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We determine the condition on a, p, §, and A for which |(1-a) (z/ f () +a(zf'(z)/ f (z))(z/ f (z))!' -

1] < Mimplies f(z) € S*(pB), where S*(p) is the class of starlike functions of order 5. Some results of
Obradovi¢ and Owa are extended. We also obtain some new results on starlikeness criterions.

1. Introduction

Let n be a positive integer, and let H,, denote the class of function

f(z)=z+ §Qk+1zk+l (1.1)

k=n
that are analytic in the unit disk U = {z : |z| < 1}. For0 < f < 1, let

zf'(2)
f(2)

S*(ﬁ)={f€H1:Re >, zell} (1.2)

denote the class of starlike function of order f and $*(0) = S*.

Let f(z) and F(z) be analytic in U; then we say that the function f(z) is subordinate
to F(z) in U, if there exists an analytic function w(z) in U such that |w(z)| < |z|, and f(z) =
F(w(z)), denoted that f < F or f(z) < F(z). If F(z) is univalent in U, then the subordination
is equivalent to f(0) = F(0) and f(U) c F(U) [1].
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Let

Si={f€H: :|f(z)-1| <\ zeU}. (1.3)
Singh [2] proved that S, C S*if 0 < A < 2/+/5. More recently, Fournier [3, 4] proved that

2

5,CS =01 —,
! RV

1-10)1-1/2)
1-A2/4 7

(1/2)(1-(5/4)1%)
1-12/4

ﬁOSAS%, (1.4)

2
L ifS<A<l,
13__

is the order of starlikeness of S). Now, we define

7o (o) J
u(a, ,n:{ €eH,: —— ) -1|<A, zelUy. 1.5
Clearly, U (A, -1,1) = S). In 1998, Obradovi¢ [5] proved that

ud,pl)cs (1.6)

if0<p<land0<A<(1-p)/\/(1-p)?+ p2. Recently, Obradovi¢ and Owa [6] proved that

U, pn)cs: (1.7)

if0<pu<land0< A< (n—p)/\/(n—p)?+p.

In this paper we find a condition on a, y, , and A for which

0-(7) T (72a) -

implies f(z) € S*(p) and extend some results of Obradovi¢ and Owa [5, 6]. Also, we obtain
some new results on starlikeness criterions.

<A (1.8)
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2. Main Results
For our results we need the following lemma.

Lemma 2.1 (see [6]). Let p(z) = 1+ puz" + pu12™! + -+ be analytic in U, n > 1, and satisfy the
condition

p(z)—}lzp'(z) <1+lz, O<pu<1, 0<A<1. (2.1)

Then
p(z) <1+ \z (2.2)

where
A = n)‘_" m (2.3)

Theorem 2.2, Let0<pyu<1,na>pu, 0<p<1,and

a(na—#)(l_ﬂ) if a >«
a(n+p—pp)-2p fes
(na—u)\/m faor<a<a
M (a, B, p) = \/nzaz +2[u2(1-p) —n,u]al , -
where
T Ll )]
n(1-p) '

(2.5)

I ) +/[n+3u(1- p)]” - 8np(1 - )
’ 2n(1-p) '

Ifp(z) =1+ ppz" + pps1z™t + - and q(z) = 1+ Guz" + gui1 2" + -+ are analytic in U, satisfy

uA

na -y

q(z) <1+ z, (2.6)

qz)[1-a+ap(z)] <1+ 1z, (2.7)
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where 0 < A < M, (a, B, u), then

Rep(z) >p, forzel. (2.8)

Proof. If u = 0, it is easy to see the result is true. Now, assume y > 0. Let

N-_H n (29)
If there exists zg € U, such that Re p(zy) = 3, then we will show that
|g(zo)[1 - a+ap(zo)] 1| = A (2.10)
for 0 < A < M, (a, B, u). Note that |g(zo) — 1| < N for z € U it is sufficient to show that
alp(zo) = 1| - N|1 - a+ap(zo)| > A (2.11)
for 0 < A < M, (a, B, ). Let p(zo) = p + iy, y € R; then, the left-hand side of (2.11) is
a\/(ﬁ—1)2+y2—N\/(aﬂ+1—cx)2+a2y2
(2.12)

