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We prove the Hyers-Ulam stability of a 2-dimensional quadratic functional equation in a class of
vector variable functions in Banach modules over a unital C�-algebra.

1. Introduction

In 1940, Ulam proposed the stability problem (see [1]):
Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there

exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ
for all x, y ∈ G1 then there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε
for all x ∈ G1?

In 1941, this problem was solved by Hyers [2] in the case of Banach space. Thereafter,
we call that type the Hyers-Ulam stability. The authors investigated various functional
equations and their Hyers-Ulam stability [3–8]. This Hyers-Ulam stability is a classical type
of stability, but there is another kind of stability introduced by Risteski [9] for functional
equations spanned over an n-dimensional complex vector space too.

Let X and Y be real or complex vector spaces. For a mapping g : X → Y , consider the
quadratic functional equation

g
(
x + y

)
+ g

(
x − y

)
= 2g(x) + 2g

(
y
)
. (1.1)
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In 1989, Aczél and Dhombres [10] obtained the solution of (1.1) for the case that Y acts on
X. The result also holds when X and Y are arbitrary real or complex vector spaces. For a
mapping f : X ×X → Y , consider the 2-dimensional quadratic functional equation:

f
(
x + y, z −w

)
+ f

(
x − y, z +w

)
= 2f(x, z) + 2f

(
y,w

)
. (1.2)

The quadratic form f : R×R → R given by f(x, y) := ax2 + by2 is a solution of (1.2). In 2008,
the authors of [8] acquired the general solution and proved the stability of the 2-dimensional
quadratic functional equation (1.2) for the case thatX and Y are real vector spaces as follows.

The results of [8, Theorems 3 and 4] also hold for complex vector spaces X and Y . In
this paper, we investigate the stability of (1.2) with two module actions in Banach modules
over a unital C�-algebra.

2. Preliminaries

Let A be a unital C�-algebra with a norm | · |, and let AM and AN be left Banach A-modules
with norms ‖ · ‖ and ‖ · ‖, respectively. Put A1 := {a ∈ A | |a| = 1}, Ain := {a ∈ A |
a is invertible in A}, Asa := {a ∈ A | a� = a}, U(A) := {a ∈ A | aa� = a�a = 1},
A+ := {a ∈ Asa | Sp(a) ⊂ [0,∞)}, and A+

1 := A1 ∩A+.

Definition 2.1. A 2-dimensional vector variable quadratic mapping F : AM×AM → AN
satisfying (1.2) is called A-quadratic if F(ax, ay) = a2F(x, y) for all a ∈ A and all x, y ∈ AM.

Definition 2.2. A unital C�-algebra A is said to have real rank 0 (see [11]) if the invertible
self-adjoint elements are dense in Asa.

For any element a ∈ A, a = a1 + ia2, where a1 := (a + a�)/2 and a2 := (a − a�)/2i are
self-adjoint elements; furthermore, a = a+

1 −a−
1 + ia+

2 − ia−
2 , where a+

1 , a
−
1 , a

+
2 and a−

2 are positive
elements (see [12, Lemma 38.8]).

3. Results

Theorem 3.1. Let ψ : R × R → R be a function satisfying

ψ(s + t, u − v) + ψ(s − t, u + v) = 2ψ(s, u) + 2ψ(t, v) (3.1)

for all s, t, u, v ∈ R. If the function ψ is a Borel function, then it also satisfies

ψ(s, t) = s2ψ(1, 0) + t2ψ(0, 1) (3.2)

for all s, t ∈ R.

