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1. Introduction

Let D be the unit disc in the complex plane C, dm(z) the normalized Lebesgue area measure
on D, H(D) the class of all holomorphic functions on D, and H∞(D) the space of bounded
holomorphic functions on Dwith the norm ‖f‖∞ = supz∈D|f(z)|.

The logarithmic Bloch-type space Bα

logβ
= Bα

logβ
(D), α > 0, β ≥ 0, was recently

introduced in [1]. The space consists of all f ∈ H(D) such that

bα,β
(
f
)
:= sup

z∈D
(1 − |z|)α

(

ln
eβ/α

1 − |z|

)β
∣∣f ′(z)

∣∣ < ∞. (1.1)

The norm on Bα

logβ
is introduced as follows:

∥∥f
∥∥
Bα

logβ
=
∣∣f(0)

∣∣ + bα,β
(
f
)
. (1.2)

When β = 0, Bα

logβ
becomes the α-Bloch space Bα. For α-Bloch and other Bloch-type

spaces, see, for example, [1–9], as well as the related references therein. For α = β = 1, Bα

logβ

is the logarithmic Bloch space, which appeared in characterizing the multipliers of the Bloch
space (see [3, 9]).
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The little logarithmic Bloch-type space Bα

logβ,0
= Bα

logβ,0
(D), α > 0, β ≥ 0, consists of all

f ∈ Bα

logβ
such that

lim
|z|→ 1−0

(1 − |z|)α
(

ln
eβ/α

1 − |z|

)β
∣
∣f ′(z)

∣
∣ = 0. (1.3)

The following theorem summarizes the basic properties of the logarithmic Bloch-type
spaces. Here, as usual, for fixed r ∈ [0, 1), fr(z) = f(rz), z ∈ D.

Theorem A (see [1]). The following statements are true.

(a) The logarithmic Bloch-type space Bα

logβ
is Banach with the norm given in (1.2).

(b) Bα

logβ,0
is a closed subset of Bα

logβ
.

(c) Assume f ∈ Bα

logβ
. Then f ∈ Bα

logβ,0
if and only if limr→ 1−‖f − fr‖Bα

logβ
= 0.

(d) The set of all polynomials is dense in Bα

logβ,0
.

(e) Assume f ∈ Bα

logβ
, then for each r ∈ [0, 1), fr ∈ Bα

logβ,0
. Moreover

∥∥fr
∥∥
Bα

logβ
≤ ∥∥f

∥∥
Bα

logβ
. (1.4)

A positive continuous function μ on D is called weight.
The Bloch-type space Bμ = Bμ(D) consists of all f ∈ H(D) such that

Bμ

(
f
)
= sup

z∈D
μ(z)

∣∣f ′(z)
∣∣ < ∞, (1.5)

where μ is a weight. With the norm

∥∥f
∥∥
Bμ

=
∣∣f(0)

∣∣ + Bμ

(
f
)
, (1.6)

the Bloch-type space becomes a Banach space.
The little Bloch-type space Bμ,0 = Bμ,0(D) is a subspace of Bμ consisting of all f such

that

lim
|z|→ 1

μ(z)
∣∣f ′(z)

∣∣ = 0. (1.7)

Let ϕ be a holomorphic self-map of D and u ∈ H(D). For f ∈ H(D) the corresponding
weighted composition operator is defined by

(
uCϕ

)(
f
)
(z) = u(z)f

(
ϕ(z)

)
, z ∈ D. (1.8)

It is of interest to provide function-theoretic characterizations for when ϕ and u induce
bounded or compact weighted composition operators on spaces of holomorphic functions.
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For some classical results mostly on composition operators, see, for example, [10]. For some
recent related results, mostly in C

n or related to Bloch-type or weighted-type spaces, see, for
example, [4, 10–46] and the references therein.

Here we study the boundedness and compactness of the weighted composition
operator from the logarithmic Bloch-type space and the little logarithmic Bloch-type space
to the Bloch-type or the little Bloch-type space.

In this paper, constants are denoted by C, they are positive and may differ from one
occurrence to the other. The notation a � bmeans that there is a positive constant C such that
a ≤ Cb. We say that a 	 b, if both a � b and b � a hold.

2. Auxiliary Results

In this section we quote several auxiliary results which will be used in the proofs of the main
results.

Lemma 2.1. Assume α > 0, β ≥ 0, then the following statements are true.

(a) Assume γ ≥ β/α + ln 2, then the function

h(x) = xα

(
ln

eγ

x

)β

(2.1)

is increasing on the interval (0, 2].

(b) The function

h1(x) = xα

(

ln
eβ/α

x

)β

(2.2)

is increasing on the interval (0, 1].