:a\/ﬁ2+y2+1—2ﬁ—N\/a2ﬁ2+a2y2+2a(1—zx)ﬂ+ (1-a)%

Suppose that x = % + y* and note that (na — u) N = p; then inequality (2.11) is equivalent to

apr/x+1-2p

N < - (2.13)
na—p+ p\/a’x +2a(l —a)p+ (1 — a)
for all x > [32 and 0 < A < M, (a, B, ). Now, if we define
Vx+1-2p
p(x) = , X2 (2.14)
na — p+p\/a2x +2a(1 - a)p+ (1 - a)?
then we have
na — x)+ull-2a(l-

2¢(x)\/x +1-2p[(na—p) + ,u(p(x)]zl

where

¢ (x) = \Ja2x + 2a(1 - @)f+ (1 - @) (2.16)
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Since

¥(x) = \/azxz +2a(l-a)p+(1-a)*> [1-a(1-p)|, forx>p?

the denominator of ¢'(x) is positive. Further, let

We have

If

we get

where

Note that

We obtain

If

T(x) = (na—p)gx) +pu[l -2a(1-p)], x> p~

L}

r

T(x) > (na - p)[1 - a(1 - )] + u[1 - 2a(1- p)].

1 <a
1-p- "

T(x) > na*(1-p) - [n+3u(1-p)]|a+2u
= n(l -P)a-r)(a-r1),

n+3u(1-p) 1/ [n+3u(1-p)]” - 8np(1 - p)

2n(1- )

n+3u(1=p) +\/[n+3u(1 =PI ~8np(1 - p)

2n(1-p)

r < < m.

T(x)>0 fora>ay=r.

1 1
<a<

200-p) = 1-F

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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we have
T(x)>an-pu(1-p)-n(1-p)al. (2.26)
Hence we obtain
T(x)>0 for ! <ala (2.27)
> —~ a<a, .
2(1-p)
where
—u(1-
el U Gl O NS (2.28)
n(1-p) 1-p
If
O<ac—1t (229)
2(1-p)’ '
we have 1 - 2a(1 - ) > 0. It follows that T'(x) > 0.
Therefore we obtain ¢'(x) > 0 for x > ﬂ2 if 0 < a <ay ora> ay. It follows that
1-
( ( [2) 2 if a>ap,
an+tpu—pup) —<p
min(x) = ¢(p*) = (2.30)
mpre=e)=) oy

if0<a<am.

afn-p(1-p)|’

If a1 < a < ap, we have

lim T(x)=T(p*) = (na - p)|1-a(l- )| +pu[1-2a(1- )] <0 (2.31)

x%(ﬁ

by (2.13) and (2.21) for 1/(1 - p) < @ < ap and by (2.23) for a; < a <1/(1 - ). Note that T(x)
is an continuous increasing function for x > 2, and

lim T'(x) > 0. (2.32)

Then there exists a unique x, € ([52, +00), such that
T(x0) =0, or ¢'(xp)=0. (2.33)

Thus, x is the global minimum point of ¢(x) on [f?, +0). It follows from (2.33) that

(nx - ) \/a2x0 +2a(1 = ) + (1 - a)? = p[2a(1 - B) - 1], (2.34)
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or

X0

:l{#z[za(l—ﬁ)—ﬂz

@ (na-py?

