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We obtain the generalized Hyers-Ulam stability of the Cauchy-Jensen functional equation 2f(x +
y, (z +w)/2) = f(x, z) + f(x,w) + f(y, z) + f(y,w).

1. Introduction

In 1940, Ulam proposed the general Ulam stability problem (see [1]).
Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there

exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for
all x, y ∈ G1 then there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

In 1941, this problem was solved by Hyers [2] in the case of Banach space. Thereafter,
we call that type the Hyers-Ulam stability.

Throughout this paper, letX and Y be vector spaces. Amapping g : X → Y is called an
additive mapping (respectively, an affine mapping) if g satisfies the Cauchy functional equation
g(x+y) = g(x)+g(y) (respectively, the Jensen functional equation 2g((x+y)/2) = g(x)+g(y)).
Aoki [3] and Rassias [4, 5] extended the Hyers-Ulam stability by considering variables for
Cauchy equation. Using the method introduced in [3], Jung [6] obtained a result for Jensen
equation. It also has been generalized to the function case by Găvruta [7] and Jung [8] for
Cauchy equation, and by Lee and Jun [9] for Jensen equation.

Definition 1.1. A mapping f : X × X → Y is called a Cauchy-Jensen mapping if f satisfies the
system of equations
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f
(
x + y, z

)
= f(x, z) + f

(
y, z

)
,

2f
(
x,

y + z

2

)
= f

(
x, y

)
+ f(x, z).

(1.1)

WhenX = Y = R, the function f : R×R → R given by f(x, y) := axy+bx is a solution
of (1.1). In particular, letting x = y, we get a function g : R → R given by g(x) := f(x, x) =
ax2 + bx.

For a mapping f : X ×X → Y , consider the functional equation

2f
(
x + y,

z +w

2

)
= f(x, z) + f(x,w) + f

(
y, z

)
+ f

(
y,w

)
. (1.2)

Definition 1.2 (see [10, 11]). Let X be a real linear space. A quasi-norm is real-valued function
on X satisfying the following.

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖·‖) is called a quasi-normed space if ‖·‖ is a quasi-norm onX. The smallest
possibleK is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a complete quasi-
normed space. A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

∥∥x + y
∥∥p ≤ ‖x‖p + ∥∥y

∥∥p (1.3)

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
The authors [12] obtained the solutions of (1.1) and (1.2) as follows.

Theorem A. Amapping f : X×X → Y satisfies (1.1) if and only if there exist a biadditive mapping
B : X × X → Y and an additive mapping A : X → Y such that f(x, y) = B(x, y) + A(x) for all
x, y ∈ X.

Theorem B. A mapping f : X ×X → Y satisfies (1.1) if and only if it satisfies (1.2).

In this paper, we investigate the generalized Hyers-Ulam stability of (1.1) and (1.2).

2. Stability of (1.1) and (1.2)

Throughout this section, assume that X is a quasi-normed space with quasi-norm ‖ · ‖X and
that Y is a p-Banach space with p-norm ‖ · ‖Y . Let K be the modulus of concavity of ‖ · ‖Y .

Let ϕ : X ×X ×X → [0,∞) and ψ : X ×X ×X → [0,∞) be two functions such that

lim
n→∞

1
2n

ϕ
(
2nx, 2ny, z

)
= 0, lim

n→∞
1
2n

ψ
(
2nx, y, z

)
= 0, (2.1)

lim
n→∞

1
3n

ϕ
(
x, y, 3nz

)
= 0, lim

n→∞
1
3n

ψ
(
x, 3ny, 3nz

)
= 0 (2.2)



Journal of Inequalities and Applications 3

for all x, y, z ∈ X, and

M
(
x, y, z

)
:=

∞∑

j=0

1
2pj

ϕ
(
2jx, 2jy, z

)p
< ∞, (2.3)

N
(
x, y, z

)
:=

∞∑

j=0

1
3pj

ψ
(
x, 3jy, 3jz

)p
< ∞ (2.4)

for all x, y, z ∈ X.

Theorem 2.1. Suppose that a mapping f : X ×X → Y satisfies the inequalities

∥∥f(x + y, z) − f(x, z) − f(y, z)
∥∥
Y ≤ ϕ

(
x, y, z

)
, (2.5)

∥∥∥∥2f
(
x,

y + z

2

)
− f

(
x, y

) − f(x, z)
∥∥∥∥
Y

≤ ψ
(
x, y, z

)
(2.6)

for all x, y, z ∈ X. Then the limits

FC

(
x, y

)
:= lim

j→∞
1
2j
f
(
2jx, y

)
, FJ

(
x, y

)
:= lim

j→∞
1
3j
f
(
x, 3jy

)
(2.7)

exist for all x, y ∈ X and the mappings FC : X × X → Y and FJ : X × X → Y are Cauchy-Jensen
mappings satisfying

∥∥f
(
x, y

) − FC

(
x, y

)∥∥
Y ≤ 1

2
M

(
x, x, y

)1/p
, (2.8)

∥∥f(x, y) − f(x, 0) − FJ(x, y)
∥∥
Y ≤ K

3
N
(
x, y, y

)1/p (2.9)

for all x, y ∈ X.