Proof . By [8, Theorem 3], there exist two symmetric biadditive mappings S, T : R × R → R

such that ψ(s, t) = S(s, s) + T(t, t) for all s, t ∈ R. By the proof of Theorem 3 in [8], we gain

ψ
(
pu, qv

)
= S

(
pu, pu

)
+ T

(
qv, qv

)
= p2S(u, u) + q2T(v, v) = p2ψ(u, 0) + q2ψ(0, v) (3.3)
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for all p, q ∈ Q and all u, v ∈ R. Letting p = v = 1 in the equality (3.3), we get

ψ
(
u, q

)
= ψ(u, 0) + q2ψ(0, 1) (3.4)

for all u ∈ R and all q ∈ Q. Putting u = v = 1 in the equality (3.3) again, we have

ψ
(
p, q

)
= p2ψ(1, 0) + q2ψ(0, 1) (3.5)

for all p, q ∈ Q. Since the function v → ψ(u, v) is measurable and satisfies (1.1), by [13], it is
continuous. By the same reasoning, u → ψ(u, v) is also continuous. Let s, t ∈ R be fixed. Since
ψ is measurable, by [14, Theorem 7.14.26], for everym ∈ N there is a closed set Fm ⊂ [s, s + 1]
such that μ([s, s+ 1] \Fm) < 1/m and ψ|Fm×R is continuous. Since μ(Fm) → 1, one can choose
um ∈ Fm satisfying um → s. Take a sequence {qn} in Q converging to t. By the equality (3.4),
we get

ψ(um, t) = ψ

(
um, lim

n→∞
qn

)
= lim

n→∞
ψ
(
um, qn

)
= lim

n→∞

[
ψ(um, 0) + q2nψ(0, 1)

]

= ψ(um, 0) + t2ψ(0, 1)

(3.6)

for all m ∈ N. For each fixed m ∈ N, take a sequence {pn} in Q converging to um. By (3.5) and
the above equality, we have

ψ(um, t) = ψ

(
lim
n→∞

pn, 0
)
+ t2ψ(0, 1) = lim

n→∞
ψ
(
pn, 0

)
+ t2ψ(0, 1)

= lim
n→∞

p2nψ(1, 0) + t2ψ(0, 1) = u2
mψ(1, 0) + t2ψ(0, 1).

(3.7)

Hence we see that

ψ(s, t) = ψ

(
lim
m→∞

um, t

)
= lim

m→∞
ψ(um, t) = lim

m→∞

[
u2
mψ(1, 0) + t2ψ(0, 1)

]

= s2ψ(1, 0) + t2ψ(0, 1),

(3.8)

as desired.

Lemma 3.2. Let X and Y be normed spaces and r /= 2 a real number, and let f : X × X → Y be a
mapping such that

∥∥f
(
x + y, z −w

)
+ f

(
x − y, z +w

) − 2f(x, z) − 2f
(
y,w

)∥∥ ≤ ∥∥x
∥∥r +

∥∥y
∥∥r +

∥∥z
∥∥r +

∥∥w
∥∥r

(3.9)
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for all x, y, z,w ∈ X. Suppose f(0, 0) = 0 for r > 2. If Y is complete, then there exists a unique
2-variable quadratic mapping F : X ×X → Y such that

∥
∥f

(
x, y

) − F
(
x, y

)∥∥ ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
2 − 2r−1

(
2
∥
∥x

∥
∥r + 3

∥
∥y

∥
∥r) +

1
3
∥
∥f(0, 0)

∥
∥ (r < 2),

21−r

1 − 22−r
(
2
∥
∥x

∥
∥r + 3

∥
∥y

∥
∥r) (r > 2)

(3.10)

for all x, y ∈ X. The mapping F is given by

F
(
x, y

)
:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
j→∞

1
4j
f
(
2jx, 2jy

)
(r < 2),

lim
m→∞

4jf
(
x

2j
,
y

2j

)
(r > 2)

(3.11)

for all x, y ∈ X.

Proof. Letting y = x and w = −z in (3.9), we gain

∥∥∥∥f(x, z) + f(x,−z) − 1
2
[
f(0, 0) + f(2x, 2z)

]
∥∥∥∥ ≤ ‖x‖r + ‖z‖r (3.12)

for all x, z ∈ X. Putting x = 0 in (3.12), we get

∥∥∥∥f(0, z) + f(0,−z) − 1
2
[
f(0, 0) + f(0, 2z)

]
∥∥∥∥ ≤ ‖z‖r (3.13)

for all z ∈ X. Replacing z by −z in the above inequality, we have

∥∥∥∥f(0,−z) + f(0, z) − 1
2
[
f(0, 0) + f(0,−2z)]

