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We prove a sharp weighted Rellich inequality associated with a class of Greiner-type vector
fields on H-type groups. We also obtain some weighted Hardy- and Rellich-type inequalities on
nonisotropic Heisenberg groups. As an application, we get a Rellich-Sobolev-type inequality on
Heisenberg groups.

1. Introduction

The study of partial differential operators constructed from noncommutative vector fields
satisfying the Hörmander condition [1] has hadmuch development. We refer to [2, 3] and the
references therein for a systematic account of the study. Recently there have been considerable
interests in studying the sub-Laplacians as square sums of vector fields that are not invariant
or do not satisfy the Hörmander condition. Among the examples of such sub-Laplacians are
the Grushin operators, Greiner-type operators, and the sub-Laplacian constructed by Kohn
[4]. Those noninvariant sub-Laplacians also appear naturally in complex analysis. In [5] Beals
et al. considered the CR operators {Zj, Zj}

n

j=1 on R
2n+1 as boundary of the complex domain

⎧
⎪⎨

⎪⎩
(z1, . . . , zn+1) ∈ C

n+1 : Im zn+1 >

⎛

⎝
n∑

j=1

∣
∣zj

∣
∣2

⎞

⎠

k
⎫
⎪⎬

⎪⎭
, (1.1)
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where Zj = (1/2)Xj − iYj ,

Xj =
∂

∂xj
+ 2kyj |z|2k−2 ∂

∂t
, Yj =

∂

∂yj
− 2kxj |z|2k−2 ∂

∂t
, (1.2)

and k is a positive integer. The space R2n+1 has a natural structure of a Heisenberg group, but
the vector fields are not left or right invariant. In [6]Zhang andNiu studied the Greiner vector
fields on R

2n+1 for general parameter k ≥ 1 and got the corresponding Hardy-type inequality.
Note that for nonintegral k these vector fields do not satisfy the Hörmander condition and
are not smooth.

H-type groups were introduced by Kaplan [7] as direct generalizations of Heisenberg
groups. In [8]we define a class of vector fieldsX (see (2.5)) onH-type groups generalizing the
vector fields (1.2) considered in [5, 6] and find the fundamental solution of the corresponding
p-Laplacian with singularity at the identity element. Also we prove a Hardy-type inequality
associated to X.

The goal of the present paper is to continue our study on analysis associated with
Greiner-type vector fields X introduced in [8]. We will throughout study the Rellich
inequality which is a generalization of Hardy inequality to higher-order derivatives. They
have various applications in the study of elliptic and parabolic PDEs. The classical Rellich
inequality in R

n states that for n ≥ 5 and φ ∈ C∞
0 (Rn \ {0}),

∫

Rn

∣
∣Δφ(x)

∣
∣2dx ≥

(
n(n − 4)

4

)2 ∫

Rn

∣
∣φ(x)

∣
∣2

|x|4
dx. (1.3)

The constant n2(n − 4)2/16 is sharp and is never achieved. Davies and Hinz [9] generalized
(1.3) to the Lp case and showed that for any p ∈ (1, n/2) there holds

∫

Rn

∣
∣Δφ(x)

∣
∣pdx ≥

(
n
(
p − 1

)(
n − 2p

)

p2

)p ∫

Rn

∣
∣φ(x)

∣
∣p

|x|2p
dx. (1.4)

See also the works in [10–13].
In a recent paper [14] Yang obtains an L2 version of Rellich inequality associated

with the left-invariant vector fields in the setting of Heisenberg group, there is a similar L2

Rellich inequality on the general carnot group in [15] with different approach. A natural
question is to find an Lp version of Rellich inequality in this general setting. The main
purpose of the present paper is to prove some weighted Lp-Rellich inequalities associated
with Greiner-type vector fields onH-type groups. Our approach depends on the fundamental
solution of the corresponding square operator and the weighted Hardy inequality proved in
our earlier paper [8]. We prove also some weighted Lp Hardy and Rellich inequalities on
nonisotropic Heisenberg groups by a different method caused by the absence of the explicit
representation formula for fundamental solution. As an application, we get a Rellich-Sobolev-
type inequality on Heisenberg groups.

