +Ht)Tyj . Thus Ri = Rj follows
from definitions of them. This contradicts the supposition of Ri and Rj being different.

Summarizing the above results, we have the following consequence.

Theorem 3.5. Every critical region of f is a polyhedral convex set in Rs and the number of critical
regions is finite. The domain K of f can be expressed as the union of all critical regions. Different
critical regions have disjoint relative interiors.

4. The Optimal Solution Sets on Critical Regions

We established in the previous section that optimal value function f(t) is continuous, convex,
and piecewise linear and that the domainK and every critical regionRi are polyhedral convex
sets. In this section we will see some characters of optimal solution set at the points in some
critical region Ri. Before proceeding, we introduce several notations. Let K be a nonempty
convex subset of Rs and d ∈ Rs with d /= 0. We call d as an admissible direction ofK at point t
inK, ifK ∩ {t + λd : λ > 0}/= ∅. Let f be a convex function from Rs to [−∞,+∞], and let t be a
point where f is finite. The directional derivative of f at twith respect to a direction d (d /= 0)
is defined to be the limit

f ′(t;d) = lim
λ↓0

f(t + λd) − f(t)
λ

. (4.1)

If d is not an admissible direction of K at t, the directional derivative f ′(t;d)may be taken as
+∞.
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Theorem 4.1. Let Ri be a critical region of f . Then the dual optimal setD∗
t is constant (i.e., invariant)

over relative interior region riRi of Ri.

Proof. Let t1, t2 ∈ riRi and t1 /= t2. Since Ri is convex, there are two points t1 and t2 of Ri such
that t1, t2 are relative interiors of the line segment [t1, t2] included in Ri. The fact that f is
linear on Ri implies that f is linear on [t1, t2]. Supposing that g(λ) = f(λt2 + (1 − λ)t1), g(λ) is
a linear function on [0, 1]. Let λ ∈ (0, 1) be arbitrary and let (y, s) ∈ D∗

t
be arbitrary as well,

where t = λt2 + (1 − λ)t1. Since (y, s) is optimal for (Dt), we have

g
(
λ
)
= f

(
t
)
=
(
b +Ht

)T
y = bTy +

(
λHt2 +

(
1 − λ

)
Ht1

)T
y, (4.2)

and, since (y, s) is dual feasible for all t,

(
b +Ht1

)T
y ≤ f

(
t1
)
= g(0),

(
b +Ht2

)T
y ≤ f

(
t2
)
= g(1).

(4.3)

Hence we find that

g(1) − g
(
λ
)
≥
(
1 − λ

)(
H
(
t2 − t1

))T
y,

g
(
λ
)
− g(0) ≤ λ

(
H
(
t2 − t1

))T
y.

(4.4)

The linearity of g on [0, 1] implies that

g(1) − g
(
λ
)

1 − λ
=

g
(
λ
)
− g(0)

λ
. (4.5)

Hence, the last two inequalities are equalities. This means that the derivative of g with respect
to λ on the interval (0, 1) satisfies

g ′(λ) =
(
H
(
t2 − t1

))T
y, ∀λ ∈ (0, 1), (4.6)

or equivalently

g(λ) = g(0) + λg ′(λ) = bTy +
(
Ht1

)T
y + λ

(
H
(
t2 − t1

))T
y

= bTy +
(
H
(
λt2 + (1 − λ)t1

))T
y = b(t)Ty, ∀λ ∈ (0, 1),

(4.7)

where t = λt2 + (1 − λ)t1. We conclude that y is optimal for any (Dt) with t being an interior
of the line segment [t1, t2]. Since λ and y are arbitrary, it follows that D∗

t1
= D∗

t2
. The theorem

is proved.
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Corollary 4.2. One has

f(t) = bTy + (Ht)Ty, f ′(t;d) =
(
HTy

)T
d, ∀t ∈ Ri, (4.8)

where d is an admissible direction of Ri at t, (y, s) is in D∗
t
, and t is in riRi.

Proof. The above theorem reveals that D∗
t1
= D∗

t2
for all t1, t2 ∈ riRi. This implies that

f(t) = b(t)Ty = bTy + (Ht)Ty, ∀t ∈ riRi, ∀
(
y, s

) ∈ D∗
t . (4.9)

By continuity of f , we conclude that

f(t) = b(t)Ty = bTy + (Ht)Ty, ∀t ∈ Ri, ∀
(
y, s

) ∈ D∗
t
for some t ∈ riRi. (4.10)

Moreover, if d is an admissible direction of Ri at t, we have

f ′(t;d) =
(
HTy

)T
d, ∀(y, s) ∈ D∗

t
for some t ∈ riRi, (4.11)

as required.

Corollary 4.3. Let t be an arbitrary relative interior of Ri, and let t be an arbitrary boundary point of
Ri. Then D∗

t
⊆ D∗

t .

Proof. Let (y, s) ∈ D∗
t
. Since (y, s) is dual feasible for all t, (y, s) ∈ Dt. Using t ∈ riRi and

(4.10), we have f(t) = b(t)Ty. That is, (y, s) ∈ D∗
t . The proof is completed.

