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1. Introduction and Main Results

There is a huge amount of literature on estimates of different probability metrics between
random variables, measuring the rates of convergence in various limit theorems, such as
Poisson approximation and the central limit theorem. However, as far as we know, there
are only a few papers devoted to obtain exact values for such probability metrics, even
in the most simple and paradigmatic examples. In this regard, we mention the results by
Kennedy and Quine [1] giving the exact total variation distance between binomial and
Poisson distributions, when their common mean λ is smaller than 2 +

√
2, approximately, as

well as the efficient algorihm provided in the work of Adell et al. [2] to compute this distance
for arbitrary values of λ. On the other hand, closed-form expressions for the Kolmogorov
and total variation distances between some familiar discrete distributions with different
parameters can be found in Adell and Jodrá [3]. Finally, Hipp and Mattner [4] have recently
computed the exact Kolmogorov distance in the central limit theorem for symmetric binomial
distributions.
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The aim of this paper is to obtain efficient algorithms and sharp estimates in the highly
classical problem of evaluating the Kolmogorov distance between binomial and Poisson laws
having the same mean. The techniques used here are analogous to those in [2] dealing with
the total variation distance between the aforementioned laws.

To state our main results, let us introduce some notation. Denote by Z+ the set of
nonnegative integers, N = Z+ \ {0} and Zn = {0, 1, . . . , n}, n ∈ N. If A is a set of real numbers,
1A stands for the indicator function of A. For any x ≥ 0, we set �x� = max{k ∈ Z+ : k ≤ x}
and �x	 = min{k ∈ Z+ : x ≤ k}. For any m ∈ Z+, the mth forward differences of a function
φ : Z+ → R are recursively defined by Δ0φ = φ, Δ1φ(i) = φ(i + 1) − φ(i), i ∈ Z+, and
Δm+1φ = Δ1(Δmφ).

Throughout this note, it will be assumed that n ∈ N, 0 < λ < n, and p = λ/n. Let
(Uk, k ∈ N) be a sequence of independent identically distributed random variables having
the uniform distribution on [0, 1]. The random variable

Sn(t) =
n∑

k=1

1[0,t](Uk), 0 ≤ t ≤ 1, (S0(t) ≡ 0), (1.1)

has the binomial distribution with parameters n and t. Let Nλ be a random variable having
the Poisson distribution with mean λ. Recall that the Kolmogorov distance between Sn(p)
and Nλ is defined by

d
(
Sn

(
p
)
,Nλ

)
= sup

i∈Z+

∣∣f(i)
∣∣, f(i) = P(Nλ ≥ i) − P

(
Sn

(
p
) ≥ i

)
, i ∈ Z+. (1.2)

Observe that for any i ∈ Zn we have

Δ1f(i) = P
(
Sn

(
p
)
= i

) − P(Nλ = i) = P(Nλ = i)
(
c(n, λ)
gn,λ(i)

− 1
)
, (1.3)

where

c(n, λ) = n!eλ
(

1 − λ

n

)n

, gn,λ(i) = (n − i)!(n − λ)i. (1.4)

An efficient algorithm to compute d(Sn(p),Nλ) is based on the zeroes of the second
Krawtchouk and Charlier polynomials, which are the orthogonal polynomials with respect
to the binomial and Poisson distributions, respectively. Interesting references for general
orthogonal polynomials are the monographs by Chihara [5] and Schoutens [6].

