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The purpose of this paper is to explore conditions which guarantee Lipschitz-continuity of
harmonic maps with respect to quasihyperbolic metrics. For instance, we prove that harmonic
quasiconformal maps are Lipschitz with respect to quasihyperbolic metrics.

1. Introduction

Let G ⊂ R
2 be a domain and let f : G → R

2, f = (f1, f2), be a harmonic mapping. This means
that f is a map from G into R

2 and both f1 and f2 are harmonic functions, that is, solutions of
the two-dimensional Laplace equation:

Δu = 0. (1.1)

The Cauchy-Riemann equations, which characterize analytic functions, no longer hold for
harmonic mappings and therefore these mappings are not analytic. Intensive studies during
the past two decades show that much of the classical function theory can be generalized
to harmonic mappings (see the recent book of Duren [1] and the survey of Bshouty and
Hengartner [2]). The purpose of this paper is to continue the study of the subclass of
quasiconformal and harmonic mappings, introduced by Martio in [3] and further studied,
for example, in [4–18]. The above definition of a harmonic mapping extends in a natural way
to the case of vector-valued mappings f : G → R

n, f = (f1, . . . , fn), defined on a domain
G ⊂ R

n, n ≥ 2.
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We first recall the classical Schwarz lemma for the unit disk D = {z ∈ C : |z| < 1}.

Lemma 1.1. Let f : D → D be an analytic function with f(0) = 0. Then |f(z)| ≤ |z|, z ∈ D.

For the case of harmonic mappings this lemma has the following counterpart.

Lemma 1.2 (see [19], [9, page 77]). Let f : D → D be a harmonic mapping with f(0) = 0. Then
|f(z)| ≤ (4/π)tan−1|z| and this inequality is sharp for each point z ∈ D.

The classical Schwarz lemma is one of the cornerstones of geometric function theory
and it also has a counterpart for quasiconformal maps (see [20–23]). Both for analytic
functions and for quasiconformal mappings it has a form that is conformally invariant under
conformal automorphisms of D.

In the case of harmonic mappings this invariance is no longer true. In general, if ϕ :
D → D is a conformal automorphism and f : D → D is harmonic, then ϕ◦f is harmonic only
in exceptional cases. Therefore one expects that harmonic mappings from the disk into a strip
domain behave quite differently from harmonic mappings from the disk into a half-plane
and that new phenomena will be discovered in the study of harmonic maps. For instance,
it follows from Lemma 1.1 that holomorphic functions in plane do not increase hyperbolic
distances. In general, planar harmonic mappings do not enjoy this property. On the other
hand, we shall give here an additional hypothesis under which the situation will change, in
the plane as well as in higher dimensions. It turns out that the local uniform boundedness
property, which we are going to define, has an important role in our study.

For a domain G ⊂ R
n, n ≥ 2, x, y ∈ G, let

rG
(
x, y

)
=

∣∣x − y
∣∣

min
{
d(x), d

(
y
)} where d(x) = d(x, ∂G) ≡ inf{|z − x| : z ∈ ∂G}. (1.2)

If the domain G is understood from the context, we write r instead of rG. This quantity is
used, for instance, in the study of quasiconformal and quasiregular mappings (cf. [23]). It
is a basic fact that [24, Theorem 18.1] for n ≥ 2, K ≥ 1, c2 > 0 there exists c1 ∈ (0, 1)
such that whenever f : G → fG is a K-quasiconformal mapping with G, fG ⊂ R

n, then
x, y ∈ G and rG(x, y) ≤ c1 imply rfG(f(x), f(y)) ≤ c2. We call this property the local
uniform boundedness of f with respect to rG.Note that quasiconformal mappings satisfy the
local uniform boundedness property and so do quasiregular mappings under appropriate
conditions; it is known that one-to-one mappings satisfying the local uniform boundedness
property may not be quasiconformal. We also consider a weaker form of this property and
say that f : G → fG with G, fG ⊂ R

n satisfies the weak uniform boundedness property
on G (with respect to rG) if there is a constant c > 0 such that rG(x, y) ≤ 1/2 implies
rfG(f(x), f(y)) ≤ c.

Univalent harmonic mappings fail to satisfy the weak uniform boundedness property
as a rule; see Example 2.2.

We show that if f : G → fG is harmonic, then f is Lipschitz w.r.t. quasihyperbolic
metrics on G and fG if and only if it satisfies the weak uniform boundedness property;
see Theorem 2.8. The proof is based on a higher-dimensional version of the Schwarz lemma:
harmonic maps satisfy the inequality (2.29). An inspection of the proof of Theorem 2.8 shows
that the class of harmonic mappings can be replaced by OC1 class defined by (3.2) (see
Section 3) and it leads to generalizations of the result; see Theorem 3.1.



Journal of Inequalities and Applications 3

Another interesting application is Theorem 2.10 which shows that if f is a harmonic
K-quasiregular map such that the boundary of the image is a continuum containing at least
two points, then it is Lipschitz. In Section 2.5, we study conditions under which a qc mapping
is quasi-isometry with respect to the corresponding quasihyperbolic metrics; see Theorems
2.12 and 2.15. In particular, using a quasiconformal analogue of Koebe’s theorem (cf. [25]), we
give a simple proof of the following result, (cf. [5, 26]): ifD and D′ are proper domains in R

2

and h : D → D′ isK-qc and harmonic, then it is bi-Lipschitz with respect to quasihyperbolic
metrics on D and D′.