The plan of the paper is as follows. In Section 2 we introduce a class of Greiner-
type vector field and prove the corresponding weighted Lp-Rellich inequality on H-type
groups; Section 3 is devoted to the proof of weighted Hardy- and Rellich-type inequalities
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on nonisotropic Heisenberg groups and a Rellich-Sobolev-type inequality on Heisenberg
groups.

2. Rellich Inequality on H-Type Groups

We recall that a simply connected nilpotent group G is of Heisenberg type, or of H-type, if its
Lie algebra n = V ⊕ t is of step two, [V, V ] ⊂ t, [t, V ] = 0 and if there is an inner product 〈· , ·〉
on n such that the linear map

J : t −→ End(V ), (2.1)

defined by the condition

〈Jt(u), v〉 = 〈t, [u, v]〉 u, v ∈ V, z ∈ t, (2.2)

satisfies

J2t = −|t|2Id (2.3)

for all t ∈ t,where |t|2 = 〈t, t〉.
Groups of H-type were introduced by Kaplan in [7] as direct generalizations of

Heisenberg groups, and they have been studied quite extensively; see [16–19] and the
references therein.

We identify Gwith its Lie algebra n via the exponential map, exp : V ⊕ t → G. The Lie
group product is given by

(u, t)(v, s) =
(

u + v, t + s +
1
2
[u, v]

)

. (2.4)

For g ∈ G, we write g = (z(g), t(g)) ∈ V ⊕ t.
In [8] the authors constructed a family of Greiner-type vector fields X = {X1, . . . , Xm}

on G:

Xj = ∂j +
1
2
k|z|2k−2∂[z,ej ], j = 1, 2 . . . , m, (2.5)

where ∂j = ∂ej , ∂[z,ej ] are the directional derivatives, {ej}j=1,...,m is an orthonormal basis of V ,
and k ≥ 1 is a fixed parameter. If k = 1, Xj are the left-invariant vector fields defined by the
orthonormal basis {ej}mj=1 on V. The corresponding degenerate p-sub-Laplacian is

Lp,ku = divX

(
|∇Xu|p−2∇Xu

)
, (2.6)
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where

∇Xu = (X1u, . . . , Xmu), divX(u1, . . . , um) =
m∑

j=1

Xjuj . (2.7)

We denote

ΔX = L2,k =
m∑

i=1

X2
i . (2.8)

There is a one-parameter group of dilations {δλ : λ > 0} on G:

δλ : (z, t) �−→ (w, s) =
(
λz, λ2kt

)
. (2.9)

The volume element is transformed by δ via

dwds = λQdzdt, (2.10)

whereQ := m+2kqwithm = dimV and q = dim t. Qwill be called the degree of homogeneity
and is the homogeneous dimension if k = 1. We define a corresponding homogeneous norm by

d = d(z, t) :=
(
|z|4k + 16|t|2

)1/4k
. (2.11)

Remark 2.1. Note that when p = 2 and k = 1, Lp,k becomes the sub-Laplacian ΔG on the H-
type group G. If p = 2, q = 1, and k = 2, 3, . . ., Lp,k is a Greiner operator (see [5, 20]). Also
we note that vector fields {Xj} are neither left nor right invariant and they do not satisfy
Hörmander’s condition for k > 1, k /∈Z.

The main results in [8] are the following.

Theorem 2.2. Let G be an H-type group, k ≥ 1, and Q = m + 2kq. Then for 1 < p < ∞,

Γp =

⎧
⎪⎨

⎪⎩

Cp d(p−Q)/(p−1), p /=Q,

CQ log
1
d
, p = Q

(2.12)

is a fundamental solution of Lp,k with singularity at the identity element 0 ∈ G. Here d(z, t) is defined
in (2.11),

Cp =
p − 1
p −Q

(
σp

)−1/(p−1)
, CQ = −(σQ

)−1/(Q−1)
,

σp =
(
1
4

)q−1/2π(q+m)/2Γ
((
(2k − 1)p +m

)
/4k

)

Γ(m/2)Γ
((
(2k − 1)p +Q

)
/4k

) .