More precisely, let k ∈ N with k ≥ n, and 0 < t < 1. The second Krawtchouk polynomial
with respect to Sk+1(t) is given by

Q
(k+1)
2 (t;x) =

x2 − (1 + 2kt)x + k(k + 1)t2

k(k + 1)t2(1 − t)2
. (1.5)
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The two zeroes of this polynomial are

x
(k+1)
j (t) =

1
2
+ kt + (−1)j

√

kt(1 − t) +
1
4
, j = 1, 2. (1.6)

As k → ∞, t → 0, and kt → λ, Q(k+1)
2 (t;x) converges to the second Charlier polynomial

with respect to Nλ defined by

C2(λ;x) =
x2 − (1 + 2λ)x + λ2

λ2
, (1.7)

the two zeroes of which are

rj(λ) =
1
2
+ λ + (−1)j

√

λ +
1
4
, j = 1, 2. (1.8)

Finally, we denote by

r1,k(λ) = x
(k+1)
1

(
λ

k

)
=

1
2
+ λ −

√

λ

(
1 − λ

k

)
+

1
4
, (1.9)

and by

r2,k(λ) = x
(k+1)
2

(
λ

k + 1

)
=

1
2
+ λ

k

k + 1
+

√

λ

(
1 − λ

k + 1

)
k

k + 1
+

1
4

(1.10)

the smallest zero of Q(k+1)
2 (λ/k;x) and the greatest zero of Q(k+1)

2 (λ/(k + 1);x), respectively,
(see Figure 1).

Our first main result is the following.

Theorem 1.1. Let n ∈ N and 0 < λ < n. Then,

d
(
Sn

(
p
)
,Nλ

)
= max

{−f(lλ(n)), f(mλ(n) + 1)
}
, (1.11)

where f is defined in (1.2),

lλ(n) = min
{
i ∈ [�r1(λ)� + 1, �r1,n(λ)	] ∩ Zn; gn,λ(i) ≤ c(n, λ)

}
, (1.12)

mλ(n) = max
{
i ∈ [�r2,n(λ)�, �r2(λ)	 − 1] ∩ Zn; gn,λ(i) ≤ c(n, λ)

}
. (1.13)

Looking at Figure 1 and taking into account (1.8), (1.9), and (1.12) we see the
following. The number of computations needed to evaluate lλ(n) is approximately r1,n(λ) −
r1(λ), that is, λ

√
λ/(2n), approximately. This last quantity is relatively small, since Nλ
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Figure 1: The polynomials Q(k+1)
2 (λ/k;x), Q(k+1)

2 (λ/(k + 1);x), and C2(λ;x), for λ > 2.

approximates Sn(p) if and only if p = λ/n is close to zero. Moreover, the set [�r1(λ)� +
1, �r1,n(λ)	] ∩ Zn has two points at most, whenever r1,n(λ) − r1(λ) < 1, and this happens if

n >
λ2

√
4λ + 5 − 2

. (1.14)

As follows from (1.2), the natural way to compute the Kolmogorov distance
d(Sn(p),Nλ) is to look at the maximum absolute value of the function

f(i) =
i−1∑

k=0

Δ1f(k) =
i−1∑

k=0

(
P
(
Sn

(
p
)
= k

) − P(Nλ = k)
)
, i ∈ N. (1.15)

From a computational point of view, the main question is to ask how many evaluations
of the probability differences P(Sn(p) = k) − P(Nλ = k) are required to exactly compute
d(Sn(p),Nλ). According to Theorem 1.1 and (1.8), the number of such evaluations is λ −

√
λ

at least, and λ +
√
λ at most, approximately.

On the other hand, r1,n(λ) and r2,n(λ) converge, respectively, to r1(λ) and r2(λ), as
n → ∞. Thus, Theorem 1.1 leads us to the following asymptotic result.

Corollary 1.2. Let n ∈ N and 0 < λ < n. Let n0(λ) be the smallest integer such that �r1,n(λ)	 =
�r1(λ)� + 1 and �r2,n(λ)� = �r2(λ)	 − 1, for n ≥ n0(λ). Then, one has for any n ≥ n0(λ)

d
(
Sn

(
p
)
,Nλ

)
= max

{
P(Nλ ≤ �r1(λ)�) − P

(
Sn

(
p
) ≤ �r1(λ)�

)
,

P
(
Sn

(
p
) ≤ �r2(λ)	

) − P(Nλ ≤ �r2(λ)	)
}
.