Proof. Letting y = x and replacing z by y in (2.5) then,

∥∥f(2x, y) − 2f(x, y)
∥∥
Y ≤ ϕ

(
x, x, y

)
(2.10)

for all x, y ∈ X. Replacing x by 2nx in the above inequality and dividing by 2n+1, we get

∥∥∥∥
1

2n+1
f
(
2n+1x, y

)
− 1
2n

f(2nx, y)
∥∥∥∥
Y

≤ 1
2n+1

ϕ
(
2nx, 2nx, y

)
(2.11)
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for all x, y ∈ X and all nonnegative integers n. Since Y is a p-Banach space, we have

∥
∥
∥
∥

1
2n+1

f
(
2n+1x, y

)
− 1
2m

f(2mx, y)
∥
∥
∥
∥

p

Y

≤
n∑

j=m

∥
∥
∥
∥

1
2j+1

f(2j+1x, y) − 1
2j
f(2jx, y)

∥
∥
∥
∥

p

Y

≤ 1
2p

n∑

j=m

1
2pj

ϕ
(
2jx, 2jy, y

)p

(2.12)

for all x, y ∈ X and all nonnegative integers n and m with n ≥ m. Therefore we conclude
from (2.3) and (2.12) that the sequence {(1/2n)f(2nx, y)} is a Cauchy sequence in Y for all
x, y ∈ X. Since Y is complete, the sequence {(1/2n)f(2nx, y)} converges in Y for all x, y ∈ X.
So one can define the mapping FC : X ×X → Y by

FC

(
x, y

)
:= lim

n→∞
1
2n

f
(
2nx, y

)
(2.13)

for all x, y ∈ X. Letting m = 0 and passing the limit n → ∞ in (2.12), we get (2.8). Now, we
show that FC is a Cauchy-Jensen mapping. It follows from (2.1), (2.11), and (2.13) that

∥∥FC

(
2x, y

) − 2FC

(
x, y

)∥∥
Y = lim

n→∞

∥∥∥∥
1
2n

f(2n+1x, y) − 1
2n−1

f(2nx, y)
∥∥∥∥
Y

= 2 lim
n→∞

∥∥∥∥
1

2n+1
f
(
2n+1x, y

)
− 1
2n

f
(
2nx, y

)
∥∥∥∥
Y

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2nx, y

)
= 0

(2.14)

for all x, y ∈ X. So FC(2x, y) = 2FC(x, y) for all x, y ∈ X.
On the other hand it follows from (2.1), (2.5), (2.6), and (2.13) that

∥∥FC

(
x + y, z

)−FC(x, z)−FC

(
y, z

)∥∥
Y = lim

n→∞
1
2n

∥∥f
(
2nx + 2ny, z

)−f(2nx, z)−f(2ny, z)∥∥Y

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny, z

)
= 0,

∥∥∥∥2FC

(
x,

y + z

2

)
−FC

(
x, y

)−FC

(
y, z

)
∥∥∥∥
Y

= lim
n→∞

1
2n

∥∥∥∥f
(
2nx,

y + z

2

)
−f(2nx, y)−f(2ny, z)

∥∥∥∥
Y

≤ lim
n→∞

1
2n

ψ
(
2nx, y, z

)
= 0

(2.15)

for all x, y, z ∈ X. Thus FC is a Cauchy-Jensen mapping. Next, setting z = −y in (2.6) and
replacing y by −y and z by 3y in (2.6), one can obtain that

∥∥2f(x, 0) − f(x, y) − f(x,−y)∥∥Y ≤ ψ
(
x, y,−y),

∥∥2f(x, y) − f(x,−y) − f(x, 3y)
∥∥
Y ≤ ψ

(
x,−y, 3y),

(2.16)
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respectively, for all x, y ∈ X. By two above inequalities,

∥
∥3f(x, y) − 2f(x, 0) − f(x, 3y)

∥
∥
Y ≤ K

(
ψ
(
x, y,−y) + ψ

(
x,−y, 3y)) (2.17)

for all x, y ∈ X. By the same method as above, one can find a Cauchy-Jensen mapping FJ

which satisfies (2.9). In fact, FJ(x, y) := limj→∞(1/3j)f(x, 3jy) for all x, y ∈ X.