(2.13)
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Theorem 2.3. Let G be an H-type group, k ≥ 1, and Q = m + 2kq. Suppose that 1 < p < Q + α.
Then the following Hardy-type inequality holds for Φ ∈ C∞

0 (G \ {0}):
∫

G

dα|∇XΦ|p ≥
(
Q + α − p

p

)p ∫

G

dα

( |z|
d

)(2k−1)p∣∣
∣
∣
Φ
d

∣
∣
∣
∣

p

, (2.14)

where ∇Xf = (X1f,X2f, . . . , Xmf) is the gradient defined by the vector fields (2.5). Moreover, the
constant ((Q + α − p)/p)p is sharp.

Based on the above two theorems, we will prove the following Lp version of weighted
Rellich inequality on H-type groups.

Theorem 2.4. Let G be an H-type group, k ≥ 1, and Q = m + 2kq. Suppose that 1 < p < +∞, 2 −
Q < α < min{(p − 1)(Q − 2), (Q − 2)}. Then the following Rellich-type inequality holds for Φ ∈
C∞

0 (G \ {0}):

∫

G

dα+4k(p−1)|z|(2−4k)(p−1)∣∣ΔXφ
∣
∣p ≥

(
(Q + α − 2)

[(
p − 1

)
(Q − 2) − α

]

p2

)p ∫

G

dα−4k|z|4k−2∣∣φ∣∣p.

(2.15)

Moreover, the constant ((Q + α − 2)[(p − 1)(Q − 2) − α]/p2)p is sharp.

Remark 2.5. In the abelian case G = Rn, the above result recovers the classical Rellich
inequality (1.4) with d(x) = |x|, α = 2 − 2p under the condition 2p < n.

Remark 2.6. When we take p = 2 and k = q = 1, our inequality (2.15) is just inequality (1.5) in
[14] and inequality (5.2) in [15] for Heisenberg groups.

Now we prove Theorem 2.4.

Proof. We denote u = d2−Q, where d is as in (2.11), then

ΔX(dα) = ΔX

((
d2−Q

)α/(2−Q)
)

= ΔX

(
uα/(2−Q)

)

=
α

2 −Q
uα/(2−Q)−1ΔXu +

α

2 −Q

(
α

2 −Q
− 1

)

uα/(2−Q)−2|∇Xu|2,
(2.16)

for α > 2 −Q; we have

∫

G

∣
∣φ

∣
∣pΔXd

α =
∫

G

α

2 −Q
uα/(2−Q)−1ΔXu

∣
∣φ

∣
∣p +

∫

G

α

2 −Q

(
α

2 −Q
− 1

)

uα/(2−Q)−2|∇Xu|2
∣
∣φ

∣
∣p

=
∫

G

α

2 −Q

(
α

2 −Q
− 1

)

uα/(2−Q)−2|∇Xu|2
∣
∣φ

∣
∣p

= α(α − 2 +Q)
∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p

(2.17)
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since C2 · u is the fundamental solution of ΔX at the origin by Theorem 2.2; however the
left-hand side is

∫

G

∣
∣φ

∣
∣pΔXd

α = −
∫

G

p
∣
∣φ

∣
∣p−2φ∇Xφ∇X(dα)

= p

∫

G

dα
((

p − 1
)∣
∣φ

∣
∣p−2∣∣∇Xφ

∣
∣2 +

∣
∣φ

∣
∣p−2φΔXφ

)
.

(2.18)

Thus, by (2.17), (2.18), and the corresponding weighted Hardy inequality (Theorem 2.3), we
have

α(α−2+Q)
∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p−p

∫

G

dα
∣
∣φ

∣
∣p−2φΔXφ

= p
(
p−1)

∫

G

dα
∣
∣∇Xφ

∣
∣2
∣
∣φ

∣
∣p−2 =

4p
(
p−1)

p2

∫

G

dα
∣
∣
∣∇X

(∣
∣φ

∣
∣p/2

)∣
∣
∣
2

≥ 4
(
p−1)

p

(
Q+α−2

2

)2 ∫

G

dα
∣
∣φ

∣
∣p |∇Xd|2

d2
=

(
p−1)

p
(Q+α−2)2

∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p,

(2.19)

this implies that

−p
∫

G

dα
∣
∣φ

∣
∣p−2φΔXφ ≥

[(
p − 1

)

p
(Q + α − 2)2 − α(α − 2 +Q)

]∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p

= (Q + α − 2)

[(
p − 1

)

p
(Q + α − 2) − α

]∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p

=
(Q + α − 2)

[(
p − 1

)
(Q − 2) − α

]

p

∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p.

