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We investigate the generalized Hyers-Ulam-Rassias stability problem in quasi-β-normed spaces
and then the stability by using a subadditive function for the generalized quartic function f : X →
Y such that f(ax+by)+f(ax−by)−2a2(a2−b2)f(x) = (ab)2[f(x+y)+f(x−y)]−2b2(a2−b2)f(y),
where a/= 0, b /= 0, a ± b /= 0, for all x, y ∈ X.

1. Introduction

One of the interesting questions concerning the stability problems of functional equations
is as follows: when is it true that a mapping satisfying a functional equation approximately
must be close to the solution of the given functional equation? Such an idea was suggested
in 1940 by Ulam [1] as follows. Let G1 be a group and let G2 be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the
inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 → G2

with d(h(x),H(x)) < ε for all x ∈ G1? In other words, we are looking for situations when
the homomorphisms are stable; that is, if a mapping is almost a homomorphism, then there
exists a true homomorphism near it. In 1941, Hyers [2] considered the case of approximately
additive mappings in Banach spaces and satisfying the well-known weak Hyers inequality
controlled by a positive constant. The famous Hyers stability result that appeared in [2]
was generalized in the stability involving a sum of powers of norms by Aoki [3]. In 1978,
Rassias [4] provided a generalization of Hyers Theorem which allows the Cauchy difference
to be unbounded. During the last decades, stability problems of various functional equations
have been extensively studied and generalized by a number of authors [5–10]. In particular,
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Rassias [11] introduced the quartic functional equation
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(
x − y
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+ 24f
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. (1.1)

It is easy to see that f(x) = x4 is a solution of (1.1) by virtue of the identity

(
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)4 + x4 = 4
(
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)4 + 4
(
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)4 + 24y4. (1.2)

For this reason, (1.1) is called a quartic functional equation. Also Chung and Sahoo
[12] determined the general solution of (1.1) without assuming any regularity conditions on
the unknown function. In fact, they proved that the function f : R → R is a solution of (1.1)
if and only if f(x) = A(x, x, x, x), where the function A : R4 → R is symmetric and additive
in each variable. Lee and Chung [13] introduced a quartic functional equation as follows:
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(1.3)

for fixed integer a with a/= 0,±1.
Let β be a real number with 0 < β ≤ 1 and let K be either R or C. We will consider the

definition and some preliminary results of a quasi-β-norm on a linear space.

Definition 1.1. Let X be a linear space over a field K. A quasi- β-norm ‖ · ‖ is a real-valued
function on X satisfying the followings.

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ|β · ‖x‖ for all λ ∈ K and all x ∈ X.

(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi- β-normed space if ‖ · ‖ is a quasi-β-norm on X. The
smallest possibleK is called the modulus of concavity of ‖·‖.A quasi-Banach space is a complete
quasi-β-normed space.

A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if ‖x + y‖p ≤ ‖x‖p + ‖y‖p, for all
x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach space; see [14–16].

In this paper, we consider the following the generalized quartic functional equation:
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(1.4)

for fixed integers a and b such that a/= 0, b /= 0, a ± b /= 0, for all x, y ∈ X. We investigate the
generalized Hyers-Ulam-Rassias stability problem in quasi-β-normed spaces and then the
stability by using a subadditive function for the generalized quartic function f : X → Y
satisfying (1.4).

For the same reason as (1.1) and (1.2), we call (1.4) generalized quartic functional
equation.
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2. Quartic Functional Equations

Let X,Y be real vector spaces. In this section, we will investigate that the functional equation
(1.1) is equivalent to the presented functional equation (1.4).

Lemma 2.1. A mapping f : X → Y satisfies the functional equation (1.1) if and only if f satisfies
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where a/= 0, a /= ± 1, for all x, y ∈ X.