∥∥∥∥ ≤ ‖z‖r (3.14)

for all z ∈ X. By the above two inequalities, we see that

∥∥f(0, 2z) − f(0,−2z)∥∥ ≤ 4‖z‖r (3.15)

for all z ∈ X. Setting y = x and w = z in (3.9), we obtain that

∥∥f(2x, 0) + f(0, 2z) − 4f(x, z)
∥∥ ≤ 2

(‖x‖r + ‖z‖r) (3.16)

for all x, z ∈ X. Replacing z by −z in the above inequality, we see that

∥∥f(2x, 0) + f(0,−2z) − 4f(x,−z)∥∥ ≤ 2
(‖x‖r + ‖z‖r) (3.17)
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for all x, z ∈ X. By the last two inequalities, we know that

∥
∥
∥
∥f(x, z) − f(x,−z) − 1

4
[
f(0, 2z) − f(0,−2z)]

∥
∥
∥
∥ ≤ ‖x‖r + ‖z‖r (3.18)

for all x, z ∈ X. By (3.12) and (3.18), we obtain that

∥
∥∥
∥f(x, z) −

1
8
[
f(0, 2z) − f(0,−2z)] − 1

4
[
f(0, 0) + f(2x, 2z)

]
∥
∥∥
∥ ≤ ‖x‖r + ‖z‖r (3.19)

for all x, z ∈ X. By (3.15) and the above inequality, we have

∥
∥
∥
∥f(x, z) −

1
4
[
f(0, 0) + f(2x, 2z)

]
∥
∥
∥
∥ ≤ ‖x‖r + 3

2
‖z‖r (3.20)

for all x, z ∈ X. Thus we obtain that

∥∥∥∥
1
4j
f
(
2jx, 2jz

)
− 1
4j+1

[
f(0, 0) + f

(
2j+1x, 2j+1z

)]∥∥∥∥ ≤ 2j(r−2)
(
‖x‖r + 3

2
‖z‖r

)
(3.21)

for all x, z ∈ X and all j. Replacing z by y in the above inequality, we see that

∥∥∥∥
1
4j
f
(
2jx, 2jy

)
− 1
4j+1

[
f(0, 0) + f

(
2j+1x, 2j+1y

)]∥∥∥∥ ≤ 2j(r−2)
(∥∥x

∥∥r +
3
2
∥∥y

∥∥r
)

(3.22)

for all x, y ∈ X and all j. For given integers l,m (0 ≤ l < m), we obtain that

∥∥∥∥
1
4m

f
(
2mx, 2my

) − 1
4l
f
(
2lx, 2ly

)
+
1
3

(
1
4l

− 1
4m

)
f(0, 0)

∥∥∥∥ ≤ 2l(r−2) − 2m(r−2)

1 − 2r−2

(∥∥x
∥∥r +

3
2
∥∥y

∥∥r
)

(3.23)

for all x, y ∈ X.
Consider the case r < 2. By (3.23), the sequence {(1/4j)f(2jx, 2jy)} is a Cauchy

sequence for all x, y ∈ X. Since Y is complete, the sequence {(1/4j)f(2jx, 2jy)} converges
for all x, y ∈ X. Define F : X ×X → Y by F(x, y) := limj→∞(1/4j)f(2jx, 2jy) for all x, y ∈ X.
By (3.9), we have

∥∥∥∥
1
4j
f
(
2j
(
x + y

)
, 2j(z −w)

)
+

1
4j
f
(
2j
(
x − y

)
, 2j(z +w)

)

− 2
4j
f
(
2jx, 2jz

)
− 2
4j
f
(
2jy, 2jw

)∥∥∥∥ ≤ 2(r−2)j
(∥∥x

∥∥r +
∥∥y

∥∥r +
∥∥z

∥∥r +
∥∥w

∥∥r)
(3.24)

for all x, y, z,w ∈ X and all j. Letting j → ∞, we see that F satisfies (1.2). Setting l = 0
and taking m → ∞ in (3.23), one can obtain inequality (3.10). If G : X × X → Y is another
2-dimensional vector variable quadratic mapping satisfying (3.10), by [8, Theorem 3], there
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are four symmetric biadditive mappings S, T,U, V : X ×X → Y such that F(x, y) = S(x, x) +
T(y, y) and G(x, y) = U(x, x) + V (y, y) for all x, y ∈ X. Thus we obtain that