From the argument of the theorem above, we have the following consequences.

Corollary 4.4. If f(t) is linear on the line segment [t1, t2], where t1 /= t2, then the dual optimal setD∗
t

is constant for t ∈ (t1, t2) and the slope of f(t) on (t1, t2) is equal to (H(t2− t1))Ty∗ for any t ∈ (t1, t2)
and any (y∗, s∗) ∈ D∗

t .

Theorem 4.5. Let t1 and t2 be any two different points of the domain K of f such that D∗
t1
∩D∗

t2 /= ∅.
Then D∗

t is constant for all t ∈ (t1, t2) and f(t) is linear on the line segment [t1, t2].

Proof. Let (y, s) ∈ D∗
t1
∩D∗

t2
. Then

f(t1) = b(t1)Ty, f(t2) = b(t2)Ty. (4.12)

Consider the following linear function h:

h(t) = b(t)Ty = (b +Ht)Ty, ∀t ∈ [t1, t2]. (4.13)
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h coincides with f at t1 and t2. Since f(t) is convex, this implies that

f(t) ≤ h(t), ∀t ∈ [t1, t2]. (4.14)

Now (y, s) is dual feasible for all t ∈ [t1, t2]. Since f(t) is the optimal value of (Dt), it follows
that

f(t) ≥ b(t)Ty = (b +Ht)Ty = h(t). (4.15)

Therefore, f coincides with h on [t1, t2]. As a consequence, f is linear on [t1, t2]. By
Corollary 4.4, we have that D∗

t is constant on (t1, t2), and we complete the proof.

Theorem 4.6. If Ri and Rj are any two different critical regions, then

D∗
ti
∩D∗

tj
= ∅, ∀ti ∈ riRi, ∀tj ∈ riRj. (4.16)

Proof. Let πi = (Bi,Ni) and πj = (Bj,Nj) be the optimal partitions of (Dti) and (Dtj ), (yi, si)
and (yj, sj) be the central solutions, respectively. By Lemma 2.2, we have

D∗
ti
=
{(

y, s
)
:
(
y, s

) ∈ Dti , sBi = 0
}
,

D∗
tj
=
{(

y, s
)
:
(
y, s

) ∈ Dtj , sBj = 0
}
.

(4.17)

Bi /=Bj and ti /= tj follow from Ri and Rj being different. Further, either (si)Bj /= 0 or (sj)Bi /= 0
holds, where (si)Bj

and (sj)Bi
are the restrictions of si and sj to the coordinate sets Bj and Bi,

respectively. Otherwise, by the definition of the central solution, (si)Bi
= 0, (si)Ni

> 0, (sj)Bj
=

0, (sj)Bj
> 0, (si)Bj

= 0, and (sj)Bi
= 0 hold simultaneously. This implies that Bj ⊆ Bi and

Bi ⊆ Bj , which contradicts Bi /=Bj .
Since dimRi = dimRj = dimK, we have affRi = affRj = affK. The inclusive relation

{t : t = λti + (1 − λ)tj , λ ∈ R} ⊂ affRi = affRj follows from ti, tj ∈ K, ti /= tj . Due to ti and
tj being the relative interiors of Ri and Rj separately, there exists a number λ0 > 1 such that
ti = λ0ti + (1 − λ0)tj and tj = λ0tj + (1 − λ0)ti are relative interiors of Ri and Rj separately. By
Theorem 4.1, it holds that D∗

ti
= D∗

ti
and D∗

tj
= D∗

tj
. In order to prove the theorem, we now

argue by contradiction. IfD∗
ti
∩D∗

tj /= ∅, thenD∗
ti
∩D∗

tj
/= ∅. Using Theorem 4.5 and ti, tj ∈ (ti, tj),

we conclude that D∗
ti
= D∗

tj
. Hence we have (yi, si) ∈ D∗

tj
and (yj, sj) ∈ D∗

ti
. This contradicts

the definition above of D∗
ti
if (sj)Bi /= 0 or the definition above of D∗

tj
if (si)Bj /= 0. The theorem

is proved.

Theorem 4.7. Let t be an arbitrary point of K and x∗ an arbitrary optimal solution of (Pt). Then for
any direction d (d /= 0),

f ′
(
t;d

)
= max

y,s

{
(Hd)Ty :

(
y, s

) ∈ D∗
t

}

= max
y,s

{
(Hd)Ty : ATy + s = c, s ≥ 0, sTx∗ = 0

}
.

(4.18)
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Proof. The second equality obviously holds owing to

D∗
t
=
{(

y, s
)
: ATy + s = c, s ≥ 0, sTx∗ = 0

}
. (4.19)

Below we proceed by considering two cases separately.