(1.16)

Unfortunately, n0(λ) is not uniformly bounded when λ varies in an arbitrary compact
set. In fact, since r1(l +

√
l) = l, l ∈ N, and r2(m − √

m) = m, m = 2, 3, . . ., it can be verified
that n0(λ) → ∞, when λ → l +

√
l from the left, l ∈ N, or when λ → m − √

m from the
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right, m = 2, 3, . . . . This explains why lλ(n) and mλ(n) in Theorem 1.1 have no simple form in
general.

Finally, it may be of interest to compare Theorem 1.1 and Corollary 1.2 with the
exact value of the Kolmogorov distance in the central limit theorem for symmetric binomial
distributions obtained by Hipp and Mattner [4]. These authors have shown that (cf. [4,
Corollary 1.1])

d

(
Sn(1/2) − n/2

√
n/4

, Z

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P

(
Z ≤ 1√

n

)
− 1

2
(n odd),

1
2
P

(
Sn

(
1
2

)
=

n

2

)
(n even),

(1.17)

where Z is a standard normal random variable. Roughly speaking, (1.17) tells us that the
Kolmogorov distance in this version of the central limit theorem is attained at the mean
of the respective distributions; whereas according to Theorem 1.1 and Corollary 1.2, the
Kolmogorov distance in our Poisson approximation setting is attained at the mean ± the
standard deviation of the corresponding distributions.

For small values of λ, we are able to give the following closed-form expression.

Corollary 1.3. Let n ∈ N. If 0 < λ ≤ 2 − √
2, then

d
(
Sn

(
p
)
,Nλ

)
= P(Nλ = 0) − P

(
Sn

(
p
)
= 0

)
= e−λ −

(
1 − λ

n

)n

. (1.18)

Corollary 1.3 can be seen as a counterpart of the total variation result established by
Kennedy and Quine [1, Theorem 1], stating that

dTV
(
Sn

(
p
)
,Nλ

)
= P

(
Sn

(
p
)
= 1

) − P(Nλ = 1) = λ

((
1 − λ

n

)n−1

− e−λ
)

, (1.19)

for any n ∈ N and 0 < λ ≤ 2 − √
2, where dTV(·, ·) stands for the total variation distance.

For any m ∈ N, n = 2, 3, . . ., and 0 < λ < n, we denote by

Kλ(n) =
n + 2

2(n + 1)

(
2λ
3
f3(n, λ) +

λ2

4
f4(n, λ)

)

, (1.20)

where

fm(n, λ) = min

(

2m−1,
1
2

(
n + 2
n − 1

)3/2
√

m!
λm(1 − (λ/n))m

)

. (1.21)

Sharp estimates for the Kolmogorov distance are given in the following.
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Theorem 1.4. Let n = 2, 3, . . ., 0 < λ < n and p = λ/n. Then,

∣
∣
∣
∣d
(
Sn

(
p
)
,Nλ

) − 1
2
pMλ

∣
∣
∣
∣ ≤ Kλ(n)p2, (1.22)

where

Mλ = e−λ
λ�r1(λ)�(λ − �r1(λ)�)

�r1(λ)�! . (1.23)

Upper bounds for the Kolmogorov distance in Poisson approximation for sums
of independent random indicators have been obtained by many authors using different
techniques. We mention the following estimates in the case at hand:

d
(
Sn

(
p
)
,Nλ

) ≤ 1
2
λp (1.24)

(Serfling [7]),

d
(
Sn

(
p
)
,Nλ

) ≤ π

4
p (1.25)

(Hipp [8]),

∣∣∣∣d
(
Sn

(
p
)
,Nλ

) − 1
2
pmax

{
Mλ, M̃λ

}∣∣∣∣ ≤
(

1
2
+
√

π

8

)
p3/2

1 − √
p

(1.26)

(Deheuvels et al. [9]),

d
(
Sn

(
p
)
,Nλ

) ≤ 1
2e

p +
6p3/2

5
(
1 − √

p
) (1.27)