The results in this paper may be generalized into various directions. One direction is
to consider weak continuous solutions of the p-Laplace equation

div
(
|∇u|p−2∇u

)
= 0, 1 < p < ∞, (1.3)

so-called p-harmonic functions. Note that 2-harmonic functions in the above sense are
harmonic in the usual sense.

It seems that the case of the upper half space is of particular interest (cf. [5, 7, 9, 11]).
In Section 2.6, using Theorem 3.1 of [27] we prove that if h is a quasiconformal p-harmonic
mapping of the upper half space Hn onto itself and h(∞) = ∞, then h is quasi-isometry with
respect to both the Euclidean and the Poincaré distance.

2. Lipschitz Property of Harmonic Maps with respect to
Quasihyperbolic Metrics

2.1. Hyperbolic Type Metrics

Let Bn(x, r) = {z ∈ R
n : |z − x| < r}, Sn−1(x, r) = ∂Bn(x, r), and let Bn, Sn−1 stand for the unit

ball and the unit sphere inR
n, respectively. Sometimes wewriteD instead of B2. For a domain

G ⊂ R
n let ρ : G → (0,∞) be a continuous function. We say that ρ is a weight function or a

metric density if, for every locally rectifiable curve γ in G, the integral

lρ
(
γ
)
=
∫

γ

ρ(x)ds, (2.1)

exists. In this case we call lρ(γ) the ρ-length of γ.Ametric density defines ametric dρ : G×G →
(0,∞) as follows. For a, b ∈ G, let

dρ(a, b) = inf
γ

lρ
(
γ
)
, (2.2)

where the infimum is taken over all locally rectifiable curves in G joining a and b. For a
fixed a, b ∈ G, suppose that there exists a dρ-length minimizing curve γ : [0, 1] → G with
γ(0) = a, γ(1) = b such that

dρ(a, b) = lρ
(
γ | [0, t]) + lρ

(
γ | [t, 1]) (2.3)
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for all t ∈ [0, 1]. Then γ is called a geodesic segment joining a and b. It is an easy exercise
to check that dρ satisfies the axioms of a metric. For instance, the hyperbolic (or Poincaré)
metric of the unit ball Bn and the upper half space H

n = {x ∈ R
n : xn > 0} are defined in

terms of the densities ρ(x) = 2/(1 − |x|2) and ρ(x) = 1/xn, respectively. It is a classical fact
that in both cases the length-minimizing curves, geodesics, exist and that they are circular
arcs orthogonal to the boundary [28]. In both cases we have even explicit formulas for the
distances:

sinh
ρBn

(
x, y

)

2
=

∣
∣x − y

∣
∣

√(
1 − |x|2

)(
1 − |y|2

) , x, y ∈ B
n, (2.4)

cosh ρHn

(
x, y

)
= 1 +

|x − y|2
2xnyn

, x, y ∈ H
n. (2.5)

Because the hyperbolic metric is invariant under conformal mappings, we may define
the hyperbolic metric in any simply connected plane domain by using the Riemann mapping
theorem; see, for example, [29]. The Schwarz lemma may now be formulated by stating
that an analytic function from a simply connected domain into another simply connected
domain is a contraction mapping; that is, the hyperbolic distance between the images of two
points is at most the hyperbolic distance between the points. The hyperbolic metric is often
the natural metric in classical function theory. For the modern mapping theory, which also
considers dimensions n ≥ 3, we do not have a Riemann mapping theorem and therefore it is
natural to look for counterparts of the hyperbolic metric. So-called hyperbolic type metrics
have been the subject of many recent papers. Perhaps the most important of these metrics are
the quasihyperbolic metric kG and the distance ratio metric jG of a domain G ⊂ R

n. They are
defined as follows.

2.1.1. The Quasihyperbolic and Distance Ratio Metrics

Let G ⊂ R
n be a domain. The quasihyperbolic metric kG is a particular case of the metric dρ

when ρ(x) = 1/d(x, ∂G) (see [23, 30, 31]). It was proved in [31] that for given x, y ∈ G, there
exists a geodesic segment of length kG(x, y) joining them. The distance ratio metric is defined
for x, y ∈ G by setting

jG
(
x, y

)
= log

(
1 + rG

(
x, y

))
= log

(

1 +

∣∣x − y
∣∣

min
{
d(x), d

(
y
)}

)

, (2.6)

where rG is as in the Introduction. It is clear that

jG
(
x, y

) ≤ rG
(
x, y

)
. (2.7)

Some applications of thesemetrics are reviewed in [32]. The recent Ph.D. theses [33–35] study
the quasihyperbolic geometry or use it as a tool.
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Lemma 2.1 (see [30], and also see [23, equation (3.4), Lemma 3.7]). LetG be a proper subdomain
of Rn.

(a) If x, y ∈ G and |y − x| ≤ d(x)/2, then kG(x, y) ≤ 2jG(x, y).

(b) For x, y ∈ G one has kG(x, y) ≥ jG(x, y) ≥ log(1 + |y − x|/d(x)).