From now on, let χ : X ×X ×X ×X → [0,∞) be a function such that

lim
n→∞

1
6n

ϕ
(
2nx, 2ny, 3nz, 3nw

)
= 0, (2.18)

L
(
x, y, z,w

)
:=

∞∑

j=0

1
6pj

χ
(
2jx, 2jy, 3jz, 3jw

)p
< ∞ (2.19)

for all x, y, z,w ∈ X.
We will use the following lemma in order to prove Theorem 2.3.

Lemma 2.2 (see [13]). Let 0 < p ≤ 1 and let x1, x2, . . . , xn be nonnegative real numbers. Then

⎛

⎝
n∑

j=1

xj

⎞

⎠

p

≤
n∑

j=1

xj
p. (2.20)

Theorem 2.3. Suppose that a mapping f : X × X → Y satisfies f(x, 0) = f(0, x) = 0 and the
inequality

∥∥∥2f
(
x + y,

z +w

2

)
− f(x, z) − f(x,w) − f(y, z) − f(y,w)

∥∥∥
Y
≤ χ

(
x, y, z,w

)
(2.21)

for all x, y, z,w ∈ X. Then the limit F(x, y) := limj→∞(1/6j)f(2jx, 3jy) exists for all x, y ∈ X and
the mapping F : X ×X → Y is the unique Cauchy-Jensen mapping satisfying

∥∥f(x, y) − F(x, y)
∥∥
Y ≤ K

6
χ̃
(
x, y

)1/p
, (2.22)

where

χ̃
(
x, y

)
:=

∞∑

j=0

1
6pj

[
3pχ

(
2jx, 2jx, 3jy,−3jy

)p

+K3p
(
χ
(
2jx, 2jx,−3jy, 3jy

)p
+ χ

(
2jx, 2jx, 3jy, 3jy

)p)

+ K2pχ
(
2jx, 2jx,−3jy, 3j+1y

)p
+
Kp

2p
χ
(
2jx, 2jx, 3j+1y, 3j+1y

)p
]

(2.23)

for all x, y ∈ X.
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Proof. Letting y = x in (2.21), we get

∥
∥
∥2f

(
2x,

z +w

2

)
− 2f(x, z) − 2f(x,w)

∥
∥
∥
Y
≤ χ(x, x, z,w) (2.24)

for all x, z,w ∈ X. Putting z = y and w = −y in (2.24), we get

∥
∥2f(x, y) + 2f(x,−y)∥∥Y ≤ χ

(
x, x, y,−y) (2.25)

for all x, y ∈ X. Replacing z by −y and w by −y in (2.24), we get

∥
∥f(2x,−y) − 2f(x,−y)∥∥Y ≤ 1

2
χ
(
x, x,−y,−y) (2.26)

for all x, y ∈ X. By (2.25) and (2.26), we have

∥∥2f(x, y) + f(2x,−y)∥∥Y ≤ K

(
χ
(
x, x, y,−y) + 1

2
χ
(
x, x,−y,−y)

)
(2.27)

for all x, y ∈ X. Setting z = y and w = −3y in (2.24), we get

∥∥f(2x,−y) − f(x, y) − f(x,−3y)∥∥Y ≤ 1
2
χ
(
x, x, y,−3y) (2.28)

for all x, y ∈ X. By (2.27) and the above inequality, we get

∥∥3f(x, y) + f(x,−3y)∥∥Y ≤ K2
(
χ
(
x, x, y,−y) + 1

2
χ
(
x, x,−y,−y)

)
+
K

2
χ
(
x, x, y,−3y)

(2.29)

for all x, y ∈ X. Replacing y by 3y in (2.26), we get

∥∥f(2x,−3y) − 2f(x,−3y)∥∥Y ≤ 1
2
χ
(
x, x,−3y,−3y) (2.30)

for all x, y ∈ X. By (2.29) and the above inequality, we have

∥∥6f
(
x, y

)
+ f

(
2x,−3y)∥∥

Y ≤ K3(2χ
(
x, x, y,−y) + χ

(
x, x,−y,−y)) +K2χ

(
x, x, y,−3y)

+
K

2
χ
(
x, x,−3y,−3y)

(2.31)
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for all x, y ∈ X. Replacing y by −y in the above inequality, we get

∥
∥6f

(
x,−y) + f

(
2x, 3y

)∥∥
Y ≤ K3(2χ

(
x, x,−y, y) + χ

(
x, x, y, y

))
+K2χ

(
x, x,−y, 3y)

+
K

2
χ
(
x, x, 3y, 3y

) (2.32)

for all x, y ∈ X. By (2.25) and the above inequality, we get

∥
∥6f(x, y) − f(2x, 3y)

