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1. Introduction

LetX be a complex Banach space andX∗ its dual space. We consider the topological subspace
Π(X) = {(x, x∗) : x∗(x) = 1 = ‖x‖ = ‖x∗‖} of the product space BX ×BX∗ , equipped with norm
and weak-∗ topology on the unit ball BX ofX and its dual unit ball BX∗ , respectively. It is easy
to see that Π(X) is a closed subspace of BX × BX∗ .

For two complex Banach spaces X and Y , denote by Cb(BX : Y ) the Banach space of
all bounded continuous functions from BX to Y with sup norm ‖f‖ = sup {‖f(x)‖ : x ∈ BX}.
We are interested in the following two subspaces of Cb(BX : Y ):

Ab(BX : Y ) =
{
f ∈ Cb(BX : Y ) : f is holomorphic on the open unit ball B◦

X

}
,

Au(BX : Y ) =
{
f ∈ Ab(BX : Y ) : f is uniformly continuous

}
.

(1.1)

We denote by A(BX : Y ) either Au(BX : Y ) or Ab(BX : Y ). When Y = C, we write A(BX)
instead of A(BX : C). A nonzero function f ∈ Cb(BX : Y ) is said to be a strong peak function at
x0 if whenever there is a sequence {xn}∞n=1 in BX with limn‖f(xn)‖ = ‖f‖, the sequence {xn}n
converges to x0. The corresponding point x0 is said to be a strong peak point of A(BX : Y ). It is
easy to see that x is a strong peak point of A(BX : Y ) if and only if x is a strong peak point of
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A(BX). By the maximum modulus theorem, it is easy to see that if x is a strong peak point of
A(BX) and X /= 0, then x is contained in the unit sphere SX of X.

Harris [1] introduced the notion of numerical radius v(f) of holomorphic function f ∈
Ab(BX : X). More precisely, for each f ∈ Ab(BX : X), v(f) = sup {|x∗f(x)| : (x, x∗) ∈ Π(X)}.
An element f ∈ A(BX : X) is said [2] to be numerical radius attaining if there is (x, x∗) ∈ Π(X)
such that v(f) = |x∗f(x)|.

Acosta and Kim [2] showed that if X is a complex Banach space with the Radon-
Nikodým property, then the set of all numerical radius attaining elements in A(BX : X) is
dense. In this paper, we show that ifX is a locally uniformly convex space or locally uniformly
c-convex, order continuous, sequence space, then the set of all numerical radius attaining
elements in A(BX : X) is dense.

We need the notion of numerical boundary. The subset Γ of Π(X) is said [3] to be a
numerical boundary ofA(BX : X) if for every f ∈ A(BX : X), v(f) = sup {|x∗f(x)| : (x, x∗) ∈ Γ}.
For more properties of numerical boundaries, see [3–5].

2. Main Results

The following is an application of the numerical boundary to the density of numerical radius
attaining holomorphic functions. Similar application of the norming subset to the density of
norm attaining holomorphic functions is given in [4]. We use the Lindenstrauss method [6].

Theorem 2.1. Suppose that X is a Banach space and there is a numerical boundary Γ ⊂ Π(X) of
A(BX : X) such that for every (x, x∗) ∈ Γ, x is a strong peak point of A(BX). Then the set of
numerical radius attaining elements in A(BX : X) is dense.

Proof. Wemay assume that Γ = {(xα, x
∗
α)}α and ϕα(xα) = 1 for each α, where each ϕα is a strong

peak function in A(BX). Notice that if f ∈ A(BX : X) and v(f) = 0, then v(f) = 0 = |x∗f(x)|
for any (x, x∗) ∈ Π(X) and f attains its numerical radius. Hence we have only to show that
if f ∈ A(BX : X), v(f) = 1 and ε > 0, then there is f̂ ∈ A(BX : X) such that f̂ attains its
numerical radius and ‖f − f̂‖ < ε.

Let f ∈ A with v(f) = 1 and ε with 0 < ε < 1/3 be given. We choose a monotonically
decreasing sequence {εk} of positive numbers so that

2
∞∑

i=1

εi < ε, 2
∞∑

i=k+1

εi < ε2k, εk <
1

10k
, k = 1, 2, . . .. (2.1)

We next choose inductively sequences {fk}∞k=1, {(xαk , x
∗
αk
)}∞

k=1 in Γ satisfying

f1 = f, (2.2)
∣∣x∗

αk
fk(xαk)

∣∣ ≥ v
(
fk
) − ε2k, (2.3)

fk+1(x) = fk(x) + λkεkϕ̃αk(x) · xαk , (2.4)

∣∣ϕ̃αk(x)
∣∣ > 1 − 1

k
implies ‖x − xαk‖ <

1
k
, (2.5)
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where each λj is chosen in SC to satisfy |x∗
αj
fj(xαj) + λjεj | = |x∗