2.2. Quasiconformal and Quasiregular Maps

2.2.1. Maps of Class ACL and ACLn

For each integer k = 1, . . . , n we denote Rn−1
k

= {x ∈ Rn : xk = 0}. The orthogonal projection
Pk : Rn → R

n−1
k is given by Pkx = x − xkek.

Let I = {x ∈ R
n : ak ≤ xk ≤ bk} be a closed n-interval. A mapping f : I → R

m is said to
be absolutely continuous on lines (ACL) if f is continuous and if f is absolutely continuous
on almost every line segment in I, parallel to the coordinate axes. More precisely, if Ek is the
set of all x ∈ PkI such that the function t �→ u(x+ tek) is not absolutely continuous on [ak, bk],
thenmn−1(Ek) = 0 for all 1 ≤ k ≤ n.

If Ω is an open set in R
n, a mapping f : Ω → R

m is absolutely continuous if f | I
is ACL for every closed interval I ⊂ Ω. If Ω and Ω′ are domains in R

n
, a homeomorphism

f : Ω → Ω′ is called ACL if f | Ω \ {∞, f−1(∞)} is ACL.
If f : Ω → R

m is ACL, then the partial derivatives of f exist a.e. in Ω, and they are
Borel functions. We say that f is ACLn if the partials are locally integrable.

2.2.2. Quasiregular Mappings

Let G ⊂ R
n be a domain. A mapping f : G → R

n is said to be quasiregular (qr) if f is ACLn

and if there exists a constant K ≥ 1 such that

∣∣f ′(x)
∣∣n ≤ KJf(x),

∣∣f ′(x)
∣∣ = max

|h|=1

∣∣f ′(x)h
∣∣, (2.8)

a.e. in G. Here f ′(x) denotes the formal derivative of f at x. The smallestK ≥ 1 for which this
inequality is true is called the outer dilatation of f and denoted byKO(f). If f is quasiregular,
then the smallest K ≥ 1 for which the inequality

Jf(x) ≤ Kl
(
f ′(x)

)n
, l

(
f ′(x)

)
= min

|h|=1

∣∣f ′(x)h
∣∣, (2.9)

holds a.e. in G is called the inner dilatation of f and denoted byKI(f). The maximal dilatation
of f is the numberK(f) = max{KI(f), KO(f)}. IfK(f) ≤ K, then f is said to beK-quasiregular
(K-qr). If f is not quasiregular, we set KO(f) = KI(f) = K(f) = ∞.

Let Ω1 and Ω2 be domains in R
n and fix K ≥ 1. We say that a homeomorphism f :

Ω1 → Ω2 is aK-quasiconformal (qc)mapping if it isK-qr and injective. Some of the standard
references for qc and qr mappings are [21, 23, 24, 36]. These mappings generalize the classes
of conformalmaps and analytic functions to Euclidean spaces. The Kühnau handbook [37, 38]
contains several reviews dealing with qc maps. It should be noted that various definitions for
qc maps are studied in [24]. The above definition of K-quasiconformality is equivalent to
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the definition based on moduli of curve families in [24, page 42]. It is well known that qr
maps are differentiable a.e. and satisfy condition (N), that is, map sets of measure zero (w.r.t.
Lebesgue’s n-dimensional measure) onto sets of measure zero. The inverse mapping of a K-
qc mapping is alsoK-qc. The composition of aK1-qc and of aK2-qc map is aK1K2-qc map if
it is defined.

2.3. Examples

We first show that, as a rule, univalent harmonic mappings fail to satisfy the local uniform
boundedness property.

Example 2.2. The univalent harmonic mapping f : H2 → f(H2), f(z) = arg z + i Im z, fails to
satisfy the local uniform boundedness property with respect to rH2 .

Let z1 = ρeiπ/4, z2 = ρei3π/4, w1 = f(z1), and w2 = f(z2). Then rH2(z1, z2) = 2 and
rfH2(w1, w2) = (π/

√
2ρ) if ρ is small enough and we see that f does not satisfy the local

uniform boundedness property.

Example 2.3. The univalent harmonic mapping f : H2 → H
2, f(z) = Re z Im z + i Im z,

fails to satisfy the local uniform boundedness property with respect to rH2 . For a harmonic
mapping f(z) = h(z) + g(z), we introduce the following notation:

λf(z) =
∣∣h′(z)

∣∣ − ∣∣g ′(z)
∣∣, Λf(z) =

∣∣h′(z)
∣∣ +

∣∣g ′(z)
∣∣, ν(z) =

g ′(z)
h′(z)

. (2.10)

The following proposition shows that a one-to-one harmonic function satisfying the local
uniform boundedness property need not be quasiconformal.

Proposition 2.4. The function f(z) = log(|z|2) + 2iy is a univalent harmonic mapping and satisfies
the local uniform boundedness property, but f is not quasiconformal on V = {z : x > 1, 0 < y < 1}.

Proof. It is clear that f is harmonic in Π+ = {z : Re z > 0}. Next f(z) = h(z) + g(z), where
h(z) = log z + z and g(z) = log z − z. Since h′(z) = 1 + 1/z and g ′(z) = −1 + 1/z, we have
|ν(z)| < 1 for z ∈ Π+.

Moreover, f is quasiconformal on every compact subset D ⊂ Π+ and λf , Λf are
bounded from above and below on D. Therefore f is a quasi-isometry on D, and by
Theorem 2.8, f satisfies the local uniform boundedness property on D.