∥
∥
Y ≤ χ∗

(
x, y

)
, (2.33)

where

χ∗
(
x, y

)
:= 3Kχ

(
x, x, y,−y) +K4(2χ

(
x, x,−y, y) + χ

(
x, x, y, y

))
+K3χ

(
x, x,−y, 3y)

+
K2

2
χ
(
x, x, 3y, 3y

) (2.34)

for all x, y ∈ X. Replacing x by 2nx and y by 3ny in the above inequality and dividing 6n+1,we
get

∥∥∥∥
1
6n

f
(
2nx, 3ny

) − 1
6n+1

f
(
2n+1x, 3n+1y

)∥∥∥∥
Y

≤ 1
6n+1

χ∗
(
2nx, 3ny

)
(2.35)

for all x, y ∈ X and all nonnegative integers n. Since ‖ · ‖Y is a p-norm, we have

∥∥∥∥
1

6n+1
f(2n+1x, 3n+1y) − 1

6m
f(2mx, 3my)

∥∥∥∥

p

Y

≤
n∑

j=m

∥∥∥∥
1

6j+1
f
(
2j+1x, 3j+1y

)
− 1
6j
f(2jx, 3jy)

∥∥∥∥

p

Y

≤ 1
6p

n∑

j=m

1
6pj

χ∗
(
2jx, 3jy

)p

(2.36)

for all x, y ∈ X and all nonnegative integers n and m with n ≥ m. Therefore we conclude
from (2.18) and (2.36) that the sequence {(1/6n)f(2nx, 3ny)} is a Cauchy sequence in Y for
all x, y ∈ X. Since Y is complete, the sequence {(1/6n)f(2nx, 3ny)} converges in Y for all
x, y ∈ X. So one can define the mapping F : X ×X → Y by

F
(
x, y

)
:= lim

n→∞
1
6n

f
(
2nx, 3ny

)
(2.37)

for all x, y ∈ X. Letting m = 0, passing the limit n → ∞ in (2.36), and applying lemma,
we get (2.22). Now, we show that F is a Cauchy-Jensen mapping. By lemma, we infer that
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limn→∞(1/6n)χ∗(2nx, 3ny) = 0 for all x, y ∈ X. It follows from (2.18), (2.35), and the above
equality that

∥
∥F(2x, 3y) − 6F(x, y)

∥
∥
Y = lim

n→∞

∥
∥
∥
∥
1
6n

f(2n+1x, 3n+1y) − 1
6n−1

f(2nx, 3ny)
∥
∥
∥
∥
Y

= 6 lim
n→∞

∥
∥
∥
∥

1
6n+1

f(2n+1x, 3n+1y) − 1
6n

f(2nx, 3ny)
∥
∥
∥
∥
Y

≤ lim
n→∞

1
6n

χ∗
(
2nx, 3ny

)
= 0

(2.38)

for all x, y ∈ X. So F(2x, 3y) = 6F(x, y) for all x, y ∈ X.
On the other hand it follows from (2.18), (2.21), and (2.37) that

∥∥∥2F(x + y,
z +w

2
) − F(x, z) − F(x,w) − F(y, z) − F(y,w)

∥∥∥
Y

= lim
n→∞

1
6n

∥∥∥∥f
(
2nx + 2ny,

3nz + 3nw
2

)
− f(2nx, 3nz) − f(2nx, 3nw)

−f(2ny, 3nz) − f
(
2ny, 3nw

)
∥∥∥∥
Y

= lim
n→∞

1
6n

χ
(
2nx, 2ny, 3nz, 3nw

)
= 0

(2.39)

for all x, y, z,w ∈ X. Hence the mapping F satisfies (1.2). To prove the uniqueness of F, let
G : X → Y be another Cauchy-Jensen mapping satisfying (2.22). It follows from (2.19) that

lim
n→∞

1
6pn

L
(
2nx, 2ny, 3nz, 3nw

)
= lim

n→∞

∞∑

j=n

1
6pj

χ
(
2jx, 2jy, 3jz, 3jw

)p
= 0 (2.40)

for all x, y, z,w ∈ X. Hence limn→∞
1
6pn

χ̃(2nx, 3ny) = 0 for all x, y ∈ X. So it follows from

(2.22) and (2.37) that

∥∥F(x, y) −G(x, y)
∥∥p

Y = lim
n→∞

1
6pn

∥∥f(2nx, 3ny) −G(2nx, 3ny)
∥∥p

Y

≤ Kp

6p
lim
n→∞

1
6pn

χ̃
(
2nx, 3ny

)
= 0

(2.41)

for all x, y ∈ X. So F = G.
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