∥
∥F

(
x, y

) −G
(
x, y

)∥∥ =
∥
∥S(x, x) + T

(
y, y

) −U(x, x) − V
(
y, y

)∥∥

=
1
4n

∥
∥S(2nx, 2nx) + T

(
2ny, 2ny

) −U(2nx, 2nx) − V
(
2ny, 2ny

)∥∥

=
1
4n

∥
∥F

(
2nx, 2ny

) −G
(
2nx, 2ny

)∥∥

≤ 1
4n

∥
∥F

(
2nx, 2ny

) − f
(
2nx, 2ny

)∥∥ +
1
4n

∥
∥f

(
2nx, 2ny

) −G
(
2nx, 2ny

)∥∥

≤ 2n(r−2)

1 − 2r−2
(
2
∥
∥x

∥
∥r + 3

∥
∥y

∥
∥r) +

21−2n

3
∥
∥f(0, 0)

∥
∥

−→ 0, as n −→ ∞
(3.25)

for all x, y ∈ X. Hence the mapping F is the unique 2-dimensional vector variable quadratic
mapping, as desired.

Next, consider the case r > 2. Since f(0, 0) = 0, by inequality (3.20), we gain

∥∥∥4f
(x
2
,
z

2

)
− f(x, z)

∥∥∥ ≤ 1
2r−1

(
2‖x‖r + 3‖z‖r) (3.26)

for all x, z ∈ X. Thus we get

∥∥∥∥4
j+1f

(
x

2j+1
,

z

2j+1

)
− 4jf

(
x

2j
,
z

2j

)∥∥∥∥ ≤ 2j(2−r)+1−r
(
2‖x‖r + 3‖z‖r) (3.27)

for all x, z ∈ X and all j. Replacing z by y in the above inequality, we have

∥∥∥∥4
j+1f

(
x

2j+1
,

y

2j+1

)
− 4jf

(
x

2j
,
y

2j

)∥∥∥∥ ≤ 2j(2−r)+1−r
(
2
∥∥x

∥∥r + 3
∥∥y

∥∥r) (3.28)

for all x, y ∈ X and all j. For given integers l,m (0 ≤ l < m), we obtain that

∥∥∥∥4
mf

( x

2m
,
y

2m
)
− 4lf

(
x

2l
,
y

2l

)∥∥∥∥ ≤ 22−r − 2(2−r)(m+1)

2 − 23−r
(
2
∥∥x

∥∥r + 3
∥∥y

∥∥r) (3.29)
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for all x, y ∈ X. By (3.29), the sequence {4jf(x/2j , y/2j)} is a Cauchy sequence for all x, y ∈
X. Since Y is complete, the sequence {4jf(x/2j , y/2j)} converges for all x, y ∈ X. Define
F : X ×X → Y by F(x, y) := limj→∞4jf(x/2j , y/2j) for all x, y ∈ X. By (3.9), we have

∥
∥
∥
∥4

jf

(
x + y

2j
,
z −w

2j

)
+ 4jf

(
x − y

2j
,
z +w

2j

)
− 2 · 4jf

(
x

2j
,
z
2j

)
− 2 · 4jf

(
y

2j
,
w

2j

)∥
∥
∥
∥

≤ 2(2−r)j
(∥∥x

∥
∥r +

∥
∥y

∥
∥r +

∥
∥z

∥
∥r + 3

∥
∥w

∥
∥r)

