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We establish some new Hermite-Hadamard-type inequalities involving product of two functions.
Other integral inequalities for two functions are obtained as well. The analysis used in the proofs
is fairly elementary and based on the use of the Minkowski, Hölder, and Young inequalities.

1. Introduction

Integral inequalities have played an important role in the development of all branches of
Mathematics.

In [1, 2], Pachpatte established some Hermite-Hadamard-type inequalities involving
two convex and log-convex functions, respectively. In [3], Bakula et al. improved Hermite-
Hadamard type inequalities for products of two m-convex and (α,m)-convex functions.
In [4], analogous results for s-convex functions were proved by Kirmaci et al.. General
companion inequalities related to Jensen’s inequality for the classes of m-convex and (α,m)-
convex functions were presented by Bakula et al. (see [5]).

For several recent results concerning these types of inequalities, see [6–12] where
further references are listed.

The aim of this paper is to establish several new integral inequalities for nonnegative
and integrable functions that are related to the Hermite-Hadamard result. Other integral
inequalities for two functions are also established.
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In order to prove some inequalities related to the products of two functions we need
the following inequalities. One of inequalities of this type is the following one.

Barnes-Gudunova-Levin Inequality (see [13–15] and references therein)

Let f , g be nonnegative concave functions on [a, b]. Then, for p, q > 1 we have

(∫b

a

f(x)pdx

)1/p(∫b

a

g(x)qdx

)1/q

≤ B
(
p, q

) ∫b

a

f(x)g(x)dx, (1.1)

where

B
(
p, q

)
=

6(b − a)(1/p)+(1/q)−1(
p + 1

)1/p(
q + 1

)1/q . (1.2)

In the special case q = p we have

(∫b

a

f(x)pdx

)1/p(∫b

a

g(x)pdx

)1/p

≤ B
(
p, p

) ∫b

a

f(x)g(x)dx (1.3)

with

B
(
p, p

)
=

6(b − a)(2/p)−1(
p + 1

)2/p . (1.4)

To prove our main results we recall some concepts and definitions.
Let x = (x1, x2, . . . , xn) and p = (p1, p2, . . . , pn) be two positive n-tuples, and let r ∈

R ∪ {+∞,−∞}. Then, on putting Pn =
∑n

k=1 pk, the rth power mean of x with weights p is
defined [16] by

M
[r]
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
Pn

n∑
k=1

pkx
r
k

)1/r

, r /= +∞, 0,−∞,

(
n∏

k=1

x
pk
k

)1/Pn

, r = 0,

min(x1, x2, . . . , xn), r = −∞,

max(x1, x2, . . . , xn), r = ∞.

(1.5)
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Note that if −∞ ≤ r < s ≤ ∞, then

M
[r]
n ≤ M

[s]
n (1.6)

(see, e.g., [10, page 15]).
Let f : [a, b] → R and p ≥ 1. The p-norm of the function f on [a, b] is defined by

∥∥f∥∥p =

⎧⎪⎪⎨
⎪⎪⎩
(∫b

a

∣∣f(x)∣∣pdx
)1/p

, 1 ≤ p < ∞,

sup
∣∣f(x)∣∣, p = ∞,

(1.7)

and Lp([a, b]) is the set of all functions f : [a, b] → R such that ‖f‖p < ∞.
One can rewrite the inequality (1.1) as follows:

∥∥f∥∥p

∥∥g∥∥q ≤ B
(
p, q

) ∫b

a

f(x)g(x)dx. (1.8)

For several recent results concerning p-norms we refer the interested reader to [17].
Also, we need some important inequalities.

Minkowski Integral Inequality (see page 1 in [18])

Let p ≥ 1, 0 <
∫b
a f(x)

pdx < ∞, and 0 <
∫b
a g(x)

pdx < ∞. Then

(∫b

a

(
f(x) + g(x)

)p
dx

)1/p

≤
(∫b

a

f(x)pdx

)1/p

+

(∫b

a

g(x)pdx

)1/p

. (1.9)

Hermite-Hadamard’s Inequality (see page 10 in [10])

Let f : I ⊂ R → R be a convex function on interval I of real numbers and a, b ∈ I with a < b.
Then the following Hermite-Hadamard inequality for convex functions holds:

f

(
a + b

2

)
≤ 1

b − a

∫b

a

f(x)dx ≤ f(a) + f(b)
2

. (1.10)

If the function f is concave, the inequality (1.10) can be written as follows:

f(a) + f(b)
2

≤ 1
b − a

∫b

a

f(x)dx ≤ f

(
a + b

2

)
. (1.11)

For recent results, refinements, counterparts, generalizations, and new Hermite-Hadamard-
type inequalities, see [19–21].
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A Reversed Minkowski Integral Inequality (see page 2 in [18])

Let f and g be positive functions satisfying

0 < m ≤ f(x)
g(x)

≤ M, (x ∈ [a, b]). (1.12)

Then, putting c = (M(m + 1) + (M + 1))/((m + 1)(M + 1)), we have

(∫b

a

f(x)pdx

)1/p

+

(∫b

a

g(x)pdx

)1/p

≤ c

(∫b

a

(
f(x) + g(x)

)p
dx

)1/p

. (1.13)

One of the most important inequalities of analysis is Hölder’s integral inequality
which is stated as follows (for its variant see [10, page 106]).