(2.20)

Applying Hölder’s inequality, we get

(Q + α − 2)
[(
p − 1

)
(Q − 2) − α

]

p2

∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p

≤
(∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p
)(p−1)/p(∫

G

dα

∣
∣
∣
∣
∇Xd

d

∣
∣
∣
∣

2(1−p)∣
∣ΔXφ

∣
∣p
)1/p

.

(2.21)

Noticing that

|∇Xd| =
( |z|

d

)2k−1
, (2.22)

we have thus proved (2.15).
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It remains to show the sharpness of the constant ((Q + α − p) /p)p. Let B be any
constant satisfying the inequality

∫

G

dα−2+2p|∇Xd|2−2p
∣
∣ΔXφ

∣
∣p ≥ B

∫

G

dα−2|∇Xd|2
∣
∣φ

∣
∣p. (2.23)

We will prove that B ≤ ((Q + α − 2)[(p − 1)(Q − 2) − α]/p2)p. The idea is to find functions
{uj}∞j=1 so that the difference between the left- and right-hand sides approximates to 0. Given
any positive integer j it is elementary that there exists ψj in C∞

0 (0,∞) such that suppψj =
[2−j−1, 2], ψj(x) = 1 on [2−j , 1], and |ψ ′

j(x)| ≤ C2j , |ψ ′′
j (x)| ≤ C22j on [2−j−1, 2−j], where C is a

constant independent of j. Let

uj(z, t) = d(z, t)(2−Q−α)/p−1/jψj(d(z, t)). (2.24)

Clearly uj ∈ C∞(G \ {0})which is radial. Denoting Cj by (2 −Q − α)/p − 1/j, it is easy to see
that

∇Xuj =

⎧
⎨

⎩

0, 0 ≤ d < 2−j−1, or d > 2

Cjd
Cj−1∇Xd, 2−j < d < 1,

ΔXuj =

⎧
⎨

⎩

0, 0 ≤ d < 2−j−1, or d > 2

Cj

(
Cj +Q − 2

)
dCj−2|∇Xd|2, 2−j < d < 1.

(2.25)

Here we used the fact that

dΔXd = (Q − 1)|∇Xd|2. (2.26)

The left-hand side of the above inequality (2.23) is

LHS =
∫

G

=
∫

2−j<d<1
+
∫

2−j−1<d≤2−j
+
∫

1≤d<2
=

∫

2−j<d<1
+I + II. (2.27)

The first integration is

∫

2−j<d<1
dα−2+2p|∇Xd|2−2p

∣
∣ΔXφ

∣
∣p

=
(
Q + α − 2

p
+
1
j

)p
((

p − 1
)
(Q − 2) − α

p
− 1
j

)p ∫

2−j<d<1
d−Q−p/j |∇Xd|2,

(2.28)

which can be evaluated as the last computations in the proof of Theorem 1 in [8], and is

(
Q + α − 2

p
+
1
j

)p
((

p − 1
)
(Q − 2) − α

p
− 1
j

)p

C0(2p − 1)j, (2.29)
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where C0 is a positive constant. Similarly,

RHS = B

∫

2−j<d<1
+III + IV. (2.30)

The first integration is precisely the same as above and is

B

∫

2−j<d<1
= BC0(2p − 1)j. (2.31)

It is easy to estimate the error terms which they are all bounded:

I, II, III, IV ≤ C. (2.32)

The inequality (2.23) now becomes

(
Q + α − 2

p
+
1
j

)p
((

p − 1
)
(Q − 2) − α

p
− 1
j

)p

C0(2p − 1)j + I + II

≥ BC0(2p − 1)j + III + IV.

(2.33)

Dividing both sides by j and letting j → ∞ prove our claim.

The following is an immediate consequence of Theorem 2.4, which is an extension of
the uncertainty principle inequality.