(3.30)

for all x, y, z,w ∈ X and all j. Letting j → ∞, we see that F satisfies (1.2). Setting l = 0 and
taking m → ∞ in (3.29), one can obtain inequality (3.10). If G : X × X → Y is another 2-
dimensional vector variable quadratic mapping satisfying (3.10), by in [8, Theorem 3], there
are four symmetric biadditive mappings S, T,U, V : X ×X → Y such that F(x, y) = S(x, x) +
T(y, y) and G(x, y) = U(x, x) + V (y, y) for all x, y ∈ X. Thus we obtain that

∥∥F
(
x, y

) −G
(
x, y

)∥∥ =
∥∥S(x, x) + T

(
y, y

) −U(x, x) − V
(
y, y

)∥∥

= 4n
∥∥∥S

( x

2n
,
x

2n
)
+ T

( y

2n
,
y

2n
)
−U

( x

2n
,
x

2n
)
− V

( y

2n
,
y

2n
)∥∥∥

= 4n
∥∥∥F

( x

2n
,
y

2n
)
−G

( x

2n
,
y

2n
)∥∥∥

≤ 4n
∥∥∥F

( x

2n
,
y

2n
)
− f

( x

2n
,
y

2n
)∥∥∥ + 4n

∥∥∥f
( x

2n
,
y

2n
)
−G

( x

2n
,
y

2n
)∥∥∥

≤ 2(2−r)(n+1)

1 − 22−r
(
2
∥∥x

∥∥r + 3
∥∥y

∥∥r)

−→ 0, as n −→ ∞

(3.31)

for all x, y ∈ X. Hence the mapping F is the unique 2-dimensional vector variable quadratic
mapping, as desired.

Theorem 3.3. Let r /= 2 be a real number, and let f : AM×AM → AN be a mapping such that

∥∥∥f
(
ax + ay, az − aw

)
+ f

(
ax − ay, az + aw

) − 2a2f(x, z) − 2a2f
(
y,w

)∥∥∥

≤ ∥∥x
∥∥r +

∥∥y
∥∥r +

∥∥z
∥∥r +

∥∥w
∥∥r

(3.32)

for all a ∈ A1 and all x, y, z,w ∈ AM. If f(tx, ty) is continuous in t ∈ R for each fixed x, y ∈ AM,
then there exists a unique 2-dimensional vector variableA-quadratic mapping F : AM×AM → AN
satisfying (1.2) and (3.10) for all x, y ∈ AM.

Proof. Suppose r < 2. By Lemma 3.2, it follows from the inequality of the statement for a = 1
that there exists a unique 2-dimensional vector variable quadratic mapping F : AM×AM →
AN satisfying (1.2) and inequality (3.10) for all x, y ∈ AM.

Let x0, y0 ∈ AM be fixed. And let L : AN → R be any continuous linear functional,
that is, L is an arbitrary element of the dual space of AN. For n ∈ N, consider two
functions ζn : R → R and ξn : R → R defined by ζn(t) := (1/4n)L[f(2ntx0, 0)] and
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ξn(t) := (1/4n)L[f(0, 2nty0)] for all t ∈ R. By the assumption that f(tx, ty) is continuous
in t ∈ R for each fixed x, y ∈ AM, the functions ζn and ξn are continuous for all n ∈ N. Note
that ζn(t) = (1/4n)L[f(2ntx0, 0)] = L[(1/4n)f(2ntx0, 0)] and ξn(t) = (1/4n)L[f(0, 2nty0)] =
L[(1/4n)f(0, 2nty0)] for all n ∈ N and all t ∈ R. By [8], the sequences {ζn(t)} and {ξn(t)}
are Cauchy sequences for all t ∈ R. Define two functions ζ : R → R and ξ : R → R by
ζ(t) := limn→∞ ζn(t) and ξ(t) := limn→∞ ξn(t) for all t ∈ R. Note that ζ(t) = L[F(tx0, 0)] and
ξ(t) = L[F(0, ty0)] for all t ∈ R. Since F satisfies (1.2), we get

ζ(s + t) + ζ(s − t) = L(F[(s + t)x0, 0]) + L(F[(s − t)x0, 0])

= L(F[(s + t)x0, 0] + F[(s − t)x0, 0]) = L[F(sx0 + tx0, 0) + F(sx0 − tx0, 0)]