Case 1. One has K ∩ {t + λd : λ > 0}/= ∅.
Since K is the union of finitely many critical regions and each of them is polyhedral,

there is certainly a critical region Ri such that [t, t + λd] ⊆ Ri, where λ > 0. Let (y, s) ∈ D∗
t̃
,

where t̃ ∈ riRi. From Corollary 4.2, we have

f(t) = (b +Ht)Ty, ∀t ∈ Ri. (4.20)

By the definition of f ′(t;d), we easily obtain that

f ′
(
t;d

)
= (Hd)Ty. (4.21)

Since (y, s) is optimal for (Dt+λd) and any (y, s) ∈ D∗
t
is feasible for (Dt+λd) with respect to

λ ∈ [0, λ], so we have

(
b +H

(
t + λd

))T
y ≥

(
b +H

(
t + λd

))T
y, ∀(y, s) ∈ D∗

t
. (4.22)

We also have (y, s) ∈ D∗
t
. Therefore

(
b +Ht

)T
y =

(
b +Ht

)T
y, ∀(y, s) ∈ D∗

t
. (4.23)

Subtracting both sides of this equality from the corresponding sides in the last inequality, we
get

λ(Hd)Ty ≥ λ(Hd)Ty, ∀(y, s) ∈ D∗
t
. (4.24)

Dividing both sides by the positive number λ, we obtain

(Hd)Ty ≥ (Hd)Ty, ∀(y, s) ∈ D∗
t
, (4.25)

thus proving that

f ′
(
t;d

)
= max

y,s

{
(Hd)Ty :

(
y, s

) ∈ D∗
t

}
= (Hd)Ty. (4.26)

The theorem follows in this case.
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Case 2. One has K ∩ {t + λd : λ > 0} = ∅.
In this case, we point out first that (Pt+λd) is infeasible for any positive number λ and

f ′(t;d) = +∞. Since (Pt) has an optimal solution x∗, (Dt) has an optimal solution as well. This
implies that the problem

max
y,s

{
(Hd)Ty : ATy + s = c, s ≥ 0, sTx∗ = 0

}
(4.27)

is feasible. Hence, if the problem is not unbounded, the problem and its dual have optimal
solutions. The dual problem is given by

min
ξ,λ

{
cTξ : Aξ = Hd, ξ + λx∗ ≥ 0

}
. (4.28)

We conclude that there are a vector ξ ∈ Rn and a real number λ such thatAξ = Hd, ξ+λx∗ ≥ 0.
This implies that we cannot have ξi < 0 and x∗

i = 0 for 1 ≤ i ≤ n. In other words,

x∗
i = 0 =⇒ ξi ≥ 0, ∀1 ≤ i ≤ n. (4.29)

Therefore, there is a positive number ε such that x := x∗ + εξ ≥ 0. Now we have

Ax = A(x∗ + εξ) = Ax∗ + εAξ = b +Ht + εHd = b +H
(
t + εd

)
. (4.30)

Thus we find that (Pt+εd) admits x as a feasible point. This contradicts the fact that (Pt+λd) is
infeasible for any positive number λ. We conclude that the problem is unbounded, proving
the theorem.

5. Conclusions

Using the properties of the optimal partition, we give some description to a multiple
parameters linear programming problem. The results in Section 3 show the geometric
structures of the optimal value function and its domain. In Section 4, we point out that
the character of the domain K of f is completely decided by the structure of dual optimal
solutions and the directional derivative of f at any point can be obtained by solving a linear
programming problem. Similarly, we may study multiple parameters perturbation of the cost
coefficient vector problem or other parameter values problem. Our results maybe become as
a theoretical foundation of summarizing critical regions.

Acknowledgments

This research is partly supported by the Hong Kong Polytechnic University Research Grant
no. J-BB7D and Taizhou University Research Grant no. 2010PY11.



Journal of Inequalities and Applications 13

References

[1] B. Jansen, J. J. De Jong, C. Roos, and T. Terlaky, “Sensitivity analysis in linear programming: just be
careful!,” European Journal of Operational Research, vol. 101, no. 1, pp. 15–28, 1997.

[2] I. Adler and R. D. C. Monteiro, “A geometric view of parametric linear programming,” Algorithmica,
vol. 8, no. 2, pp. 161–176, 1992.

[3] B. Jansen, K. Roos, and T. Terlaky, “An interior point method approach to post-optimal and parametric
analysis in linear programming,” in Proceedings of the Workshop Interior Point Methods, Budapest,
Hungary, January 1993.

[4] C. Roos, T. Terlaky, and J.-Ph. Vial, Theory and Algorithms for Linear Optimization: An Interior Point
Approach, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons,
Chichester, UK, 1997.

[5] D. Goldfarb and K. Scheinberg, “On parametric semidefinite programming,” Applied Numerical
Mathematics, vol. 29, no. 3, pp. 361–377, 1999.

[6] E. A. Yildirim, “Unifying optimal partition approach to sensitivity analysis in conic optimization,”
Journal of Optimization Theory and Applications, vol. 122, no. 2, pp. 405–423, 2004.


	1. Introduction
	2. Preliminaries
	3. The Optimal Value Function
	4. The Optimal Solution Sets on Critical Regions
	5. Conclusions
	Acknowledgments
	References

