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New results associated with Hermite-Hadamard inequalities for superquadratic functions are
given. A set of Cauchy’s type means is derived from these Hermite-Hadamard-type inequalities,
and its log-convexity and monotonicity are proved.

1. Introduction

The following inequality:

f

(
a + b

2

)
≤ 1

b − a

∫b

a

f(t)dt ≤ f(a) + f(b)
2

(1.1)

is holding for any convex function, that is, well known in the literature as the Hermite-
Hadamard inequality (see [1, page 137]). In many areas of analysis applications of Hermite-
Hadamard inequality appear for different classes of functions with and without weights; see
for convex functions, for example, [2, 3]. Also some useful mappings are defined connected
to this inequality see in [4–6]. Here we focus on a class of functions which are superquadratic
and analogs and refinements of (1.1) are applied to obtain results useful in analysis.

Now we present definitions, theorems, and results that we use in this paper.
The following definition is given in [7].
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Definition A. A function ϕ : [0,∞) → R is superquadratic provided that for all x ≥ 0 there
exists a constant C(x) such that

ϕ
(
y
) − ϕ(x) − ϕ

(∣∣y − x
∣∣) ≥ C(x)

(
y − x

)
(1.2)

for all y ≥ 0. One says that ϕ is subquadratic if −ϕ is a superquadratic function.
The followings theorem is given in [8] and is used in our main results:

Theorem 1.1. Let ϕ : [0,∞) → R be an integrable superquadratic function; then for 0 ≤ a < b one
has

ϕ

(
a + b

2

)
+

1
b − a

∫b

a

ϕ

(∣∣∣∣x − a + b

2

∣∣∣∣
)
dx ≤ 1

b − a

∫b

a

ϕ(x)dx, (1.3)

1
b − a

∫b

a

ϕ(x)dx ≤ ϕ(a) + ϕ(b)
2

− 1

(b − a)2

∫b

a

(
(b − x)ϕ(x − a) + (x − a)ϕ(b − x)

)
dx. (1.4)

Definition A1 (see [9, Definition 1]). A function h : (a, b) → R is exponentially convex if it is
continuous and

n∑
i,j=1

uiujh
(
xi + xj

) ≥ 0 (1.5)

for all n ∈ N and all choices ui ∈ R, i = 1, 2, . . . , n and xi ∈ (a, b), such that xi + xj ∈ (a, b), 1 ≤
i, j ≤ n.

Proposition 1.2 (see [9, Proposition 1]). Let h : (a, b) → R. The following are equivalent:

(i) h is exponentially convex,

(ii) h is continuous and

n∑
i,j=1

uiujh

(
xi + xj

2

)
≥ 0 (1.6)

for every ui ∈ R and every xi, xj ∈ (a, b), 1 ≤ i, j ≤ n,

(iii) h is continuous and

det
[
h

(
xi + xj

2

)]m
i,j=1

≥ 0, 1 ≤ m ≤ n, (1.7)

for every xi ∈ (a, b), i = 1, 2, . . . , n.
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Corollary 1.3 (see [8, 9]). If h : (a, b) → (0,∞) is exponentially convex function, then h is a
log-convex function:

h

(
x + y

2

)
≤
√
h(x)h

(
y
)

(1.8)

for all x, y ∈ (a, b).

Remark 1.4. In Definition A1 and Proposition 1.2 it is sufficient to require measurability and
finiteness almost every where in place of continuity because of the following theorem (see
[10, page 105, Theorem 9.1b] and [11]): if the function h : (a, b) → R is measurable and
finite almost everywhere and if in addition

−∞ < h(x) ≤ ∞,

h

(
x + y

2

)
≤ h(x) + h

(
y
)

2
(
a < x, y < b

)
,

(1.9)

then h is continuous function.

The next two sections are about mean value theorems, positive semidefiniteness,
exponential convexity, log-convexity, Cauchy means, and their monotonicity, that are
associated with Hermite-Hadamard inequalities for superquadratic functions.