= L[2F(sx0, 0) + 2F(tx0, 0)] = 2L[F(sx0, 0)] + 2L[F(tx0, 0)] = 2ζ(s) + 2ζ(t),

ξ(s + t) + ξ(s − t) = L
(
F
[
0, (s + t)y0

])
+ L

(
F
[
0, (s − t)y0

])

= L
(
F
[
0, (s + t)y0

]
+ F

[
0, (s − t)y0

])
= L

[
F
(
0, sy0 + ty0

)
+ F

(
0, sy0 − ty0

)]

= L
[
2F

(
0, sy0

)
+ 2F

(
0, ty0

)]
= 2L

[
F
(
0, sy0

)]
+ 2L

[
F
(
0, ty0

)]
= 2ξ(s) + 2ξ(t)

(3.33)

for all s, t ∈ R. Since ζ and ξ are the pointwise limits of continuous functions, they are Borel
functions. Thus the functions ζ and ξ as measurable quadratic functions are continuous (see
[13]), so have the forms ζ(t) = t2ζ(1) and ξ(t) = t2ξ(1) for all t ∈ R. Since F satisfies (1.2), by
[8, Theorem 3], there exist two symmetric biadditive mappings S, T : X × X → Y such as
F(x, y) = S(x, x) + T(y, y) for all x, y ∈ X. Hence we have

L
[
F
(
tx0, ty0

)]
= L

[
F(tx0, 0) + F

(
0, ty0

)]
= L[F(tx0, 0)] + L

[
F
(
0, ty0

)]
= ζ(t) + ξ(t)

= t2ζ(1) + t2ξ(1) = t2L[F(x0, 0)] + t2L
[
F
(
0, y0

)]

= t2L
[
F(x0, 0) + F

(
0, y0

)]
= t2L

[
S(x0, x0) + T

(
y0, y0

)]

= t2L
[
F
(
x0, y0

)]
= L

[
t2F

(
x0, y0

)]

(3.34)

for all t ∈ R. Since L is any continuous linear functional, the 2-dimensional quadratic mapping
F : AM×AM → AN satisfies F(tx0, ty0) = t2F(x0, y0) for all t ∈ R. Therefore we obtain

F
(
tx, ty

)
= t2F

(
x, y

)
(3.35)

for all t ∈ R and all x, y ∈ AM. Let j be an arbitrary positive integer. Replacing x and z by 2jx
and 2jz, respectively, and letting y = w = 0 in inequality (3.32), we gain

∥∥∥f
(
2jax, 2jaz

)
− a2f

(
2jx, 2jz

)
− a2f(0, 0)

∥∥∥ ≤ 2jr−1
(‖x‖r + ‖z‖r) (3.36)

for all a ∈ A1 and all x, z ∈ AM. Note that there is a constant K > 0 such that the condition

‖av‖ ≤ K|a|‖v‖ (3.37)
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for each a ∈ A and each v ∈ AN (see [12, Definition 12]). For all a ∈ A1 and all x, y ∈ AM,
we get

1
4j

∥
∥
∥f

(
2jax, 2jay

)
− a2f

(
2jx, 2jy

)∥∥
∥ ≤ 2j(r−2)−1

(‖x‖r + ‖w‖r) + K|a|2
4j

∥
∥f(0, 0)

∥
∥ −→ 0 (3.38)

as j → ∞. Hence we have

F
(
ax, ay

)
= lim

j→∞
1
4j
f
(
2jax, 2jay

)
= a2 lim

j→∞
1
4j
f
(
2jx, 2jy

)
= a2F

(
x, y

)
(3.39)

for all a ∈ A1 and all x, y ∈ AM. Since F(ax, ay) = a2F(x, y) for each a ∈ A1, by (3.35), we
obtain

F
(
ax, ay

)
= F

(
|a| a|a|x, |a|

a

|a|y
)

= |a|2F
(

a

|a|x,
a

|a|y
)

= a2F
(
x, y

)
(3.40)

for all nonzero a ∈ A and all x, y ∈ AM. By (3.35), we get F(0x, 0y) = 02F(x, y) for all
x, y ∈ AM. Therefore the mapping F : AM×AM → AN is the unique 2-dimensional vector
variable A-quadratic mapping satisfying (1.2) and (3.10).