From now on we consider the restriction of f to V = {z = x + iy : x > 1, 0 < y < 1}.
Then fV = {w = (u, v) : u > log(1 + v2/4), 0 < v < 2}.

We are going to show the follwing.

(i) f satisfies the local uniform boundedness property, but f is not quasiconformal on
V .

We see that f is not quasiconformal on V , because |ν(z)| → 1 as z → ∞, z ∈ V. For s > 1,
define Vs = {z : 1 < x < s, 0 < y < 1}. Note that f is qc on Vs and therefore f satisfies the
property of local uniform boundedness on Vs for every s > 1.

We consider separately two cases.
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Case 1 (z ∈ V4). If r > 1 is big enough, then d(z, ∂Vr) = d(z, ∂V ) and d(f(z), ∂f(Vr)) =
d(f(z), ∂f(V )) and therefore f satisfies the property of local uniform boundedness on V4

with respect to rV .

Case 2. It remains to prove that f satisfies the property of local uniform boundedness on V \V4

with respect to rV .

Observe first that for z, z1 ∈ V and |z1| ≥ |z| ≥ 1, we have the estimate

log
( |z1|

|z|
)

≤ |z1|
|z| − 1 ≤ |z1 − z|, (2.11)

and therefore for z, z1 ∈ V

∣
∣f(z1) − f(z)

∣
∣ ≤ 4|z1 − z|. (2.12)

We write

∂V = [1, 1 + i] ∪A ∪ B; A = {(x, 0) : x ≥ 1}, B = {(x, 1) : x ≥ 1}. (2.13)

Then

∂
(
fV

)
= f(∂V ) ⊂ f[1, 1 + i] ∪ (

fA
) ∪ (

fB
)
, (2.14)

and by the definition of f we see that

fA = {(x, 0) : x ≥ 0}, fB =
{
(x, 2) : x ≥ log 2

}
, f[1, 1 + i] ⊂ [

0, log 2
] × [0, 2].

(2.15)

Clearly for w ∈ fV

d(w) = min{d(w, fA), d(w, fB), d(w, f[1, 1 + i])}, (2.16)

and for Rew > 1 + log 2, and w ∈ fV , we find

d(w) = min
{
d
(
w, fA

)
, d

(
w, fB

)}
. (2.17)

For z ∈ V \V4 we have Ref(z) ≥ log(16) > 1 + log 2 and therefore, in view of the definition of
f , (2.17) yields d(f(z)) = 2d(z). This together with (2.12) shows that f satisfies the property
of local uniform boundedness on V \ V4.

2.4. Higher-Dimensional Version of Schwarz Lemma

Before giving a proof of the higher-dimensional version of the Schwarz lemma for harmonic
maps we first establish some notation.
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Suppose that h : B
n
(a, r) → R

n is a continuous vector-valued function, harmonic on
Bn(a, r), and let

M∗
a = sup

{∣
∣h
(
y
) − h(a)

∣
∣ : y ∈ Sn−1(a, r)

}
. (2.18)

Let h = (h1, h2, . . . , hn). with a modification of the estimate in [39, (2.31)] gives

r|∇hk(a)| ≤ nM∗
a, k = 1, . . . , n. (2.19)

We next extend this result to the case of vector-valued functions. See also [40] and [41,
Theorem 6.16].

Lemma 2.5. Suppose that h : B
n
(a, r) → R

n is a continuous mapping, harmonic in Bn(a, r). Then

r
∣∣h′(a)

∣∣ ≤ nM∗
a. (2.20)

Proof. Without loss of generality, we may suppose that a = 0 and h(0) = 0. Let

K
(
x, y

)
= Ky(x) =

r2 − |x|2
nωnr

∣∣x − y
∣∣n
, (2.21)

where ωn is the volume of the unit ball Bn in R
n.

Then

h(x) =
∫

Sn−1(0,r)
K(x, t)h(t)dσ, x ∈ Bn(0, r), (2.22)

where dσ is the (n − 1)-dimensional surface measure on Sn−1(0, r).
A simple calculation yields

∂

∂xj
K(x, ξ) =

1
nωnr

( −2xj

|x − ξ|n − n
(
r2 − |x|2

) xj − ξj

|x − ξ|n+2
)

. (2.23)

Hence, for 1 ≤ j ≤ n, we have

∂

∂xj
K(0, ξ) =

ξj

ωnrn+1
. (2.24)

Let η ∈ Sn−1 be a unit vector and |ξ| = r. For given ξ, it is convenient to write Kξ(x) =
K(x, ξ) and consider Kξ as a function of x.
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Then

Kξ′(0)η =
1

ωnrn+1
(
ξ, η

)
. (2.25)

Since |(ξ, η)| ≤ |ξ||η| = r, we see that

|Kξ′(0)η| ≤ 1
ωnrn

, and therefore |∇Kξ(0)| ≤ 1
ωnrn

. (2.26)

This last inequality yields

∣∣h′(0)
(
η
)∣∣ ≤

∫

Sn−1(a,r)
|∇Ky(0)|∣∣h(y)∣∣dσ(y) ≤ M∗

0nωnr
n−1

ωnrn
=

M∗
0n

r
, (2.27)

and the proof is complete.