αj
fj(xαj )| + εk and each ϕ̃αj is

ϕ
nj

αj
for some positive integer nj . Having chosen these sequences, we verify that the following

hold:

∥
∥fj − fk

∥
∥ ≤ 2

k−1∑

i=j

εi,
∥
∥fk

∥
∥ ≤ ∥

∥f
∥
∥ +

1
3
, j < k, k = 2, 3, . . . , (2.6)

v
(
fk+1

) ≥ v
(
fk
)
+ εk − ε2k, k = 1, 2, . . . , (2.7)

v
(
fk
) ≥ v

(
fj
)
, j < k, k = 2, 3, . . . , (2.8)

∣
∣
∣ϕ̃αj (xαk)

∣
∣
∣ > 1 − 1

j
, j < k, k = 2, 3, . . . . (2.9)

Assertion (2.6) is easy by using induction on k. By (2.3) and (2.4),

v
(
fk+1

) ≥ ∣∣x∗
αk
fk+1(xαk)

∣∣ =
∣∣x∗

αk
fk(xαk) + λkεkϕ̃αk(xαk)

∣∣

=
∣∣x∗

αk
fk(xαk)

∣∣ + εk ≥ v
(
fk
) − ε2k + εk,

(2.10)

so the relation (2.7) is proved. Therefore (2.8) is an immediate consequence (2.1) and (2.7).
For j < k, by the triangle inequality, (2.3) and (2.6), we have

∣∣x∗
αk
fj+1(xαk)

∣∣ ≥ ∣∣x∗
αk
fk(xαk)

∣∣ − ∥∥fk − fj+1
∥∥

≥ v
(
fk
) − ε2k − 2

k−1∑

i=j+1

εi ≥ v
(
fj+1

) − 2ε2j .
(2.11)

Hence by (2.4) and (2.7),

εj
∣∣∣ϕ̃αj (xαk)

∣∣∣ + v
(
fj
) ≥ ∣∣x∗

αk
fj+1(xαk)

∣∣ ≥ v
(
fj+1

) − 2ε2j

≥ v
(
fj
)
+ εj − 4ε2j ,

(2.12)

so that

∣∣∣ϕ̃αj (xαk)
∣∣∣ ≥ 1 − 4εj > 1 − 1

j
, (2.13)

and this proves (2.9). Let f̂ ∈ A be the limit of {fk} in the norm topology. By (2.1) and
(2.6), ‖f̂ − f‖ = limn‖fn − f1‖ ≤ 2

∑∞
i=1 εi ≤ ε holds. The relations (2.5) and (2.9) mean that

the sequence {xαk} converges to a point x̃, say and by (2.3), we have v(f̂) = limn v(fn) =
limn|x∗

αn
fn(xαn)| = |x̃∗f̂(x̃)|, where x̃∗ is a weak-∗ limit point of {x∗

αk
}
k
in BX∗ . Then it is easy

to see that |x̃∗(x̃)| = 1. Hence f̂ attains its numerical radius. This concludes the proof.
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Recall that a Banach space X is said to be locally uniformly convex if x ∈ SX and there is
a sequence {xn} in BX satisfying limn‖xn + x‖ = 2, then limn‖xn − x‖ = 0.

Corollary 2.2. Let X be a locally uniformly convex Banach space. Then the set of numerical radius
attaining elements in A(BX : X) is dense.

Proof. Let Γ = Π(X) and notice that every element in SX is a strong peak point for Au(BX).
Indeed, if x ∈ SX , choose x∗ ∈ SX∗ so that x∗(x) = 1. Set f(y) = (x∗(y) + 1)/2 for y ∈ BX . Then
f ∈ A(BX) and f(x) = 1. If limn|f(xn)| = 1 for some sequence {xn} in BX , then limn x

∗(xn) = 1.
Since |x∗(xn) + x∗(x)| ≤ ‖xn + x‖ ≤ 2 for every n, ‖xn + x‖ → 2 and ‖xn − x‖ → 0 as n → ∞.
By Theorem 2.1, we get the desired result.

It was shown in [7] that if a Banach sequence spaceX is locally uniformly c-convex and
order continuous, then the set of all strong peak points forA(BX) is dense in SX . Therefore, the
set of all strong peak points forA(BX) is dense in SX . For the definition of a Banach sequence
space and order continuity, see [8, 9]. For the characterization of local uniform c-convexity in
function spaces, see [7, 10].

Corollary 2.3. Suppose that X is a locally uniformly c-convex order continuous Banach sequence
space. Then the set of numerical radius attaining elements in Au(BX : X) is dense.

Proof. Let Γ = {(x, x∗) ∈ Π(X) : x be a strong peak point of Au(BX)}. Then by [11,
Theorem 2.5], and the remark above the Corollary 2.3, Γ is a numerical boundary of Au(BX :
X). Hence the proof is complete by Theorem 2.1.
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