Proof. We will show it by induction on a. Assume that it holds for all less than equal a. Now,
letting x be x + y in (2.1),

f
(
x + (a + 1)y

)
+ f

(
x − (a − 1)y

)
+ 2

(
a2 − 1

)
f
(
x + y

)

= a2[f
(
x + 2y

)
+ f(x)

]
+ 2a2

(
a2 − 1

)
f
(
y
)
,

(2.2)

and also replacing x by x − y in (2.1),
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for all x, y ∈ X. Adding (2.2) and (2.3), we have
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for all x, y ∈ X. By induction steps, we have
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Hence we have
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for all x, y ∈ X. Thus they are equivalent.

Theorem 2.2. If a mapping f : X → Y satisfies the functional equation (1.4), then f satisfies the
functional equation (2.1).

Proof. By letting x = y = 0 in (2.1), we have 2a2(a2−1)f(0) = 0. Since a/= 0 and a/= ±1, f(0) = 0.
Putting x = 0 in (2.1),
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Now, replacing y by −y in (2.7),
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By (2.7) and (2.8), we have 2a2(a2 − 1)f(y) = 2a2(a2 − 1)f(−y), that is, f(y) = f(−y). Hence
f is even. This implies that 2f(ay) = 2a2f(y) + 2a2(a2 − 1)f(y), that is, f(ay) = a4f(y), for
all y ∈ X. Now, we will show that (2.1) implies (1.4). By letting x = bx in (2.1), we have
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Switching x and y in the previous equation,
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By (2.1)with b, the previous equation implies that
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Hence we have
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for all x, y ∈ X.

Corollary 2.3. If a mapping f : X → Y satisfies the functional equation (1.1), then f satisfies the
functional equation (1.4).

3. Stabilities

Throughout this section, letX be a quasi-β-normed space and let Y be a quasi-β-Banach space
with a quasi-β-norm ‖ · ‖Y . Let K be the modulus of concavity of ‖ · ‖Y . We will investigate
the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.4). After
then we will study the stability by using a subadditive function. For a given mapping f :
X → Y and all fixed integers a and b with a/= 0, a /= 0, a ± b /= 0, let
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that is,
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1
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for all x, y ∈ X. By taking s → ∞, the definition of Q implies that Q satisfies (1.4) for all
x, y ∈ X; that is, Q is the generalized quartic mapping. Also, the inequality (3.8) implies the
inequality (3.3). Now, it remains to show the uniqueness. Assume that there exists T : X → Y
satisfying (1.4) and (3.3). It is easy to show that for all x ∈ X, T(asx) = a4sT(x) and Q(asx) =
a4sQ(x), as in the proof of Theorem 2.2. Then

‖T(x) −Q(x)‖Y =
(

1
a4β

)s

‖T(asx) −Q(asx)‖Y

≤
(

1
a4β

)s

K
(∥∥T(asx) − f(asx)

∥
∥
Y +

∥
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∥
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φ
(
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,

(3.12)

for all x ∈ X. By letting s → ∞,we immediately have the uniqueness of Q.

Theorem 3.2. Suppose that there exists a mapping φ : X2 → R
+ := [0,∞) for which a mapping

f : X → Y satisfies f(0) = 0,

∥∥Df(x, y)
∥∥
Y ≤ φ

(
x, y

)
, (3.13)

and the series
∑∞

j=1 (a
4βK)jφ(a−jx, a−jy) converges for all x, y ∈ X. Then there exists a unique

generalized quartic mapping Q : X → Y which satisfies (2.1) and the inequality

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

2βa4β

∞∑

j=1

(
a4βK

)j
φ
(
a−jx, 0

)
, (3.14)

for all x ∈ X.

Proof. If x is replaced by (1/a)x in the inequality (3.5), then the proof follows from the proof
of Theorem 3.1.

Now we will recall a subadditive function and then investigate the stability under
the condition that the space Y is a (β, p)-Banach space. The basic definitions of subadditive
functions follow from [16].