2. Mean Value Theorems

Definition B. Let ϕ : [0,∞) → R be an integrable function; for 0 ≤ a < b one defines a linear
functional Λϕ as

Λϕ =
∫b

a

ϕ(x)dx − (b − a)ϕ
(
a + b

2

)
−
∫b

a

ϕ

(∣∣∣∣x − a + b

2

∣∣∣∣
)
dx. (2.1)

It is clear from (1.3) Theorem 1.1 of that; if ϕ is superquadratic function; then Λϕ ≥ 0.
In [7]we have the following Lemma.

Lemma 2.1. Suppose that ϕ : [0,∞) → R is continuously differentiable and ϕ(0) ≤ 0. If ϕ′ is
superadditive or ϕ′/x is increasing, then ϕ is superquadratic.

Lemma 2.2 (see [12, Lemma 2]). Let ϕ ∈ C2(I), I = (0,∞) such that

m ≤ ξϕ′′(ξ) − ϕ′(ξ)
ξ2

≤ M, ∀ξ ∈ I. (2.2)
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Consider the functions ϕ1, ϕ2 defined as

ϕ1(x) =
Mx3

3
− ϕ(x), ϕ2(x) = ϕ(x) − mx3

3
. (2.3)

Then ϕ′
1/x and ϕ′

2/x are increasing functions. If also ϕi(0) = 0, i = 1, 2, then they are superquadratic
functions.

Theorem 2.3. If ϕ′/x ∈ C1(I) and ϕ(0) = 0, then the following equality holds:

Λϕ =
1
96

ξϕ′′(ξ) − ϕ′(ξ)
ξ2

(b − a)
(
a2(5a − 7b) + b2(3b − a)

)
, ξ ∈ I. (2.4)

Proof. Suppose that ϕ′/x is bounded, that is, min(ϕ′/x) = m and max(ϕ′/x) = M. Using ϕ1

instead of ϕ in (1.3)we get

∫b

a

ϕ(t)dt − (b − a)ϕ
(
a + b

2

)
−
∫b

a

ϕ

(∣∣∣∣t − a + b

2

∣∣∣∣
)
dt ≤ M

96
(b − a)

(
a2(5a − 7b) + b2(3b − a)

)
.

(2.5)

Similarly, using ϕ2 instead of ϕ in (1.3)we get

∫b

a

ϕ(t)dt − (b − a)ϕ
(
a + b

2

)
−
∫b

a

ϕ

(∣∣∣∣t − a + b

2

∣∣∣∣
)
dt ≥ m

96
(b − a)

(
a2(5a − 7b) + b2(3b − a)

)
.

(2.6)

By combining the above two inequalities we get that there exists ξ ∈ (0,∞) such that (2.4)
holds. Moreover if (for example) ϕ′/x is bounded from above we have that (2.5) is valid.
Also (2.4) holds when ϕ′/x is not bounded.

We omit the proofs of Theorems 2.4 and 2.6 as they are similar to the proofs in [9, 13–
16].

Theorem 2.4. If ϕ′/x, ψ ′/x ∈ C1(I), ϕ(0) = ψ(0) = 0, and a2(5a − 7b) + b2(3b − a)/= 0, then one
has

Λϕ

Λψ
=

ξϕ′′(ξ) − ϕ′(ξ)
ξψ ′′(ξ) − ψ ′(ξ)

= K(ξ), ξ ∈ I, (2.7)

provided the denominators are not equal to zero. If K is invertible then

ξ = K−1
(

Λϕ

Λψ

)
, Λψ /= 0, (2.8)

is a new mean.
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It is easy to check that the set of functions ϕ(x) = xr/(r(r − 2)), r > 0, r /= 2, x ≥ 0,
satisfies Lemma 2.1. Therefore if we put ϕ(x) = xr/(r(r − 2)) and ψ(x) = xt/(t(t− 2)) in (2.8),
we have a new mean Nr,t defined as follows.
Definition B1. One defines new mean Nr,t for r, t > 0, r /= t and a, b > 0, a/= b, as follows:

Nr,t =

(
2tt(t + 1)(t − 2)(2r(br+1 − ar+1) − (b − a)(r + 1)(a + b)r − (b − a)r+1)

2rr(r + 1)(r − 2)(2t(bt+1 − at+1) − (b − a)(t + 1)(a + b)t − (b − a)t+1)

)1/(r−t)
, r, t /= 2.