The proof of the case r > 2 is similar to that of the case r < 2.

Theorem 3.4. Let r /= 2 be a real number and A of real rank 0, and let f : AM×AM → AN be a
mapping such that

∥∥f
(
ax + ay, bz − bw

)
+ f

(
ax − ay, bz + bw

) − 2abf(x, z) − 2ab
(
y,w

)∥∥

< ‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r
(3.41)

for all a, b ∈ (A+
1 ∩ Ain) ∪ {i} and all x, y, z,w ∈ AM. For each fixed x, y ∈ AM, let the sequence

{(1/4j)f(2jax, 2jby)} converge uniformly onA1 ×A1. If f(ax, by) is continuous in (a, b) ∈ (A1 ∪
R)2 for each fixed x, y ∈ AM, then there exists a unique 2-dimensional vector variable mapping
F : AM×AM → AN satisfying (1.2) and (3.10) such that F(ax, by) = abF(x, y) for all a, b ∈
A+

1 ∪ {i} and all x, y ∈ AM.

Proof. Suppose r < 2. By [8, Theorem 4], there exists a unique 2-dimensional quadratic
mapping F : AM×AM → AN satisfying (1.2) and inequality (3.10) on AM×AM. Let
x0, y0 ∈ AM be fixed. And let L be an arbitrary element of the dual space of AN. For n ∈ N,
consider the functions ψn : R × R → R defined by ψn(s, t) := (1/4n) L[f(2nsx0, 2nty0)]
for all s, t ∈ R. By the assumption that f(ax, by) is continuous in (a, b) ∈ (A1 ∪ R)2 for
each fixed x, y ∈ AM, the function ψn is continuous for all n ∈ N. Note that ψn(s, t) =
(1/4n) L[f(2nsx0, 2nty0)] = L[(1/4n) f(2nsx0, 2nty0)] for all n ∈ N and all s, t ∈ R. By [8],
the sequence ψn(s, t) is a Cauchy sequence for all s, t ∈ R. Define a function ψ : R×R → R by
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ψ(s, t) := limn→∞ψn(s, t) for all s, t ∈ R. Note that ψ(s, t) = L[F(sx0, ty0)] for all t ∈ R. Thus
we have

ψ(s1 + s2, t1 − t2) + ψ(s1 − s2, t1 + t2)

= L
(
F
[
(s1 + s2)x0, (t1 − t2)y0

])
+ L

(
F
[
(s1 − s2)x0, (t1 + t2)y0

])

= L
(
F
[
(s1 + s2)x0, (t1 − t2)y0

]
+ F

[
(s1 − s2)x0, (t1 + t2)y0

])

= L
[
F
(
s1x0 + s2x0, t1y0 − t2y0

)
+ F

(
s1x0 − s2x0, t1y0 + t2y0

)]

= L
[
2F

(
s1x0, t1y0

)
+ 2F

(
s2x0, t2y0

)]

= 2L
[
F
(
s1x0, t1y0

)]
+ 2L

[
F
(
s2x0, t2y0

)]

= 2ψ(s1, t1) + 2ψ(s2, t2)

(3.42)

for all s1, s2, t1, t2 ∈ R. Since ψ is the pointwise limit of continuous functions, it is a Borel
function. By Theorem 3.1, we gain ψ(s, t) = s2ψ(1, 0) + t2ψ(0, 1) for all s, t ∈ R. Hence we get

L
[
F
(
sx0, ty0

)]
= ψ(s, t) = s2ψ(1, 0) + t2ψ(0, 1) = s2L[F(x0, 0)] + t2L

[
F
(
0, y0

)]

= L
[
s2F(x0, 0) + t2F

(
0, y0

)] (3.43)

for all s, t ∈ R. Since L is any continuous linear functional, the 2-dimensional quadratic
mapping F : AM×AM → AN satisfies F(sx0, ty0) = s2F(x0, 0) + t2F(0, y0) for all s, t ∈ R.
Therefore we obtain