Corollary 2.7. Let G be a Heisenberg-type group, k ≥ 1, and Q = m + 2kq. Suppose that 1 < p <
+∞, 1/p + 1/q = 1, 2 −Q < α < min{(p − 1)(Q − 2), (Q − 2)}. Then for all φ ∈ C∞

0 (G \ {0}) the
following inequality holds:

(∫

G

dα+2(p−1)|∇Xd|2(1−p)
∣
∣ΔXφ

∣
∣p
)1/p(∫

G

d(2−α)q/p|∇Xd|2q/p
∣
∣φ

∣
∣q
)1/q

≥ (Q + α − 2)
[(
p − 1

)
(Q − 2) − α

]

p2

∫

G

∣
∣φ

∣
∣2.

(2.34)

Remark 2.8. We mention that when p = q = 2 and k = 1, our inequality (2.34) goes back to
inequality (5.7) in [15] in the setting of H-type group.

We end this sectionwith the following Rellich-type inequality on the polarizable group
which can be proved by the same method if we noted Theorem 2.15 and Proposition 2.18 in
[21] and the weighted Hardy inequality (Theorem 4.1) in [22].
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Theorem 2.9. Let G be a polarizable group with homogeneous dimension Q > 4. Suppose that 1 <
p < +∞, 2 − Q < α < min{(p − 1)(Q − 2), (Q − 2)}. Then the following inequality holds for all
φ ∈ C∞

0 (G \ {0}):

∫

G

Nα

∣
∣
∣
∣
∇GN

N

∣
∣
∣
∣

2(1−p)∣
∣ΔGφ

∣
∣p ≥

(
(Q + α − 2)[

(
p − 1

)
(Q − 2) − α]

p2

)p ∫

G

Nα

∣
∣
∣
∣
∇GN

N

∣
∣
∣
∣

2∣
∣φ

∣
∣p.

(2.35)

HereN = u1/(2−Q) is the homogeneous norm associated with the fundamental solution u for the Kohn
sub-Laplacian. Moreover, the constant ((Q + α − 2)[(p − 1)(Q − 2) − α]/p2)p is sharp.

3. Rellich Inequality on Nonisotropic Heisenberg Groups

Let a = (a1, a2, . . . , an), a1, a2, . . . , an > 0. Let H = H(a) = R
2n ⊕ R be the corresponding

nonisotropic Heisenberg group with the product

(ζ, t) ◦ (
η, s

)
=

⎛

⎝ζ + η, t + s + 2
n∑

j=1

aj

(
ζj+nηj − ζjηj+n

)

⎞

⎠. (3.1)

We consider the following nonisotropic Greiner-type vector fields:

Xj =
∂

∂xj
+ 2kajyj

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

k−1
∂

∂t
,

Yj =
∂

∂yj
− 2kajxj

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

k−1
∂

∂t
,

j = 1, . . . , n, (3.2)

where (x, y, t) ∈ R
2n ⊕ R, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). Denote

∇Hu = (X1u, . . . , Xnu, Y1u, . . . , Ynu),

divH(u1, . . . , u2n) =
n∑

j=1

(
Xjuj + Yjun+j

)
,

d =

⎛

⎜
⎝

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

2k

+ t2

⎞

⎟
⎠

1/4k

,

Q = 2
n∑

j=1

aj + 2k.

(3.3)

For further information on the nonisotropic Heisenberg group, see, for example, [23, 24].
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In this section we prove firstly the Lp Hardy-type inequality associated with the
Greiner-type vector fields (3.2) on the nonisotropic Heisenberg group H.

Theorem 3.1. Let H = H(a) be the anisotropic Heisenberg group with aj ≤ 1, j = 1, . . . , n. Let
α ∈ R, 2 ≤ p < Q + α and Φ ∈ C∞

0 (H \ {0}). Then the following inequality is valid:

∫

H

dα|∇LΦ|p ≥
(
Q + α − p

p

)p ∫

H

dα−2kp

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

p/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(k−1)p

|Φ|p, (3.4)

where d = ((
∑n

j=1 aj |zj |2)2k + t2)
1/4k

, Q = 2
∑n

j=1 aj + 2k.

For the proof of the above inequality, we need the following lemma which can be
proved by a similar method in [25].