(2.9)

When t goes to 2, we have

Nr,2 = N2,r =

(
24(2r(br+1 − ar+1) − (b − a)(r + 1)(a + b)r − (b − a)r+1)

2rr(r + 1)(r − 2)P

)1/(r−2)
, r /= 2,

(2.10)

where

P = 4 ln 2
(
b3 − a3

)
+ 4
(
b3 ln b − a3 lna

)
− (b − a)(a + b)2(1 + 3 ln(a + b)) − (b − a)3 ln(b − a).

(2.11)

When r goes to 2 we have

N2,2 = exp
(
3Q − (6 ln 2 + 5)P

6P

)
, (2.12)

where P is defined above and

Q = 2(ln 2)2
(
b3 − a3

)
+ 8 ln 2

(
b3 ln b − a3 lna

)
+ 4
(
b3(ln b)2 − a3(lna)2

)

− (b − a)(a + b)2(ln(a + b)(2 + 3 ln(a + b))) − (b − a)3(ln(b − a))2.
(2.13)

InNr,t when t goes to r, we have

Nr,r = exp

(
C

D
− ln 2r(r + 1)(r − 2) + 3r2 − 2r − 2

r(r + 1)(r − 2)

)
, r /= 2, (2.14)

where

C = 2r
(
ln 2

(
br+1 − ar+1

)
+ br+1 ln b − ar+1 lna

)
− (b − a)(a + b)r(1 + (r + 1) ln(a + b))

− (b − a)r+1 ln(b − a),

D = 2r
(
br+1 − ar+1

)
− (b − a)(r + 1)(a + b)r − (b − a)r+1.

(2.15)
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If we put ϕ(x) = xr/s/((r/s)(r/s − 2)) and ψ(x) = xt/s/((t/s)(t/s − 2)) in (2.8), then by the
substitution, a = as, b = bs, we have a new mean defined as
Definition B2. Let r, s, t ∈ R+, r /= t and a, b > 0, a/= b one defines Cauchy mean N

[s]
r,t as

N
[s]
r,t =

⎛
⎜⎝ t(t + s)(t − 2s)

(
s(br+s − ar+s) − (r + s)(bs − as)((as + bs)/2)r/s − A

)

r(r + s)(r − 2s)
(
s(bt+s − at+s) − (t + s)(bs − as)((as + bs)/2)t/s −B

)
⎞
⎟⎠

1/(r−t)

,

r, t /= 2s,
(2.16)

where A denotes 2s((bs − as)/2)(r+s)/s and B denotes 2s((bs − as)/2)(t+s)/s. In limiting case
when t goes to 2s N[s]

r,2s is equal to

⎛
⎜⎝6s2

(
s(br+s − ar+s) − (r + s)(bs − as)((as + bs)/2)r/s − 2s((bs − as)/2)(r+s)/s

)
r(r + s)(r − 2s)(s(b3s ln b − a3s lna) −P − C)

⎞
⎟⎠

1/(r−2s)

,

r /= 2s,
(2.17)

where P denotes (bs − as)((as + bs)/2)2(1 + 3 ln((as + bs)/2)) and C denotes
2((bs − as)/2)3 ln((bs − as)/2). When r goes to 2s we have,

N
[s]
2s,2s = exp

(
G

2sH
− 5
6s

)
, (2.18)

where

G = 4s2
(
b3s(ln b)2 − a3s(lna)2 − 2(bs − as)(as + bs)2 ln

(
as + bs

2

)(
2 − 3 ln

(
as + bs

2

)))

− 2(bs − as)3
(
ln(bs − as)

2

)2

,

H = 4s
(
b3s ln b − a3s lna

)
− (bs − as)(as + bs)2

(
1 + 3 ln

(
as + bs

2

))
− (bs − as)3 ln

(
bs − as

2

)
.

(2.19)

When t goes to r inN
[s]
r,t , we have

N
[s]
r,r = exp

(
H

s(br+s − ar+s) − (r + s)(bs − as)((as + bs)/2)r/s − 2s((bs − as)/2)(r+s)/s

− 6r
(r + s)(r − 2s)

)
, r /= 2s,

(2.20)
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where

H = 4s
(
b3s ln b − a3s lna

)
− (bs − as)(as + bs)2

(
1 + 3 ln

(
as + bs

2

))
− (bs − as)3 ln

(
bs − as

2

)
.