Hölder Integral Inequality

Let p > 1 and 1/p + 1/q = 1. If f and g are real functions defined on [a, b] and if |f |p and |g|q
are integrable functions on [a, b], then

∫b

a

∣∣f(x)g(x)∣∣dx ≤
(∫b

a

∣∣f(x)∣∣pdx
)1/p(∫b

a

∣∣g(x)∣∣qdx
)1/q

, (1.14)

with equality holding if and only if A|f(x)|p = B|g(x)|q almost everywhere, where A and B
are constants.

Remark 1.1. Observe that whenever, fp is concave on [a, b], the nonnegative function f is also
concave on [a, b]. Namely,

(
f(ta + (1 − t)b)

)p ≥ tf(a)p + (1 − t)f(b)p, (1.15)

that is,

f(ta + (1 − t)b) ≥ (
tf(a)p + (1 − t)f(b)p

)1/p (1.16)

and p > 1; using the power-mean inequality (1.6), we obtain

f(ta + (1 − t)b) ≥ tf(a) + (1 − t)f(b). (1.17)

For q > 1, similarly if gq is concave on [a, b], the nonnegative function g is concave on
[a, b].
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2. The Results

Theorem 2.1. Let p, q > 1 and let f, g : [a, b] → R, a < b, be nonnegative functions such that fp

and gq are concave on [a, b]. Then

f(a) + f(b)
2

× g(a) + g(b)
2

≤ 1

(b − a)1/p+1/q
B
(
p, q

) ∫b

a

f(x)g(x)dx, (2.1)

and if 1/p + 1/q = 1, then one has

1
b − a

∫b

a

f(x)g(x)dx ≤ f

(
a + b

2

)
g

(
a + b

2

)
. (2.2)

Here B(·, ·) is the Barnes-Gudunova-Levin constant given by (1.1).

Proof. Since fp, gq are concave functions on [a, b], then from (1.11) and Remark 1.1 we get

(
f(a)p + f(b)p

2

)1/p

≤ 1

(b − a)1/p

(∫b

a

f(x)pdx

)1/p

≤ f

(
a + b

2

)
,

(
g(a)q + g(b)q

2

)1/q

≤ 1

(b − a)1/q

(∫b

a

g(x)qdx

)1/q

≤ g

(
a + b

2

)
.

(2.3)

By multiplying the above inequalities, we obtain (2.4) and (2.5)

(
f(a)p + f(b)p

2

)1/p(
g(a)q + g(b)q

2

)1/q

≤ 1

(b − a)1/p+1/q

(∫b

a

f(x)pdx

)1/p

×
(∫b

a

g(x)qdx

)1/q

,

(2.4)

1

(b − a)1/p+1/q

(∫b

a

f(x)pdx

)1/p(∫b

a

g(x)qdx

)1/q

≤ f

(
a + b

2

)
g

(
a + b

2

)
. (2.5)

If p, q > 1, then it easy to show that

(
f(a)p + f(b)p

2

)1/p

≥ f(a) + f(b)
2

,

(
g(a)q + g(b)q

2

)1/q

≥ g(a) + g(b)
2

.

(2.6)

Thus, by applying Barnes-Gudunova-Levin inequality to the right-hand side of (2.4) with
(2.6), we get (2.1).
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Applying the Hölder inequality to the left-hand side of (2.5) with 1/p + 1/q = 1, we
get (2.2).

Theorem 2.2. Let p ≥ 1, 0 <
∫b
a f(x)

pdx < ∞, and 0 <
∫b
a g(x)

pdx < ∞, and let f, g : [a, b] → R

be positive functions with

0 < m ≤ f

g
≤ M, ∀x ∈ [a, b], a < b. (2.7)

Then

∥∥f∥∥2
p +

∥∥g∥∥2
p∥∥f∥∥p

∥∥g∥∥p

≥ 1
s
− 2, (2.8)

where s = M/((M + 1)(m + 1)).

Proof. Since f, g are positive, as in the proof of the inequality (1.13) (see [18, page 2]), we have
that

(∫b

a

f(x)pdx

)1/p

≤ M

M + 1

(∫b

a

(
f(x) + g(x)

)p
dx

)1/p

,

(∫b

a

g(x)pdx

)1/p

≤ 1
m + 1

(∫b

a

(
f(x) + g(x)

)p
dx

)1/p

.