Let G ⊂ R
n be a domain, and let h : G → R

n be continuous. For x ∈ G let Bx =
Bn(x, (1/4)d(x)) and

Mx = ωh(x) = sup
{∣∣h

(
y
) − h(x)

∣∣ : y ∈ Bx

}
. (2.28)

If h is a harmonic mapping, then the inequality (2.20) yields

1
4
d(x)

∣∣h′(x)
∣∣ ≤ nωh(x), x ∈ G. (2.29)

We also refer to (2.29) as the inner gradient estimate.

2.5. Harmonic Quasiconformal Quasi-Isometries

For our purpose it is convenient to have the following lemma.

Lemma 2.6. Let G and G′ be two domains in R
n, and let σ and ρ be two continuous metric densities

on G and G′, respectively, which define the elements of length ds = σ(z)|dz| and ds = ρ(w)|dw|,
respectively; suppose that f : G → G′ is a C1-mapping.

(a) If there is a positive constant c1 such that ρ(f(z))|f ′(z)| ≤ c1σ(z), z ∈ G, then
dρ(f(z2), f(z1)) ≤ c1dσ(z2, z1), z1, z2 ∈ G.

(b) If f(G) = G′ and there is a positive constant c2 such that ρ(f(z)) l(f ′(z)) ≥ c2 σ(z), z ∈
G, then dρ(f(z2), f(z1)) ≥ c2dσ(z2, z1), z1, z2 ∈ G.

The proof of this result is straightforward and it is left to the reader as an exercise.
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Pseudoisometry and a Quasi-Isometry

Let f be a map from a metric space (M,dM) into another metric space (N,dN).

(i) We say that f is a pseudoisometry if there exist two positive constants a and b such
that for all x, y ∈ M,

a−1dM

(
x, y

) − b ≤ dN

(
f(x), f

(
y
)) ≤ adM

(
x, y

)
. (2.30)

(ii) We say that f is a quasi-isometry or a bi-Lipschitz mapping if there exists a positive
constant a ≥ 1 such that for all x, y ∈ M,

a−1dM

(
x, y

) ≤ dN

(
f(x), f

(
y
)) ≤ adM

(
x, y

)
. (2.31)

For the convenience of the reader we begin our discussion for the unit disk case.

Theorem 2.7. Suppose that h : D → R
2 is harmonic and satisfies the weak uniform boundedness

property.

(c) Then h : (D, kD) → (h(D), kh(D)) is Lipschitz.

(d) If, in addition, h is a qc mapping, then h : (D, kD) → (h(D), kh(D)) is a quasi-isometry.

Proof. The part (d) is proved in [5].
For the proof of part (c) fix x ∈ D and y ∈ Bx = B(x, (1/4)d(x)). Then d(y) ≥ (3/4)d(x)

and therefore r(x, y) < 1/2. By the hypotheses |h(y) − h(x)| ≤ cd(h(x)).The Schwarz lemma,
applied to Bx, yields in view of (2.28)

1
4
d(x)

∣∣h′(x)
∣∣ ≤ 2Mx ≤ 2cd(h(x)). (2.32)

The proof of part (c) follows from Lemma 2.6.

A similar proof applies for higher dimensions; the following result is a generalization
of the part (c) of Theorem 2.7.

Theorem 2.8. Suppose that G is a proper subdomain of Rn and h : G → R
n is a harmonic mapping.

Then the following conditions are equivalent.

(1) h satisfies the weak uniform boundedness property.

(2) h : (G, kG) → (h(G), kh(G)) is Lipschitz.

Proof. Let us prove that (1) implies (2).
By the hypothesis (1) f satisfies the weak uniform boundedness property: for every

x ∈ G and t ∈ Bx

∣∣f(t) − f(x)
∣∣ ≤ c2d

(
f(x)

)
. (2.33)
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This inequality together with Lemma 2.5 gives d(x)|f ′(x)| ≤ c3d(f(x)) for every x ∈ G. Now
an application of Lemma 2.6 shows that (1) implies (2).

It remains to prove that (2) implies (1).
Suppose that f is Lipschitz with the multiplicative constant c2. Fix x, y ∈ G with

rG(x, y) ≤ 1/2. Then |y − x| ≤ d(x)/2 and therefore by Lemma 2.1

kG
(
x, y

) ≤ 2jG
(
x, y

) ≤ 2rG
(
x, y

) ≤ 1. (2.34)

Hence kG′(fx, fy) ≤ c2. Since jG′(fx, fy) ≤ kG′(fx, fy) ≤ c2, we find jG′(fx, fy) = log(1 +
rG′(fx, fy)) ≤ c2 and therefore rG′(fx, fy) ≤ ec2 − 1.

Since f−1 is qc, an application of [31, Theorem 3] to f−1 and Theorem 2.8 give the
following corollary.

Corollary 2.9. Suppose that G is a proper subdomain of Rn; h : G → hG is harmonic and K-qc.
Then h : (G, kG) → (h(G), kh(G)) is a pseudoisometry.

In [23, Example 11.4] (see also [42, Example 3.10 ]), it is shown that the analytic
function f : D → G, G = D \ {0}, f(z) = exp((z+ 1)/(z− 1)), f(D) = G, fails to be uniformly
continuous as a map:

f : (D, kD) −→ (G, kG). (2.35)

Therefore bounded analytic functions do not satisfy the weak uniform boundedness property
in general. The situation will be different, for instance, if the boundary of the image domain
is a continuum containing at least two points. Note that if kG is replaced by the hyperbolic
metric λG of G, then f : (D, kD) → (G, λG) is Lipschitz.