(2.21)

Definition C. Let ϕ : [0,∞) → R be an integrable function, for 0 ≤ a < b. One defines a linear
functional Λ̃ϕ as

Λ̃ϕ =
ϕ(a) + ϕ(b)

2
− 1
b − a

∫b

a

ϕ(x)dx − 1

(b − a)2

∫b

a

(
(b − x)ϕ(x − a) + (x − a)ϕ(b − x)

)
dx.

(2.22)

It is clear from (1.4) Theorem 1.1 of that if ϕ is superquadratic function, then Λ̃ϕ ≥ 0.

Theorem 2.5. If ϕ′/x ∈ C1(I) and ϕ(0) = 0, then the following equality holds,

Λ̃ϕ =
1
60

ξϕ′′(ξ) − ϕ′(ξ)
ξ2

(
a2(7a − 11b) + b2(a + 3b)

)
, ξ ∈ I. (2.23)

Proof. Suppose that ϕ′/x is bounded, that is, min(ϕ′/x) = m and max(ϕ′/x) = M. Using ϕ1

from Lemma 2.2 instead of ϕ in (1.4), we get

ϕ(a) + ϕ(b)
2

− 1
b − a

∫b

a

ϕ(x)dx − 1

(b − a)2

∫b

a

(
(b − x)ϕ(x − a) + (x − a)ϕ(b − x)

)
dx

≤ M

60

(
a2(7a − 11b) + b2(a + 3b)

)
.

(2.24)

Similarly, using ϕ2 from Lemma 2.2 instead of ϕ in (1.4)we get

ϕ(a) + ϕ(b)
2

− 1
b − a

∫b

a

ϕ(x)dx − 1

(b − a)2

∫b

a

(
(b − x)ϕ(x − a) + (x − a)ϕ(b − x)

)
dx

≥ m

60

(
a2(7a − 11b) + b2(a + 3b)

)
.

(2.25)

By combining the above two inequalities we get that there exist ξ ∈ (0,∞) such that (2.23)
holds. Moreover if (for example) ϕ′/x is bounded from above we have that (2.24) is valid.
Also (2.23) holds when ϕ′/x is not bounded.

Theorem 2.6. If ϕ′/x, ψ ′/x ∈ C1(I), ϕ(0) = ψ(0) = 0 and a2(7a − 11b) + b2(a + 3b)/= 0 then, one
has

Λ̃ϕ

Λ̃ψ

=
ξϕ′′(ξ) − ϕ′(ξ)
ξψ ′′(ξ) − ψ ′(ξ)

= T(ξ), ξ ∈ I, (2.26)
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provided the denominators are not equal to zero. If T is invertible, then

ξ = T−1
(

Λ̃ϕ

Λ̃ψ

)
, Λ̃ψ /= 0, (2.27)

is a new mean.

If we put ϕ(x) = xr/(r(r − 2)) and ψ(x) = xt/(t(t − 2)) in (2.27) we have new mean
Ñr,t defined as follows.
Definition C1. We define Ñr,t for r, t > 0, r /= t, a, b > 0, a /= b as follows:

Ñr,t =
(
t(t + 1)(t + 2)(t − 2)((b − a)(r + 1)(r + 2)(ar + br) −D)
r(r + 1)(r + 2)(r − 2)((b − a)(t + 1)(t + 2)(at + bt) − E)

)1/(r−t)
, r, t /= 2, (2.28)

whereD denotes 2(r+2)(br+1−ar+1)−4(b − a)r+1 and E denotes 2(t+2)(bt+1−at+1)−4(b − a)t+1.
In the limiting case we have Ñr,2 = Ñ2,r which is equal to

⎛
⎜⎝24

(
(b − a)(r + 1)(r + 2)(ar + br) − 2(r + 2)

(
br+1 − ar+1) − 4(b − a)r+1

)
r(r + 1)(r + 2)(r − 2)((b − a)(7(a2 + b2) + 12(a2 lna + b2 ln b)) − F)

⎞
⎟⎠

1/(r−2)