(2.9)

By multiplying the above inequalities, we get

(∫b

a

f(x)pdx

)1/p(∫b

a

g(x)pdx

)1/p

≤ s

(∫b

a

(
f(x) + g(x)

)p
dx

)2/p

. (2.10)

Since (
∫b
a f(x)

pdx)
1/p

= ‖f‖p and (
∫b
a g(x)

pdx)
1/p

= ‖g‖p, by applying the Minkowski integral
inequality to the right hand side of (2.10), we obtain inequality (2.8).

Theorem 2.3. Let fp and gq be as in Theorem 2.1. Then the following inequality holds:

(
f(a) + f(b)

)p(
g(a) + g(b)

)q
2(p+q)

≤ 1

(b − a)2
∥∥f∥∥p

p

∥∥g∥∥q

q. (2.11)

Proof. If fp, gq are concave on [a, b], then from (1.11) we get

f(a)p + f(b)p

2
≤ 1

(b − a)

∫b

a

f(x)pdx,

g(a)q + g(b)q

2
≤ 1

(b − a)

∫b

a

g(x)qdx,

(2.12)
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which imply that

[
f(a)p + f(b)p

][
g(a)q + g(b)q

]
4

≤ 1

(b − a)2

(∫b

a

f(x)pdx

)(∫b

a

g(x)qdx

)
. (2.13)

On the other hand, if p, q ≥ 1, from (1.6) we get

(
f(a)p + f(b)p

2

)1/p

≥ 2−1
[
f(a) + f(b)

]
,

(
g(a)q + g(b)q

2

)1/q

≥ 2−1
[
g(a) + g(b)

]
, (2.14)

or

f(a)p + f(b)p

2
≥ 2−p

[
f(a) + f(b)

]p
,

g(a)q + g(b)q

2
≥ 2−q

[
g(a) + g(b)

]q
, (2.15)

which imply that

[
f(a)p + f(b)p

][
g(a)q + g(b)q

]
4

≥ (
f(a) + f(b)

)p(
g(a) + g(b)

)q2−(p+q).
(2.16)

Combining (2.13) and (2.16), we obtain the desired inequality as

(
f(a) + f(b)

)p(
g(a) + g(b)

)q2−(p+q) ≤ 1

(b − a)2
∥∥f∥∥p

p

∥∥g∥∥q

q, (2.17)

that is,

(
f(a) + f(b)

)p(
g(a) + g(b)

)q ≤ 2(p+q)

(b − a)2
∥∥f∥∥p

p

∥∥g∥∥q

q. (2.18)

To prove the following theorem we need the following Young-type inequality (see [7,
page 117]):

xy ≤ 1
p
xp +

1
q
yq, for any x, y ≥ 0, p > 1,

1
p
+
1
q
= 1. (2.19)

Theorem 2.4. Let f, g : [a, b] → R
+ be functions such that fp, gp, and fg are in L1[a, b], and

0 < m ≤ f(x)
g(x)

≤ M, ∀x ∈ [a, b], a, b ∈ [0,∞). (2.20)
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Then

∫b

a

f(x)g(x)dx ≤ c1

⎛
⎝

∥∥f∥∥p

p +
∥∥g∥∥p

p

2

⎞
⎠ + c2

⎛
⎝

∥∥f∥∥q

q +
∥∥g∥∥q

q

2

⎞
⎠, (2.21)

where

c1 =
2p

p

(
M

M + 1

)p

, c2 =
2q

q

(
1

m + 1

)q

(2.22)

and 1/p + 1/q = 1 with p > 1.

Proof. From 0 < m ≤ f(x)/g(x) ≤ M, for all x ∈ [a, b],we have

f(x) ≤ M

M + 1
(
f(x) + g(x)

)
,

g(x) ≤ 1
m + 1

(
f(x) + g(x)

)
.

(2.23)

From (2.19) with (2.23)we obtain

∫b

a

f(x)g(x)dx ≤ 1
p

∫b

a

f(x)pdx +
1
q

∫b

a

g(x)qdx

≤ 1
p

(
M

M + 1

)p ∫b

a

(
f(x) + g(x)

)p
dx +

1
q

(
1

m + 1

)q ∫b

a

(
f(x) + g(x)

)q
dx.

(2.24)

Using the elementary inequality (c + d)p ≤ 2p−1(cp + dp), (p > 1 and c, d ∈ R+) in (2.24), we
get

∫b

a

f(x)g(x)dx ≤ 1
p

(
M

M + 1

)p

2p−1
∫b

a

[
f(x)p + g(x)p

]
dx

+
1
q

(
1

m + 1

)q

2q−1
∫b

a

[
f(x)q + g(x)q

]
dx

=
2p

p

(
M

M + 1

)p
⎛
⎝

∥∥f∥∥p

p +
∥∥g∥∥p

p

2

⎞
⎠ +

2q

q

(
1

m + 1

)q
⎛
⎝

∥∥f∥∥q

q +
∥∥g∥∥q

q

2

⎞
⎠.

(2.25)

This completes the proof of the inequality in (2.21).
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