Theorem 2.10. Suppose that G ⊂ R
n, f : G → R

n is K-qr and G′ = f(G). Let ∂G′ be a continuum
containing at least two distinct points. If f is a harmonic mapping, then f : (G, kG) → (G′, kG′) is
Lipschitz.

Proof. Fix x ∈ G and let Bx = Bn(x, d(x)/4). If |y − x| ≤ d(x)/4, then d(y) ≥ 3d(x)/4 and,
therefore,

rG
(
y, x

) ≤ 4
3

∣∣y − x
∣∣

d(x)
. (2.36)

Because jG(x, y) = log(1 + rG(x, y)) ≤ rG(x, y), using Lemma 2.1(a), we find

kG
(
y, x

) ≤ 2jG
(
y, x

) ≤ 2
3
< 1. (2.37)

By [23, Theorem 12.21] there exists a constant c2 > 0 depending only on n and K such that

kG′
(
fy, fx

) ≤ c2 max
{
kG(y, x)

α, kG
(
y, x

)}
, α = K1/(1−n), (2.38)
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and hence, using Lemma 2.1(b) and kG(y, x) ≤ 1, we see that

∣
∣fy − fx

∣
∣ ≤ ec2d

(
fx

)
, that is, Mx = ωf(x) ≤ ec2d

(
fx

)
. (2.39)

By (2.29) applied to Bx = Bn(x, d(x)/4), we have

1
4
d(x)

∣
∣f ′(x)

∣
∣ ≤ 2Mx, (2.40)

and therefore using the inequality (2.39), we have

1
4
d(x)

∣∣f ′(x)
∣∣ ≤ 2cd

(
f(x)

)
, (2.41)

where c = ec2 , and the proof follows from Lemma 2.6.

The first author has asked the following question (cf. [5]) suppose that G ⊂ R
n is a

proper subdomain, f : G → R
n is harmonic K-qc, and G′ = f(G). Determine whether f

is a quasi-isometry w.r.t. quasihyperbolic metrics on G and G′. This is true for n = 2 (see
Theorem 2.13). It seems that one can modify the proof of Proposition 4.6 in [43] and show
that this is true for the unit ball if n ≥ 3 and K < 2n−1 (cf. also [13]).

2.6. Quasi-Isometry in Planar Case

Astala and Gehring [25] proved a quasiconformal analogue of Koebe’s theorem, stated here
as Theorem 2.11. These concern the quantity

af(x) = af,G(x) := exp

(
1

n|Bx|
∫

Bx

log Jf(z)dz

)

, x ∈ G, (2.42)

associated with a quasiconformal mapping f : G → f(G) ⊂ R
n; here Jf is the Jacobian of f

while Bx stands for the ball B(x;d(x, ∂G) and |Bx| for its volume.

Theorem 2.11 (see [25]). Suppose that G and G′ are domains in Rn: If f : G → G′ is K-
quasiconformal, then

1
c

d
(
fx, ∂G′)

d(x, ∂G)
≤ af,G(x) ≤ c

d
(
fx, ∂G′)

d(x, ∂G)
, x ∈ G, (2.43)

where c is a constant which depends only on K and n.
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Let Ω ∈ R
n and R

+ = [0,∞). If f, g : Ω → R
+ and there is a positive constant c such

that

1
c
g(x) ≤ f(x) ≤ cg(x), x ∈ Ω, (2.44)

we write f ≈ g on Ω.
Our next result concerns the quantity

Ef,G(x) :=
1

|Bx|
∫

Bx

Jf(z)dz, x ∈ G, (2.45)

associated with a quasiconformal mapping f : G → f(G) ⊂ R
n; here Jf is the Jacobian of f

while Bx stands for the ball B(x, d(x, ∂G)/2 and |Bx| for its volume.
Define

Af,G = n

√
Ef,G. (2.46)

Theorem 2.12. Suppose that f : Ω → Ω′ is a C1 qc homeomorphism. The following conditions are
equivalent:

(a) f is bi-Lipschitz with respect to quasihyperbolic metrics on Ω and Ω′,

(b) n

√
Jf ≈ d∗/d,

(c) n

√
Jf ≈ af ,

(d) n

√
Jf ≈ Af ,

where d(x) = d(x, ∂Ω) and d∗(x) = d(f(x), ∂Ω′).

Proof. It is known that (a) is equivalent to (b) (see, e.g., [44]).
In [44], using Gehring’s result on the distortion property of qc maps (see [10, page

383]; [43, page 63]), the first author gives short proofs of a new version of quasiconformal
analogue of Koebe’s theorem; it is proved that Af ≈ d∗/d.

By Theorem 2.11, af ≈ d∗/d and therefore (b) is equivalent to (c). The rest of the proof
is straightforward.

IfΩ is planar domain and f a harmonic qc map, then we proved that the condition (d)
holds.

The next theorem is a short proof of a recent result of Manojlović [26], see also [5].

Theorem 2.13. Suppose that D and D′ are proper domains in R
2. If h : D → D′ is K-qc and

harmonic, then it is bi-Lipschitz with respect to quasihyperbolic metrics on D and D′.