, r /= 2,

(2.29)

where F denotes 2(b3 − a3 + 4(b3 ln b − a3 lna)) − 4(b − a)3 ln(b − a),

Ñ2,2 = exp
(
12A − 13B

12B

)
, (2.30)

where

A = (b − a)
(
a2 + b2 + 7

(
a2 lna + b2 ln b

)
+ 6
(
a2(lna)2 + b2(ln b)2

)
− 2(b − a)2(ln(b − a))2

)

− 2
(
b3 ln b − a3 lna

)
− 4
(
b3(ln b)2 − a3(lna)2

)
,

B = (b − a)
(
7
(
a2 + b2

)
+ 12

(
a2 lna + b2 ln b

))

− 2
(
b3 − a3 + 4

(
b3 ln b − a3 lna

))
− 4(b − a)3 ln(b − a).

(2.31)

In Ñr,t when t goes to r, we have

Ñr,r = exp

(
4r3 + 3r2 − 8r − 4

r(r + 1)(r + 2)(r − 2)
− R

S

)
, (2.32)
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where

R = (b − a)(2r + 3)(ar + br) + (b − a)(r + 1)(r + 2)(ar lna + br ln b) − 2
(
br+1 − ar+1

)

− 2(r + 2)
(
br+1 ln b − ar+1 lna

)
− 4(b − a)r+1 ln(b − a),

S = (b − a)(r + 1)(r + 2)(ar + br) − 2(r + 2)
(
br+1 − ar+1

)
− 4(b − a)r+1.

(2.33)

If we put ϕ(x) = xr/s/((r/s)(r/s − 2)) and ψ(x) = xt/s/((t/s)(t/s − 2)) in (2.27), then by the
substitution a = as, b = bs we have new mean Ñ

[s]
r,t defined as follows.

DefinitionC2. Let r, s, t ∈ R+, r /= t, and a, b > 0, a/= b, one defines Cauchymean Ñ
[s]
r,t as follows:

Ñ
[s]
r,t =

(
t(t + s)(t + 2s)(t − 2s)((bs − as)(r + s)(r + 2s)(as + bs) −G)
r(r + s)(r + 2s)(r − 2s)((bs − as)(t + s)(t + 2s)(as + bs) − H)

)1/(r−t)
, r, t /= 2s,

(2.34)

where G denotes 2s(r + 2s)(br+s − ar+s) − 4s2(bs − as)(r+s)/s and H denotes 2s(t + 2s)(bt+s −
at+s) − 4s2(bs − as)(t+s)/s. In limiting case we have Ñ[s]

r,2s = Ñ
[s]
2s,r which is equal to

⎛
⎜⎝24s3

(
(bs − as)(r + s)(r + 2s)(ar + br) − 2s(r + 2s)(br+s − ar+s) − 4s2(bs − as)(r+s)/2

)
r(r + 1)(r + 2s)(r − 2s)T

⎞
⎟⎠

1/(r−2s)

, r /= 2s,

(2.35)

where

T = (bs − as)
(
7s
(
a2s + b2s

)
+ 12s2

(
a2s lna + b2s ln b

))
− 2s

(
b3s − a3s

)

− 8s2
(
b3s ln b − a3s lna

)
− 4s(bs − as)3 ln(bs − as).

(2.36)

When r approaches to 2s,

Ñ
[s]
2s,2s = exp

(
12U − 13T

12T

)
, (2.37)
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where

U = (bs − as)
(
2
(
a2s + b2s + 7s

(
a2s lna + b2s ln b

)
+ 6s2

(
a2s(lna)2 + b2s(ln b)2

)))

− 2(bs − as)3
(
ln (bs − as)2

)
− 2s

(
b3s ln b − a3s lna

)
− 4s2

(
b3s(ln b)2 − a3s(lna)2

)
,

Ñ
[s]
r,r = exp

(
4
(
r3 − s3

)
+ rs(3r − 8s)K − r(r + s)(r + 2s)(r − 2s)L

r(r + s)(r + 2s)(r − 2s)K

)
,

(2.38)

where

K = (bs − as)(r + s)(r + 2s)(ar + br) − 2s(r + 2s)(br+s − ar+s) − 4s2(bs − as)(r+s)/2,

L = (bs − as)(2r + 3s)(ar + br) + (r + s)(r + 2s)(ar lna + br ln b) − 2s(br+s − ar+s)

− 2s(r + 2s)(br+s ln b − ar+s lna) − 4
s
(bs − as)(r+s)/2 ln(bs − as).