Lemma 3.2. Let w ≥ 0 be a weight function in Ω ⊂ G and Lp,k,wu = divH(|∇Hu|p−2w∇Hu).
Suppose that for some λ > 0, there exists v ∈ C∞(Ω), v > 0 such that

−Lp,k,wv ≥ λgvp−1 (3.5)

for some g ≥ 0, in the sense of distribution acting on nonnegative test functions. Then for any u ∈
HW

1,p
0 (Ω, w), it holds that

∫

Ω
|∇Hu|pw ≥ λ

∫

Ω
g|u|p, (3.6)

whereHW
1,p
0 (Ω, w) denote the closure of C∞

0 (Ω) in the norm (
∫

Ω |∇Hu|pw)1/p.

We now prove Theorem 3.1.

Proof. Take w = dα and v = d(p−Q−α)/p. Noting that

LH,p,wv =
n∑

i=1

[
Xi

(
|∇Lv|p−2wXiv

)
+ Yi

(
|∇Lv|p−2wYiv

)]
,

Xid =

[(∑n
j=1 aj

∣
∣zj

∣
∣2
)2k−1

aixi +
(∑n

j=1 aj

∣
∣zj

∣
∣2
)k−1

aiyit

]

d4k−1 ,

Yid =

[(∑n
j=1 aj

∣
∣zj

∣
∣2
)2k−1

aiyi −
(∑n

j=1 aj

∣
∣zj

∣
∣2
)k−1

aixit

]

d4k−1 ,

|∇Ld|2 =

(∑n
j=1 a

2
j

∣
∣zj

∣
∣2
)(∑n

j=1 aj

∣
∣zj

∣
∣2
)2k−2

d4k−2 ,

(3.7)
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we get

−LH,p,wv = −
n∑

i=1

[

Xi

(

dα

∣
∣
∣
∣
Q + α − p

p
d−(Q+α)/p

∣
∣
∣
∣

p−2
|∇Ld|p−2

(
p −Q − α

p

)

d−(Q+α)/pXid

)

+Yi

(

dα

∣
∣
∣
∣
Q + α − p

p
d−(Q+α)/p

∣
∣
∣
∣

p−2
|∇Ld|p−2

(
p −Q − α

p

)

d−(Q+α)/pYid

)]

=
(
Q + α − p

p

)p−1
{I1 + I2 + I3 + I4},

(3.8)

where

I1 =
(
Q + α − pQ

p
+
(
2 − p

)
(2k − 1)

)

d(Q+α−pQ−p)/p+(2−p)(2k−1)

×
⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

(p−2)/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(p−2)(k−1)

|∇Ld|2;

I2 =
(
p − 2

)
d(Q+α−pQ)/p+(2−p)(2k−1)

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

(p−4)/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(p−2)(k−1)

×
n∑

j=1

a2
j

(
xj ·Xjd + yj · Yjd

)
;

I3 = 2(k − 1)
(
p − 2

)
d(Q+α−pQ)/p+(2−p)(2k−1)

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

(p−2)/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(p−2)(k−1)−1

×
n∑

j=1

aj

(
xj ·Xjd + yj · Yjd

)
;

I4 = d(Q+α−pQ)/p+(2−p)(2k−1)

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

(p−2)/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(p−2)(k−1)
n∑

j=1

(
X2

j d + Y 2
j d

)
.

(3.9)

By direct computations we have

n∑

j=1

aj

(
xj ·Xjd + yj · Yjd

)
=

(∑n
j=1 aj

∣
∣zj

∣
∣2
)2k−1(∑n

j=1 a
2
j

∣
∣zj

∣
∣2
)

d4k−1 ,

n∑

j=1

a2
j

(
xj ·Xjd + yj · Yjd

)
=

(∑n
j=1 aj

∣
∣zj

∣
∣2
)2k−1(∑n

j=1 a
3
j

∣
∣zj

∣
∣2
)

d4k−1 ,
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n∑

j=1

(
X2

j d + Y 2
j d

)
=

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

2(k−1)(
2
∑n

j=1 aj

)(∑n
j=1 aj

∣
∣zj

∣
∣2
)
+
∑n

j=1 a
2
j

∣
∣zj

∣
∣2

d4k−1 .