~2a(l-a)p-(1 —a)z}. (2.35)

By a simple calculation, we may obtain

\2a(1-p) -1 036

zx\/nzaz +2[p*(1-p) —nula

min p(x) = ¢(x0) =
for a; < a < ay. It follows from (2.30) and (2.36) that that inequality (2.13) holds. This shows
that inequality (2.10) holds, which contradicts with (2.7). Hence we must have

Rep(z)>p, zel. (2.37)
O

Theorem 2.3. Let a, p, B, A and M, (a, p, p) be defined as in Theorem 2.2. If f(z) € H, satisfies

‘(1-@(}%)'1”%(}%)” -1

where 0 < A < M, (a, B, u), then f(z) € S*(p).

<, (2.38)

Proof. If 4 =0, M, (a,$,0) = a(1 - ) and the result is trivial. Now, assume p > 0. If we put

q(z) = <]%># (2.39)

then by some transformations and (2.38) we get

a(2) - 22 (2) <1+ )= (2.40)
By Lemma 2.1, we obtain
A
g(z) <1+ no’:_#z. (2.41)
Let
zf'(z)
pz) =L 42)
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Then we have

By Theorem 2.2, we get

It follows that f(z) € S*(p).
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g(z)[1-a+ap(z)] <1+ Az

For p = 0, we get the following corollary.

Corollary 2.4. Let 0 < p <1, na > p, and let

M (e ) = 9

where

If f(z) € H,, satisfies

-

Rep(z)>p, zel.
( —_—
_alna=p) Fa>a,
a(n+p)-2u
-pu)V2a-1
(na I/l) “ ’ Z:f[x1§(x<lx2,
\/n21x2 +2[u2 - npla
(na—p) Fo<a<m,
n—p
al_n_//l/
n
n+3u+\/(n+3p)° - 8np
ay = o .

where 0 < A < M, (a, ), then f(z) € S*.

Corollary 2.5. Let 0 < pu<1,0< p < 1, and let

M (B, p) =

z \* zf'(z)/ z ¥
2(7m) * e () ~Y <
(-1 (1-p) | p
n-pu(1+p) ’ Zf1>ﬁzn+‘u'
(n-pvi-2p Fo<p<t
- n+pu

2 +2[k2(1- B) — ny]

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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If f(z) € H,, satisfies

zf'(2)
o () < 24
where 0 < A < M, (B, n), then f(z) € S*(P).
Proof. Note that
_n—p(l-p) 7
al—wzll fOTﬁZm,
1
al_"ng( ﬁ)ﬁ)<1, forﬂ<n## (2.50)
A=) [ 3P -8 -p)
o 2n(1-p)
Putting a = 1 in Theorem 2.3, we obtain the above corollary. O

Remark 2.6. Our results extend the results given by Obradovi¢ [5], and Obradovi¢ and Owa
[6].

Theorem 2.7. Let 0 < u<1,0< B <1, Re{c} > —p, and let

(n-p)(A-p)|n+c—p|

, >
[ p)]Je ] 702
n\PrH) = 2.51
V2 + 20 (1- ) - e - e
If f(z) € Hy, satisfies
zf'(z) z \*
o (7)Y < 252)
where 0 < A < B, (B, u), and
N A L
F(z) = z[zc_# fo <m> e 1dt] , (2.53)

then F(z) € 5*(P).
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Proof. Let

Q@ =Fe)( Ffz)>1+”.

Then from (2.52) and (2.53) we obtain

1

Qz) + —
c-p

1+p
Q'(2) =f’(z)<}%> <14

Hence, by using Theorem 1 given by Hallenbeck and Ruscheweyh [7], we have that

— |
_ de—pfr

Q(Z) <1+ Az, A = ,
|n+c—pl

and the desired result easily follows from Corollary 2.5.
For ¢ = p + 1, we have the following corollary.

Corollary 2.8. Let 0 < u <1,0< B <1, and let

(n-p)(1-p)(n+1) ; U
N T
Pu(Prn) =

(VI o

V2 + 22 (1= B) - ny] np
If f(z) € H,, satisfies
zf'(z) z \*
o (7)1 <

where 0 < A < B, (B, u), and

oot Gl

then F(z) € S*(P).
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