A function φ : A → B having a domain A and a codomain (B,≤) that are both closed
under addition is called

(1) a subadditive function if φ(x + y) ≤ φ(x) + φ(y),

(2) a contractively subadditive function if there exists a constant L with 0 < L < 1 such
that φ(x + y) ≤ L(φ(x) + φ(y)),

(3) an expansively superadditive function if there exists a constant L with 0 < L < 1 such
that φ(x + y) ≥ (1/L)(φ(x) + φ(y)),

for all x, y ∈ A.
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Theorem 3.3. Suppose that there exists a mapping φ : X2 → R
+ := [0,∞) for which a mapping

f : X → Y satisfies f(0) = 0,
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)
, (3.15)

for all x, y ∈ X and the map φ is contractively subadditive with a constant L such that a1−4βL < 1.
Then there exists a unique generalized quartic mapping Q : X → Y which satisfies (1.4) and the
inequality

∥∥f(x) −Q(x)
∥∥
Y ≤ φ(x, 0)

2β p

√
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, (3.16)

for all x ∈ X.

Proof. By the inequalities (3.5) and (3.9) of the proof of Theorem 3.1, we have
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1
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,
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that is,

∥∥∥∥∥
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(
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)jp
, (3.18)

for all x ∈ X, and for all s and d with s < d. Hence {(1/a4s)f(asx)} is a Cauchy sequence in
the space Y. Thus we may define

Q(x) = lim
s→∞

1
a4s

f(asx), (3.19)
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for all x ∈ X. Now, we will show that the map Q : X → Y is a generalized quartic mapping.
Then

∥
∥DQ(x, y)

∥
∥p

Y = lim
s→∞

∥
∥Df(asx, asy)

∥
∥p

Y

a4βps

≤ lim
s→∞

φ
(
asx, asy

)p

a4βps

≤ lim
s→∞

φ
(
x, y

)p(
a1−4βL

)ps
= 0,

(3.20)

for all x ∈ X.Hence the mappingQ is a generalized quartic mapping. Note that the inequality
(3.18) implies the inequality (3.16) by letting s = 0 and taking d → ∞. Assume that there
exists T : X → Y satisfying (1.4) and (3.16). We know that T(asx) = a4sT(x), for all x ∈ X.
Then

∥∥∥∥T(x) −
(

1
a4

)s

f(asx)
∥∥∥∥

p

Y

=
(

1
a4β

)ps∥∥T(asx) − f(asx)
∥∥p

Y

≤
(

1
a4β

)ps φ(asx, 0)p

2βp
(
a4βp − (aL)p

)

≤
(
a1−4βL

)ps φ(x, 0)p

2βp
(
a4βp − (aL)p

) ,

(3.21)

that is,

∥∥∥∥T(x) −
(

1
a4

)s

f(asx)
∥∥∥∥
Y

≤
(
a1−4βL

)s φ(x, 0)

2β p

√(
a4βp − (aL)p

) , (3.22)

for all x ∈ X. By letting s → ∞,we immediately have the uniqueness of Q.

Theorem 3.4. Suppose that there exists a mapping φ : X2 → R
+ := [0,∞) for which a mapping

f : X → Y satisfies f(0) = 0,

∥∥Df(x, y)
∥∥
Y ≤ φ

(
x, y

)
, (3.23)

for all x, y ∈ X and the map φ is expansively superadditive with a constant L such that a4β−1L < 1.
Then there exists a unique generalized quartic mapping Q : X → Y which satisfies (1.4) and the
inequality

∥∥f(x) −Q(x)
∥∥
Y ≤ φ(x, 0)

2βL p

√
ap − (

a4βL
)p

, (3.24)

for all x ∈ X.
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Proof. By letting y = 0 in (3.23), we have

∥
∥
∥2f(ax) − 2a4f(x)

∥
∥
∥
Y
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and then replacing x by x/a,

∥
∥
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(x
a

)∥∥
∥
Y
≤ 1

2β
φ
(x
a
, 0
)
, (3.26)

for all x ∈ X. For all s and d with s < d, inductively we have

∥
∥
∥∥a

4sf
( x

as

)
− a4df

(
x

ad

)∥
∥
∥∥

p

Y

≤ φ(x, 0)p

2βp(aL)p
d−1∑

j=s

(
a4β−1L

)jp
, (3.27)

for all x ∈ X. The remains follow from the proof of Theorem 3.3.
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