(Roos [10]), where

M̃λ = e−λ
λ�r2(λ)�(�r2(λ)� − λ)

�r2(λ)�! , (1.28)

and the constant 1/(2e) in the last estimate is best possible (cf. Roos [10]). It is readily seen
from (1.23) that

lim
λ→∞

Mλ =
1√
2πe

, Mλ = λe−λ, 0 < λ < 2. (1.29)

On the other hand, it follows from Roos [10] and Lemma 2.1 below that

M̃λ ≤ Mλ ≤ M1 =
1
e
, λ > 0. (1.30)
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Table 1: Upper bounds for d(Sn(p),Nλ): Serfling (S), Hipp (H), Deheuvels et al. (D), Roos (R), and Adell
et al. (A).

n p S H D R A
100

0.01

0.0050 0.007854 0.003091 0.003173 0.001916
200 0.0100 0.007854 0.002605 0.003173 0.001416
500 0.0250 0.007854 0.002656 0.003173 0.001454
1000 0.0500 0.007854 0.002603 0.003173 0.001396
200

0.005

0.0025 0.003927 0.001348 0.001376 0.000938
400 0.0050 0.003927 0.001105 0.001376 0.000692
1000 0.0125 0.003927 0.001131 0.001376 0.000714
2000 0.0250 0.003927 0.001104 0.001376 0.000687

Such properties, together with simple numerical computations performed with MapleTM 9.01,
show that estimate (1.22) is always better than the preceding ones for 0 < p ≤ 1/3 and n ≥ 10.
Numerical comparisons are exhibited in Table 1.

On the other hand, the referee has drawn our attention to a recent paper by Vaggelatou
[11], where the author obtains upper bounds for the Kolmogorov distance between sums of
independent integer-valued random variables. Specializing Corollary 15 in [11] to the case at
hand, Vaggelatou gives the upper bound

d
(
Sn

(
p
)
,Nλ

) ≤ Mλ

2(1 − 2(1 − e−p))
p +

λ2

2
p2. (1.31)

Comparing Corollary 1.3 and (1.22) with (1.31), we see the following. The constant in
the main term of the order of p in (1.22) is better than that in (1.31). The constant Kλ(n) in the
remainder term of the order of p2 in (1.22) is uniformly bounded in λ, whereas; λ2/2 is not.
However, λ2/2 is better than Kλ(n) for small values of λ > 2 − √

2 (recall that Corollary 1.3
gives the exact distance for 0 < λ ≤ 2 − √

2). As a result, for moderate or large values of n,
estimate (1.31) is sometimes better than (1.22) for 2 − √

2 < λ < 1, approximately. Otherwise,
Corollary 1.3 and (1.22) provide better bounds than (1.31). This is illustrated in Table 2.

We finally establish that, for small values of p, the Kolmogorov distance is attained at
�r1(λ)�, that is, at λ −

√
λ, approximately. This completes the statement in Corollary 1.3.

Corollary 1.5. For any λ > 0, one has

lim
p→ 0

1
p
d
(
Sn

(
p
)
,Nλ

)
= lim

p→ 0

1
p

(
P(Nλ ≤ �r1(λ)�) − P

(
Sn

(
p
) ≤ �r1(λ)�

))
=

Mλ

2
.

(1.32)

Remark 1.6. As far as upper bounds are concerned, the methods used in this paper can
be adapted to cover more general cases referring to Poisson approximation (see, e.g., the
Introduction in [2] and the references therein). However, the obtention of efficient algorithms
leading to exact values is a more delicate question. As we will see in Section 2, specially
in formula (2.1), such a problem is based on two main facts: first, the explicit form of the
orthogonal polynomials associated to the random variables to be approximated, and, second,
the relation between expectations involving forward differences and expectations involving
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Table 2: Upper bounds for d(Sn(p),Nλ): Vaggelatou (V) and Adell et al. (A).