F
(
sx, ty

)
= s2F(x, 0) + t2F

(
0, y

)
(3.44)

for all s, t ∈ R and all x, y ∈ AM. Let j be an arbitrary positive integer. Replacing x and z by
2jx and 2jz, respectively, and letting y = w = 0 in the inequality (3.41), we get

∥∥∥f
(
2jax, 2jbz

)
− abf

(
2jx, 2jz

)
− abf(0, 0)

∥∥∥ ≤ 2jr−1
(‖x‖r + ‖z‖r) (3.45)

for all a, b ∈ (A+
1 ∩Ain)∪{i} and all x, z ∈ AM. By condition (3.37), for all a, b ∈ (A+

1 ∩Ain)∪{i}
and all x, y ∈ AM, we have

1
4j

∥∥∥f
(
2jax, 2jby

)
− abf

(
2jx, 2jy

)∥∥∥ ≤ 2j(r−2)−1
(‖x‖r + ‖z‖r) + K|a||b|

4j
∥∥f(0, 0)

∥∥

−→ 0, as j −→ ∞.

(3.46)

Hence we obtain that

F
(
ax, by

)
= lim

j→∞
1
4j
f
(
2jax, 2jby

)
= ab lim

j→∞
1
4j
f
(
2jx, 2jy

)
= abF

(
x, y

)
(3.47)

for all a, b ∈ (A+
1 ∩Ain) ∪ {i} and all x, y ∈ AM.
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Let c, d ∈ A+
1 \ Ain. Since Ain ∩ Asa is dense in Asa, there exist two sequences {cj}

and {dj} in Ain ∩ Asa such that cj → c and dj → d as j → ∞. Put pj := (1/|cj |) cj and
qj := (1/|dj |)dj . Then pj → c and qj → d as j → ∞. Set aj :=

√
pj�pj and bj :=

√
qj�qj . Then

aj → c and bj → d as j → ∞ and aj , bj ∈ A+
1 ∩Ain. Since {(1/4j)f(2jax, 2jby)} is uniformly

converges on A1 × A1 and f(ax, by) is continuous in a, b ∈ A1, we see that F(ax, by) is also
continuous in a, b ∈ A1 for each x, y ∈ AM. In fact, we gain

lim
(a,b)→ (c,d)

F
(
ax, by

)
= lim

(a,b)→ (c,d)
lim
j→∞

1
4j
f
(
2jax, 2jby

)
= lim

j→∞
lim

(a,b)→ (c,d)

1
4j
f
(
2jax, 2jby

)

= lim
j→∞

1
4j
f
(
2jcx, 2jdy

)
= F

(
cx, dy

)
(3.48)

for all x, y ∈ AM. Thus we get

lim
j→∞

F
(
ajx, bjy

)
= F

(
lim
j→∞

ajx, lim
j→∞

bjy

)
= F

(
cx, dy

)
(3.49)

for all x, y ∈ AM. By equality (3.47), we have

∥∥F
(
ajx, bjy

) − cdF
(
x, y

)∥∥ =
∥∥ajbjF

(
x, y

) − cdF
(
x, y

)∥∥ −→ ∥∥cdF
(
x, y

) − cdF
(
x, y

)∥∥ = 0
(3.50)

as j → ∞ for all x, y ∈ AM . By equality (3.49) and the above convergence, we see that

∥∥F
(
cx, dy

) − cdF
(
x, y

)∥∥ ≤ ∥∥F
(
cx, dy

) − F
(
ajx, bjy

)∥∥ +
∥∥F

(
ajx, bjy

) − cdF
(
x, y

)∥∥

−→ 0 as j −→ ∞
(3.51)

for all x, y ∈ AM. By equality (3.47) and the above convergence, we obtain F(ax, by) =
abF(x, y) for all a, b ∈ A+

1 ∪ {i} and all x, y ∈ AM.

The proof of the case r > 2 is similar to that of the case r < 2.
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