(3.10)

Then

−LH,p,wv=
(
Q+α−p

p

)p−1
d(Q+α)/p−1−Q+(2k−1)(2−p)

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

(p−4)/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(k−1)p

· II,

(3.11)

where

II =

⎧
⎪⎨

⎪⎩

(
Q + α

p
−Q + (2k − 1)

(
2 − p

)
)
⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

2

+
(
p − 2

)

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

⎛

⎝
n∑

j=1

a3
j

∣
∣zj

∣
∣2

⎞

⎠

+ 2(k − 1)
(
p − 2

)

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

2

+

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

×
⎧
⎨

⎩
(2k − 1)

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠ +

⎛

⎝2
n∑

j=1

aj

⎞

⎠

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

⎫
⎬

⎭

⎫
⎪⎬

⎪⎭
.

(3.12)

Using Cauchy inequality

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

⎛

⎝
n∑

j=1

a3
j

∣
∣zj

∣
∣2

⎞

⎠ ≥
⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

2

(3.13)

and that (since, by assumption, aj ≤ 1, j = 1, . . . , n)

n∑

j=1

aj

∣
∣zj

∣
∣2 ≥

n∑

j=1

a2
j

∣
∣zj

∣
∣2, (3.14)

we find

II ≥ Q + α − p

p

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

2

, (3.15)
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so for p ≥ 2,

−LH,p,wv ≥
(
Q + α − p

p

)p(
d(p−Q−α)/p

)p−1
dα−2kp

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

p/2⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

(k−1)p

=
(
Q + α − p

p

)p

vp−1dα−p|∇Ld|p.

(3.16)

Hence Theorem 3.1 follows from Lemma 3.2 with λ = ((Q + α − p)/p)p, g = dα−p|∇Ld|p.

Now it is time to prove the following Rellich inequality on nonisotropic Heisenberg
group.

Theorem 3.3. LetH = H(a) be a nonisotropic Heisenberg group with aj ≤ 1, j = 1, . . . , n. Suppose
that α ∈ R, 2 −Q < α ≤ 0 and u ∈ C∞

0 (H \ {0}). Then the following inequality is valid:

∫

H

dα−4k+4kp
(∑n

j=1 a
2
j

∣
∣zj

∣
∣2
)(2k−1)(p−1) |ΔHu|p

≥
(((

p − 1
)
(Q − 2) − α

)
(Q + α − 2)

p2

)p ∫

H

dα−4k

⎛

⎝
n∑

j=1

a2
j

∣
∣zj

∣
∣2

⎞

⎠

2k−1

|u|p,

(3.17)

where d = ((
∑n

j=1 aj |zj |2)2k + t2)
1/4k

, Q = 2
∑n

j=1 aj + 2k.

Remark 3.4. If p = 2, α = −2, and k = ai = 1 (i = 1, . . . , n), then we get the Rellich inequality
on the Heisenberg group H

n with homogeneous dimension Q = 2n + 2:

∫

Hn

d2

|z|2
|ΔHnu|2 ≥

(
Q(Q − 4)

4

)2 ∫

Hn

|z|2
d6 |u|2. (3.18)

We also mention that to our knowledge, even in the special case k = aj = 1, j = 1, 2, . . . , n,
our inequality (3.17) is new.

We now give the proof of Theorem 3.3.

Proof. We have

∫

H

|u|pΔXd
α = α

∫

H

|u|p
(
(α − 1)dα−2|∇Hd|2 + dα−1ΔHd

)

= α(α − 1)
∫

H

|u|pdα−2|∇Hd|2 + α

∫

H

|u|pdα−1ΔHd.

(3.19)
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By a direct computation we have

Xid =

[(∑n
j=1 aj

∣
∣zj

∣
∣2
)2k−1

aixi +
(∑n

j=1 aj

∣
∣zj

∣
∣2
)k−1

aiyit

]

d4k−1 ,

Yid =

[(∑n
j=1 aj

∣
∣zj

∣
∣2
)2k−1

aiyi −
(∑n

j=1 aj

∣
∣zj

∣
∣2
)k−1

aixit

]

d4k−1 ,

|∇Hd|2 =

(∑n
j=1 a

2
j

∣
∣zj

∣
∣2
)(∑n

j=1 aj

∣
∣zj

∣
∣2
)2k−2

d4k−2 ,

ΔHd =

⎛

⎝
n∑

j=1

aj

∣
∣zj

∣
∣2

⎞

⎠

2(k−1)(
2
∑n

j=1 aj

)(∑n
j=1 aj

∣
∣zj

∣
∣2
)
+ (2k − 1)

∑n
j=1 a

2
j

∣
∣zj

∣
∣2

d4k−1 .