λ n V A

0.6

20 0.0054116 0.0059268
50 0.0020499 0.0021122
100 0.0010063 0.0010199
200 0.0004985 0.0005017
500 0.0001983 0.0001988
1000 0.0000990 0.0000991

0.9

20 0.0098476 0.0103392
50 0.0035463 0.0035676
100 0.0017095 0.0017106
200 0.0008390 0.0008388
500 0.0003318 0.0003317
1000 0.0001653 0.0001653

1

20 0.0114410 0.0117428
50 0.0040305 0.0040086
100 0.0019267 0.0019162
200 0.0009415 0.0009382
500 0.0003714 0.0003708
1000 0.0001848 0.0001847

2

20 0.0367148 0.0228808
50 0.0090741 0.0065533
100 0.0036183 0.0029671
200 0.0015808 0.0014156
500 0.0005777 0.0005510
1000 0.0002798 0.0002731

these orthogonal polynomials. For instance, an explicit expression for the orthogonal
polynomials associated to general sums of independent random indicators seems to be
unknown.

2. The Proofs

The key tool to prove the previous results is the following formula established in [2, formula
(1.4)]. For any function φ : Z+ → R for which the expectations below exist, we have

Eφ
(
Sn

(
p
)) − Eφ(Nλ) = −λ2

∞∑

k=n

1
k(k + 1)

EUΔ2φ(Sk−1(Tk))

= −λ2
∞∑

k=n

1
k(k + 1)

EUφ(Sk+1(Tk))Q
(k+1)
2 (Tk;Sk+1(Tk)),

(2.1)

where

Tk =
λ

k

(
1 − UV

k + 1

)
, k = n, n + 1, . . . , (2.2)
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and U and V are independent identically distributed random variables having the uniform
distribution on [0, 1], also independent of the sequence (Uk, k ∈ N) in (1.1).

Proof of Theorem 1.1. Let n ∈ N, 0 < λ < n, and i ∈ Z+. The function gn,λ(i) defined in (1.4)
decreases in [0, �λ + 1�] ∩ Zn and increases in [�λ + 1�, n] ∩ Zn. This property, together with
definitions (1.2)–(1.4), readily implies the following. There are integers 1 ≤ lλ(n) ≤ mλ(n) ≤ n
such that

{
i ∈ Zn; gn,λ(i) ≤ c(n, λ)

}
=
{
i ∈ Z+ : Δ1f(i) ≥ 0

}
= [lλ(n), mλ(n)] ∩ Zn. (2.3)

As a consequence of (2.3), the function f(i) defined in (1.2) starts from f(0) = 0, decreases
in [0, lλ(n)], increases in [lλ(n), mλ(n) + 1], decreases in [mλ(n) + 1,∞), and tends to zero as
i → ∞. We therefore conclude that

d
(
Sn

(
p
)
,Nλ

)
= max

{−f(lλ(n)), f(mλ(n) + 1)
}
. (2.4)

To show (1.12) and (1.13), we apply the second equality in (2.1) to the function φ = 1{i},
thus obtaining by virtue of (1.3)

Δ1f(i) = −λ2
∞∑

k=n

1
k(k + 1)

EU1{i}(Sk+1(Tk))Q
(k+1)
2 (Tk; i). (2.5)

In view of (2.3), statements (1.12) and (1.13) will follow as soon as we show that

Δ1f(i) ≥ 0, if i ∈ Iλ(n) = [�r1,n(λ)	, �r2,n(λ)�] ∩ Zn, (2.6)

as well as

Δ1f(i) < 0, if i ∈ Jλ(n) = ([0, �r1(λ)�] ∪ [�r2(λ)	,∞)) ∩ Zn. (2.7)

Observe that some of the sets in (2.6) and (2.7) could be empty. To this end, let k ∈ N with
k ≥ n, and λ/(k + 1) ≤ t ≤ λ/k. Since the functions x

(k+1)
j (t) defined in (1.6) are increasing in

t, we have by virtue of (1.9) and (1.10)

x
(k+1)
1 (t) ≤ x

(k+1)
1

(
λ

k

)
= r1,k(λ) ≤ r1,n(λ) ≤ r2,n(λ)

≤ r2,k(λ) = x
(k+1)
2

(
λ

k + 1

)
≤ x

(k+1)
2 (t).