Proof. Without loss of generality, we may suppose that h is preserving orientation. Let z ∈ D
and h = f +g be a local representation of h on Bz, where f and g are analytic functions on Bz,
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Λh(z) = |f ′(z)| + |g ′(z)|, λh(z) = |f ′(z)| − |g ′(z)|, and k = (K − 1)/(K + 1).Since h is K-qc, we
see that

(
1 − k2

)
|f ′|2 ≤ Jh ≤ K|f ′|2 (2.47)

on Bz and since log |f ′(ζ)| is harmonic,

log
∣
∣f ′(z)

∣
∣ =

1
2|Bz|

∫

Bz

log |f ′(ζ)|2dξ dη. (2.48)

Hence, using the right-hand side of (2.47), we find

logah,D(z) ≤ 1
2

logK +
1

2|Bz|
∫

Bz

log |f ′(ζ)|2dξ dη

= log
√
K
∣∣f ′(z)

∣∣.

(2.49)

Hence,

ah,D(z) ≤
√
K
∣∣f ′(z)

∣∣, (2.50)

and in a similar way using the left-hand side of (2.47), we have

√
1 − k2

∣∣f ′(z)
∣∣ ≤ ah,D(z). (2.51)

Now, an application of the Astala-Gehring result gives

Λh(z) � d(hz, ∂D′)
d(z, ∂D)

� λh(z). (2.52)

This pointwise result, combined with Lemma 2.6 (integration along curves), easily
gives

kD′(h(z1), h(z2)) � kD(z1, z2), z1, z2 ∈ D. (2.53)

Note that in [26] the proof makes use of the interesting fact that log(1/Jh) is a
subharmonic function, but we do not use it here.

Define mf(x, r) = min{|f(x′) − f(x)| : |x′ − x| = r}.
Suppose that G and G′ are domains in R

n. If f : G → G′ is K-quasiconformal, by the
distortion property we find mf(x, r) ≥ a(x)r1/α. Hence, as in [13, 44], we get the following.
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Lemma 2.14. If f ∈ C1,1 is a K-quasiconformal mapping defined in a domain Ω ⊂ R
n (n ≥ 3), then

Jf(x) > 0, x ∈ Ω, (2.54)

provided that K < 2n−1. The constant 2n−1 is sharp.

Theorem 2.15. Under the hypothesis of the lemma, if G ⊂ Ω, then f is bi-Lipschitz with respect to
Euclidean and quasihyperbolic metrics on G and G′ = f(G).

Proof. Since G is compact, Jf attains minimum on G at a point x0 ∈ G. By Lemma 2.14, m0 =
Jf > 0, and therefore since f ∈ C1,1 is a K-quasiconformal, we conclude that functions |fxk |,
1 ≤ k ≤ n are bounded from above and below on G; hence f is bi-Lipschitz with respect to
Euclidean metric on G.

By Theorem 2.11, we find af,G ≈ d∗/d, where d(x) = d(x, ∂G) and d∗(x) = d(f(x), ∂G′).

Since we have here n

√
Jf ≈ af , we find n

√
Jf ≈ d∗/d on G. An application of Theorem 2.12

completes the proof.

2.7. The Upper Half Space H
n

Let Hn denote the half-space in R
n. If D is a domain in R

n, by QCH(D) we denote the set of
Euclidean harmonic quasiconformal mappings of D onto itself.

In particular if x ∈ R
3, we use notation x = (x1, x2, x3) and we denote by ∂xkf = f ′

xk

the partial derivative of f with respect to xk.
A fundamental solution in spaceR3 of the Laplace equation is 1/|x|. LetU0 = 1/|x+e3|,

where e3 = (0, 0, 1). Define h(x) = (x1 + ε1U0, x2 + ε2U0, x3). It is easy to verify that h ∈
QCH(H3) for small values of ε1 and ε2.

Using the Herglotz representation of a nonnegative harmonic function u (see [41,
Theorem 7.24, Corollary 6.36]), one can get the follwing.

LemmaA. If u is a nonnegative harmonic function on a half spaceHn, continuous up to the boundary
with u = 0 on H

n, then u is (affine) linear.

In [5], the first author has outlined a proof of the following result.

Theorem A. If h is a quasiconformal harmonic mapping of the upper half space Hn onto itself and
h(∞) = ∞, then h is quasi-isometry with respect to both the Euclidean and the Poincaré distance.

Note that the outline of proof in [5] can be justified by Lemma A.
One shows that the analog statement of this result holds for p-harmonic vector functions

(solutions of p-Laplacian equations) using the mentioned result obtained in [27], stated here as follows.

Theorem B. If u is a nonnegative p-harmonic function on a half space H
n, continuous up to the

boundary with u = 0 on H
n, then u is (affine) linear.

Theorem 2.16. If h is a quasiconformal p-harmonic mapping of the upper half space Hn onto itself
and h(∞) = ∞, then both h : (Hn, | · |) → (Hn, | · |) and h : (Hn, ρHn) → (Hn, ρHn) are bi-Lipschitz
where ρ = ρHn is the Poincaré distance.
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Since 2-harmonic mapping is Euclidean harmonic, this result includes Theorem A.

Proof. It suffices to deal with the case n = 3 as the proof for the general case is similar. Let
h = (h1, h2, h3).