(3.20)

Noting that ai ≤ 1 then

dΔHd ≥ (Q − 1)|∇Hd|2; (3.21)

we take α < 0 and thus deduce from (3.19) that

∫

H

|u|pΔXd
α ≤ α(Q + α − 2)

∫

H

|u|pdα−2|∇Hd|2. (3.22)

On the other hand,

∫

H

|u|pΔHdα = −p
∫

H

|u|p−2u∇Hu∇H(dα)

= p

∫

H

dα
((

p − 1
)|u|p−2|∇Hu|2 + |u|p−2uΔHu

)
.

(3.23)

Combining with (3.22), (3.23), and the L2 weighted Hardy inequality associated with
the Greiner-type vector fields (3.2) on the nonisotropic Heisenberg group (3.4), then we only
need to do the same steps as in Theorem 2.4 and thus finish the proof of Theorem 3.3.
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The following is also an uncertainty principle type inequality which is an immediate
consequence of Theorem 3.3.

Corollary 3.5. Let H = H(a) be an anisotropic Heisenberg group with aj ≤ 1, j = 1, . . . , n. Then
for u ∈ C∞

0 (H \ {0}), 1/p + 1/q = 1 (1 < p < ∞), the following inequality holds:

⎛

⎜
⎝

∫

H

⎛

⎜
⎝

d4k

(∑n
j=1 a

2
j

∣
∣zj

∣
∣2
)2k−1

⎞

⎟
⎠

p−1

|ΔHu|p
⎞

⎟
⎠

1/p⎛

⎜
⎜
⎝

∫

H

⎛

⎜
⎝

d4k

(∑n
j=1 a

2
j

∣
∣zj

∣
∣2
)2k−1

⎞

⎟
⎠

1/(p−1)

|u|q
⎞

⎟
⎟
⎠

1/q

≥
(
p − 1

)
(Q − 2)2

p2

∫

H

|u|2,
(3.24)

where d = ((
∑n

j=1 aj |zj |2k)
2
+ t2)

1/4k
, Q = 2

∑n
j=1 aj + 2k.

By a similar method, we can get the following inequality which does not contain the
weight |∇Hd|, so we omit the proof.

Theorem 3.6. Let H = H(a) be a nonisotropic Heisenberg group with aj ≤ 1, j = 1, . . . , n. Let
α ∈ R, 2 −Q < α ≤ 0 and u ∈ C∞

0 (H \ {0}). Then the following inequality is valid:

∫

H

|z|α|ΔHu|p ≥
(((

p − 1
)(
2
∑n

i=1 ai

) − α
)(
2
∑n

i=1 ai + α − 2p
)

p2

)p ∫

H

|z|α−2p|u|p. (3.25)

With the help of Theorem 3.6, we can also obtain a Rellich-Sobolev-type inequality on
the Heisenberg group.

Corollary 3.7. Let H = H
n be the Heisenberg group with homogeneous dimension Q = 2n + 2.

Suppose that 1 < p < (Q − 2)/2, 0 ≤ s ≤ p, ps = p(Q − 2s)/(Q − 2p). Then there exists a positive
constant C such that for any u ∈ C∞

0 (H \ {0}), the following inequality holds:

(∫

H

|u|ps
|z|2s

)1/ps

≤ C

(∫

H

|ΔHu|p
)1/p

. (3.26)

Proof. By Hölder inequality we have

∫

H

|u|ps
|z|2s

=
∫

H

|u|s
|z|2s

|u|Q(p−s)/(Q−2p) ≤
(∫

H

|u|p
|z|2p

)s/p(∫

H

|u|pQ/(Q−2p)
)(p−s)/p

. (3.27)
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Thanks to the Rellich inequality (3.25) with α = 0, ai = 1 (i = 1, 2, . . . , n) and the Sobolev
inequality on the nilpotent Lie group (Chapter IV Theorem 3.3.1 in [26])we get

∫

H

|u|ps
|z|2s

≤ C

(∫

H

|�Hu|p
)s/p(∫

H

|�Hu|p
)Q(p−s)/p(Q−2p)

= C

(∫

H

|�Hu|p
)(Q−2s)/(Q−2p)

.

(3.28)

Thus we obtain the desired result.
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