(2.39)

3. Positive Semidefiniteness, Exponential Convexity, and
Log-Convexity

Lemma 3.1 (see [12, Lemma 3]). Consider the function ϕs for s > 0 defined as

ϕs(x) =

⎧⎪⎪⎨
⎪⎪⎩

xs

s(s − 2)
, s /= 2,

x2

2
logx, s = 2.

(3.1)

Then, with the convention 0 log 0 = 0, ϕs(x) is superquadratic.

Theorem 3.2. For Λϕs defined in (2.1) one has the following.

(a) The matrix A = [Λϕ(pi+pj )/2
], 1 ≤ i, j ≤ n, is a positive semidefinite matrix, that is,

det

⎛
⎜⎜⎝
⎡
⎢⎣Λϕpi + pj

2

⎤
⎥⎦

k

i,j=1

⎞
⎟⎟⎠ ≥ 0, k = 1, 2, . . . , n. (3.2)

(b) One has

Λ2
ϕ(s+t)/2

≤ ΛϕsΛϕt , (3.3)

that is, Λϕs is log-convex in the Jensen sense.

(c) The function s 	→ Λϕs is exponentially convex.
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(d) Λϕs is log-convex, that is, for r < s < t where r, s, t ∈ R+ one has

(
Λϕs

)t−r ≤ (Λϕr

)t−s(Λϕt

)s−r
. (3.4)

Proof. (a) Define the function F(x) =
∑n

i,j=1 uiujϕpij (x), where pij = (pi + pj)/2. Then,

(
F ′(x)
x

)′
=

n∑
i,j=1

uiuj

(
ϕ′
pij (x)

x

)′
=

(
n∑
i=1

uix
(pi−3)/2

)2

≥ 0 (3.5)

and F(0) = 0. This implies that F is superquadratic, so using this F in the place of ϕ in (2.1)
we have

ΛF =
n∑

i,j=1

uiujAϕpij
≥ 0. (3.6)

From this we have that the matrix A = [Λϕ(pi+pj )/2
]
n×n

is positive semidefinite.
(b) It is a simple consequence of (a) for k = 2.
(c) Since we have lims→ 2Λϕs = Λϕ2 , so Λϕs is continuous for all s; then by (3.6) and

Proposition 1.2 we have that s 	→ Λϕs is exponentially convex.
(d) As Λϕs is continuous then we have that Λϕs is log-convex and we get (3.4).

Corollary 3.3. One has the following

(i) For s > 4,

Λϕs ≥
(b − a)

(
3b3 − ab2 − 7a2b + 5a3)

96

(
3(a2 − b2)2

2(3b3 − ab2 − 7a2b + 5a3)

)s−3
. (3.7)

(ii) For 1 < s < 2,

Λϕs ≤ (a − b)4−2s
(
Λϕ2

)s−1
. (3.8)

(iii) For 2 < s < 3,

Λϕs ≤
(

(b − a)(3b3 − ab2 − 7a2b + 5a3)
96Λϕ2

)s−2
Λϕs . (3.9)

(iv) For 3 < s < 4,

Λϕs ≤
(b − a)

(
3b3 − ab2 − 7a2b + 5a3)

96

(
3(a2 − b2)2

2(3b3 − ab2 − 7a2b + 5a3)

)s−3
. (3.10)
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Proof. By applying Theorem 3.2(b) with 3 < 4 < s and 1 < s < 2 < 3 < 4, respectively, we get
the result.

Similar to Theorem 3.2 we get the following.

Theorem 3.4. For Λ̃ϕs defined in (2.22) one has the following.

(a) The matrix A = [Λ̃ϕ(pi+pj )/2
], 1 ≤ i, j ≤ n, is a positive-semidefinite matrix, that is,

det
([

Λ̃ϕ(pi+pj )/2

]k
i,j=1

)
≥ 0, k = 1, 2, . . . , n. (3.11)

(b) One has

Λ̃2
ϕ(s+t)/2

≤ Λ̃ϕsΛ̃ϕt , (3.12)

that is, Λ̃ϕs is log-convex in the Jensen sense.