By Theorem B, we get h3(x) = ax3, where a is a positive constant. Without loss of
generality we may suppose that a = 1.

Since h3(x) = x3, we have ∂x3h3(x) = 1, and therefore |h′
x3(x)| ≥ 1. In a similar way,

|g ′
x3
(x)| ≥ 1, where g = h−1. Hence, there exists a constant c = c(K):

∣
∣h′(x)

∣
∣ ≤ c,

1
c
≤ l

(
h′(x)

)
. (2.55)

Therefore partial derivatives of h and h−1 are bounded from above, and, in particular, h is
Euclidean bi-Lipschitz.

Since h3(x) = x3,

|h′(x)|
h3(x)

≤ c

x3
, (2.56)

and hence, by Lemma 2.6, ρ(h(a), h(b)) ≤ cρ(a, b).

3. Pseudoisometry and OC1(G)

In this section, we give a sufficient condition for a qc mapping f : G → f(G) to be a pseudo-
isometry w.r.t. quasihyperbolic metrics onG and f(G). First we adopt the following notation.

If V is a subset of Rn and u : V → R
m, we define

oscV u = sup
{∣∣u(x) − u

(
y
)∣∣ : x, y ∈ V

}
. (3.1)

Suppose that G ⊂ R
n and Bx = B(x, d(x)/2). LetOC1(G) denote the class of f ∈ C1(G)

such that

d(x)
∣∣f ′(x)

∣∣ ≤ c1oscBxf (3.2)

for every x ∈ G. Similarly, let SC1(G) be the class of functions f ∈ C1(G) such that

∣∣f ′(x)
∣∣ ≤ ar−1ωf(x, r) ∀Bn(x, r) ⊂ G, (3.3)

where ωf(x, r) = sup{|f(y) − f(x)| : y ∈ Bn(x, r)}.
The proof of Theorem 2.8 gives the following more general result.
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Theorem 3.1. Suppose that G ⊂ R
n, f : G → G′, f ∈ OC1(G) and it satisfies the weak property of

uniform boundedness with a constant c on G. Then one has the following

(e) f : (G, kG) → (G′, kG′) is Lipschitz.

(f) In addition, if f is K -qc, then f is pseudo-isometry w.r.t. quasihyperbolic metrics on G and
f(G).

Proof. By the hypothesis f satisfies the weak property of uniform boundedness: |f(t)−f(x)| ≤
c2d(f(x) for every t ∈ Bx, that is,

oscBxf ≤ c2d
(
f(x)

)
(3.4)

for every x ∈ G. This inequality together with (3.2) gives d(x)|f ′(x)| ≤ c3d(f(x)). Now an
application of Lemma 2.6 gives part (e). Since f−1 is qc, an application of [31, Theorem 3] on
f−1 gives part (f).

In order to apply the above method we introduce subclasses of OC1(G) (see, e.g.,
(3.5)).

Let f : G → G′ be a C2 function and Bx = B(x, d(x)/2). We denote by OC2(G) the
class of functions which satisfy the following condition:

sup
Bx

d2(x)
∣∣Δf(x)

∣∣ ≤ cos cBxf (3.5)

for every x ∈ G.
If f ∈ OC2(G), then by Theorem 3.9 in [39], applied to Ω = Bx,

sup
t∈Bx

d(t)
∣∣f ′(t)

∣∣ ≤ C

(

sup
t∈Bx

∣∣f(t) − f(x)
∣∣ + sup

t∈Bx

d2(t)
∣∣Δf(t)

∣∣
)

, (3.6)

and hence by (3.5)

d(x)
∣∣f ′(x)

∣∣ ≤ c1oscBxf (3.7)

for every x ∈ G and therefore OC2(G) ⊂ OC1(G).
Now the following result follows from the previous theorem.

Corollary 3.2. Suppose that G ⊂ R
n is a proper subdomain, f : G → G′ is K-qc, and f satisfies the

condition (3.5). Then f : (G, kG) → (G′, kG′) is Lipschitz.
One will now give some examples of classes of functions to which Theorem 3.1 is applicable.

Let SC2(G) denote the class of f ∈ C2(G) such that

∣∣Δf(x)
∣∣ ≤ ar−1 sup

{∣∣f ′(y
)∣∣ : y ∈ Bn(x, r)

}
, (3.8)

for all Bn(x, r) ⊂ G, where a is a positive constant. Note that the class SC2(G) contains every function
for which d(x)|Δf(x)| ≤ a|f ′(x)|, x ∈ G. It is clear that SC1(G) ⊂ OC1(G), and by the mean value
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theorem, OC2(G) ⊂ SC2(G). For example, in [45] it is proved that SC2(G) ⊂ SC1(G) and that the
class SC2(G) contains harmonic functions, eigenfunctions of the ordinary Laplacian if G is bounded,
eigenfunctions of the hyperbolic Laplacian if G = B

n, and thus our results are applicable, for instance,
to these classes.
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[5] M. Mateljević, “Distortion of harmonic functions and harmonic quasiconformal quasi-isometry,”
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[12] D. Kalaj and M. Mateljević, “Quasiconformal and harmonic mappings between smooth Jordan
domains,” Novi Sad Journal of Mathematics, vol. 38, no. 3, pp. 147–156, 2008.
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