(2.8)

Again by (1.9) and (1.10), this means that Q
(k+1)
2 (t; i) ≤ 0, for any i ∈ Iλ(n). This fact, in

conjunction with (2.2) and (2.5), shows (2.6).
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To prove (2.7), we distinguish the following two cases.

Case 1 (λ > 2). By (1.6), (1.8), (1.9), and (1.10), we have

r1(λ) < x
(k+1)
1

(
λ

k + 1

)
≤ x

(k+1)
1 (t) < x

(k+1)
2 (t) ≤ x

(k+1)
2

(
λ

k

)
< r2(λ), (2.9)

which implies that Q(k+1)
2 (t; i) > 0, for any i ∈ Jn(λ). As before, this property shows (2.7).

Case 2 (λ ≤ 2). In this occasion, we have x
(k+1)
1 (λ/(k + 1)) ≤ r1(λ) ≤ 1. Since Δ1f(0) < 0 and

the remaining inequalities in (2.9) are satisfied, we conclude as in the previous case that (2.7)
holds. The proof is complete.

Proof of Corollary 1.3. For 0 < λ ≤ 2 − √
2, (1.8) implies that �r1(λ)� + 1 = �r2(λ)	 − 1 = 1, and,

therefore, lλ(n) = mλ(n) = 1, as follows from Theorem 1.1. By (1.11), this in turn implies that

d
(
Sn

(
p
)
,Nλ

)
= max

{−f(1), f(2)}. (2.10)

On the other hand, we have from (1.2)

−f(1) − f(2) = Eψ(Nλ) − Eψ
(
Sn

(
p
))
, (2.11)

where ψ : Z+ → R is the convex function given by ψ(i) = 2 · 1{0}(i) + 1{1}(i), i ∈ Z+. Since
Δ2ψ ≥ 0, the first inequality in (2.1) proves that the right-hand side in (2.11) is nonnegative.
This, together with (2.10), shows that d(Sn(p),Nλ) = −f(1) and completes the proof.

Let n = 2, 3, . . ., 0 < λ < n, and p = λ/n. For any function φ : Z+ → [0, 1], we have

EΔ2φ(Nλ) = Eφ(Nλ)C2(λ;Nλ), (2.12)
∣∣∣Eφ

(
Sn

(
p
)) − Eφ(Nλ) +

p

2
λEφ(Nλ)C2(λ;Nλ)

∣∣
∣ ≤ Kλ(n)p2, (2.13)

where Kλ(n) is defined in (1.20). Formula (2.12) can be found in Barbour et al. [12, Lemma
9.4.4]; whereas estimate (2.13) is established in Adell et al. [2, formula (6.1)]. Choosing φ =
1[i,∞), i ∈ Z+ in (2.12), we consider the function

g(i) = λE1[i,∞)(Nλ)C2(λ;Nλ)

= λ
(
E1{i−2}(Nλ) − E1{i−1}(Nλ)

)
, i ∈ Z+.

(2.14)

Observe that

Δ1g(i) = −λ1{i}(Nλ)C2(λ;Nλ), i ∈ Z+. (2.15)
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Therefore, the function g(·) in (2.14) starts from g(0) = 0, decreases in [0, �r1(λ)�+1], increases
in [�r1(λ) + 1�, �r2(λ)� + 1], and decreases to zero in [�r2(λ)� + 1,∞). We therefore have from
(2.14)

sup
i∈Z+

∣
∣g(i)

∣
∣ = max

{−g(�r1(λ)� + 1), g(�r2(λ)� + 1)
}
= max

{
Mλ, M̃λ

}
, (2.16)

where Mλ and M̃λ are defined in (1.23) and (1.28), respectively.
As shown in the following auxiliary result, it turns out that Mλ ≥ M̃λ, λ > 0. In this

respect, we will need the well-known inequalities

B2n(x) ≤ log(1 + x) ≤ B2n+1(x), Bn(x) = −
n∑

k=1

(−x)k
k

, (2.17)

for n ∈ N and 0 < x < 1.