(c) The function s 	→ Λ̃ϕs is exponentially convex.

(d) Λ̃ϕs is log-convex, that is, for r < s < t where r, s, t ∈ R+ one has

(
Λ̃ϕs

)t−r ≤ (Λ̃ϕr

)t−s(
Λ̃ϕt

)s−r
. (3.13)

Proof. The proof is the same as the proof of Theorem 3.2.

In the next results we use the continuity of Λϕs and Λ̃ϕs .
When log f is convex we see that (also see [13])

Lemma 3.5. Let f be log-convex function, and if x1 ≤ y1, x2 ≤ y2, x1 /=x2, y1 /=y2, then the
following inequality is valid,

(
f(x2)
f(x1)

)1/(x2−x1)

≤
(

f
(
y2
)

f(y1)

)1/(y2−y1)

. (3.14)

Theorem 3.6. For p, r, s, t ∈ R+ such that r ≤ s and p ≤ t, one has forNr, t as in Definition B1

Np,r ≤ Nt,s. (3.15)

Proof. According to Theorem 3.2,Λϕs defined above is log-convex; so Lemma 3.5 implies that
for p, r, s, t ∈ R+ such that r ≤ s and p ≤ twe have

[
Λϕp

Λϕr

]1/(p−r)
≤
[
Λϕt

Λϕs

]1/(t−s)
, p /= r, t /= s. (3.16)



Journal of Inequalities and Applications 13

From the continuity of Λϕs we get our result for t /= r, v /=u, and for t = r, v = u we can
consider limiting case.

Theorem 3.7. For t, r, u, v ∈ R+ such that t ≤ v and r ≤ u, one has forN[s]
r,t as in Definition B2

N
[s]
t,r ≤ N

[s]
v,u. (3.17)

Proof. As Λϕs defined above is log-convex, Lemma 3.5 implies that for t, r, u, v ∈ R such that
t ≤ v and r ≤ u we have

[
Λϕt

Λϕr

]1/(t−r)
≤
[
Λϕv

Λϕu

]1/(v−u)
, t /= r, v /=u. (3.18)

By substituting t = t/s, r = r/s, u = u/s, v = v/s, a = as, and b = bs, such that t/s /=v/s,
r/s /=u/s, t /= r, and v /=u we get the result, and for r = t,u = v we can consider the limiting
case.

Theorem 3.8. For p, r, s, t ∈ R+ such that r ≤ s and p ≤ t, one has

Ñp,r ≤ Ñt,s. (3.19)

Proof. According to Theorem 3.4, Λ̃ϕs defined above is log-convex; so Lemma 3.5 implies that
for p, r, s, t ∈ R such that r ≤ s and p ≤ t we have

[
Λ̃ϕp

Λ̃ϕr

]1/(p−r)
≤
[
Λ̃ϕt

Λ̃ϕs

]1/(t−s)
, p /= r, t /= s. (3.20)

From the continuity of Λ̃ϕs we get our result for t /= r, v /=u; and for t = r, v = u we can
consider limiting case.

Theorem 3.9. For t, r, u, v ∈ R+ such that t ≤ v and r ≤ u, one has

Ñ
[s]
t,r ≤ Ñ

[s]
v,u. (3.21)

Proof. As Λ̃ϕs defined above is log-convex, Lemma 3.5 implies that for t, r, u, v ∈ R such that
t ≤ v and r ≤ u we have

[
Λ̃ϕt

Λ̃ϕr

]1/(t−r)
≤
[
Λ̃ϕv

Λ̃ϕu

]1/(v−u)
, t /= r, v /=u. (3.22)

By substituting t = t/s, r = r/s, u = u/s, v = v/s, a = as, and b = bs, such that t/s /=v/s,
r/s /=u/s, t /= r, and v /=uwe get the result, and for r = t, u = v we can consider the limiting
case.
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[13] M. Anwar, N. Latif, and J. Pečarić, “Cauchy means of the Popoviciu type,” Journal of Inequalities and
Applications, vol. 2009, Article ID 628051, 16 pages, 2009.
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[15] M. Anwar and J. Pečarić, “New means of Cauchy’s type,” Journal of Inequalities and Applications, vol.
2008, Article ID 163202, 10 pages, 2008.
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