Lemma 2.1. For any λ > 0, one hasMλ ≥ M̃λ. In addition, for any λ ≥ 2, one hasMλ > (2πe)−1/2 >

M̃λ.

Proof. We will only show that Mλ > (2πe)−1/2, λ ≥ 2, with the proof of the remaining
inequalities being similar. Let m ∈ N. Since the function r1(·) defined in (1.8) is increasing
and r1(m +

√
m) = m, we see that

Mλ = e−λ
λm(λ −m)

m!
, λ ∈

[
m +

√
m,m + 1 +

√
m + 1

)
. (2.18)

As follows by calculus, in each interval [m+
√
m,m+ 1+

√
m + 1), Mλ attains its minimum at

the endpoints. On the other hand, Mλ converges to (2πe)−1/2, as λ → ∞. Therefore, it will be
enough to show that the sequence (logMm+

√
m,m ∈ N) is decreasing, or, in other words, that

(m + 1) log
(

1 +
1√

m + 1

)
−
√
m + 1 −

(
m log

(
1 +

1√
m

)
− √

m

)

+
(
m +

1
2

)
log

(
1 +

1
m

)
− 1 < 0.

(2.19)

Simple numerical computations show that (2.19) holds for 1 ≤ m ≤ 6. Assume that m ≥ 7. By
(2.17), the left-hand side in (2.19) is bounded above by

(m + 1)B5

(
1√

m + 1

)
−
√
m + 1 −

(
mB6

(
1√
m

)
− √

m

)

+
(
m +

1
2

)
B3

(
1
m

)
− 1 =

1
3

(
1√

m + 1
− 1√

m

)
− 1

4

(
1

m + 1
− 1
m

)

+
1
5

(
1

(m + 1)
√
m + 1

− 1
m
√
m

)

+
1

4m2
+

1
6m3

< 0.

(2.20)

This completes the proof.
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Proof of Theorem 1.4. Applying (2.13) to φ = 1[i,∞), i ∈ Z+, and using the converse triangular
inequality for the usual sup-norm, we obtain

∣
∣∣
∣
∣
d
(
Sn

(
p
)
,Nλ

) − p

2
sup
i∈Z+

∣
∣g(i)

∣
∣
∣
∣∣
∣
∣
≤ sup

i∈Z+

∣∣
∣E1[i,∞)

(
Sn

(
p
)) − E1[i,∞)(Nλ) +

p

2
g(i)

∣∣
∣ ≤ Kλ(n)p2.

(2.21)

Thus, the conclusion follows from (2.16) and Lemma 2.1.

We have been aware that Boutsikas and Vaggelatou have recently provided in [13] an
independent proof of Lemma 2.1.

Proof of Corollary 1.5. From (2.16) and the orthogonality of C2(λ; ·), we get

λE1[0,�r1(λ)�](Nλ)C2(λ;Nλ) = −g(�r1(λ)� + 1) = Mλ. (2.22)

Therefore, applying (2.13) to the function φ = −1[0,�r1(λ)�], as well as Theorem 1.4, we obtain
the desired conclusion.

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and for their
remarks and suggestions, which greatly improved the final outcome. This work has been
supported by Research Grants MTM2008-06281-C02-01/MTM and DGA E-64, and by FEDER
funds.

References

[1] J. E. Kennedy and M. P. Quine, “The total variation distance between the binomial and Poisson
distributions,” The Annals of Probability, vol. 17, no. 1, pp. 396–400, 1989.

[2] J. A. Adell, J. M. Anoz, and A. Lekuona, “Exact values and sharp estimates for the total variation
distance between binomial and Poisson distributions,” Advances in Applied Probability, vol. 40, no. 4,
pp. 1033–1047, 2008.
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