Proof. (a) We have

h′(x) = xα−1
(
ln

eγ

x

)β−1(
α ln

eγ

x
− β

)
. (2.3)

Since xα−1(ln(eγ/x))β−1 > 0, when x ∈ (0, 2) and γ ≥ β/α + ln 2, and the function H(x) =
α ln(eγ/x) − β is decreasing on the interval (0, 2], we have

α ln
eγ

x
− β > α ln

eγ

2
− β = α

(
γ − ln 2 − β

α

)
≥ 0, x ∈ (0, 2), (2.4)

from which this statement follows.
The proof of (b) is similar, hence it is omitted.
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The next lemma regarding the point evaluation functional on Bα

logβ
follows from [1,

Lemma 3] and some elementary asymptotic relationship, such as

(1 − |z|)α−1
(

ln
eβ/α

1 − |z|

)β

	
(
1 − |z|2

)α−1
(

ln
eβ/α

1 − |z|2
)β

, α > 1, β ≥ 0. (2.5)

Lemma 2.2. Let f ∈ Bα

logβ
(D). Then

∣∣f(z)
∣∣ ≤ C

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥
∥f

∥
∥
Bα

logβ
, α ∈ (0, 1) or α = 1, β > 1,

∣
∣f(0)

∣
∣ +

∥
∥f

∥
∥
Bα

logβ
ln ln

eβ/α

1 − |z|2
, α = β = 1,

∣∣f(0)
∣∣ +

∥∥f
∥∥
Bα

logβ

(

ln
eβ/α

1 − |z|2
)1−β

, α = 1, β ∈ (0, 1),

∣∣f(0)
∣∣ +

∥∥f
∥∥
Bα

logβ

(
1 − |z|2

)α−1(
ln
(
eβ/α/

(
1 − |z|2

)))β
, α > 1, β ≥ 0,

(2.6)

for some C > 0 independent of f.

The proof of the following lemma is similar to [25, Lemma 2.1], so we omit it.

Lemma 2.3. Assume μ is a weight. A closed set K in Bμ,0 is compact if and only if it is bounded and

lim
|z|→ 1

sup
f∈K

μ(z)
∣∣f ′(z)

∣∣ = 0. (2.7)

Remark 2.4. If in Lemma 2.3 we assume that K is not closed, then the word compact can be
replaced by relatively compact.

The next characterization of compactness is proved in a standard way (see, e.g., the
proofs of the corresponding lemmas in [10, 30, 47–49]). Hence we omit it.

Lemma 2.5. Assume that u ∈ H(D), ϕ is a holomorphic self-map of D, and μ is a weight. Let
X be one of the following spaces Bα

logβ
, Bα

logβ,0
, and Y one of the spaces Bμ, Bμ,0. Then the operator

uCϕ : X → Y is compact if and only if uCϕ : X → Y is bounded and for every bounded sequence
(fk)k∈N ⊂ X converging to 0 uniformly on compacts of D one has

lim
k→∞

∥∥uCϕfk
∥∥
Y
= 0. (2.8)
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Some concrete examples of the functions belonging to logarithmic Bloch-type spaces
can be found in the next lemma.

Lemma 2.6. The following statements are true.

(a) Assume that α/= 1 and β ≥ 0, then

fw(z) =
1

(1 − zw)α−1(ln(eγ/(1 − zw)))β
, w ∈ D, (2.9)

where γ ≥ β/α + ln 2 and fw(0) = 1/γβ is a nonconstant function belonging to Bα

logβ
.

(b) Assume that α = 1 and β ∈ [0,∞) \ {1}, then

f
(1)
w (z) =

(
ln

eγ

1 − zw

)1−β
, w ∈ D, (2.10)

where γ ≥ β + ln 2 and f
(1)
w (0) = γ1−β is a nonconstant function belonging to Bα

logβ
.

(c) Assume that α = β = 1, then

f
(2)
w (z) = ln ln

eγ

1 − zw
, w ∈ D, (2.11)

where γ ≥ 1 + ln 2 and f
(2)
w (0) = ln γ is a nonconstant function belonging to Bα

logβ
.

Moreover, for eachw ∈ D, it holds that fw, f
(1)
w , f

(2)
w belong to the corresponding Bα

logβ,0
space,

and for fixed α and β

sup
w∈D

∥∥fw
∥∥
Bα

logβ
≤ C, sup

w∈D

∥∥∥f (1)
w

∥∥∥
B1
logβ

≤ C, sup
w∈D

∥∥∥f (2)
w

∥∥∥
B1
log1

≤ C. (2.12)
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Proof. (a) Let w ∈ D be fixed. Then we have

(1 − |z|)α
(

ln
eβ/α

1 − |z|

)β
∣
∣f ′

w(z)
∣
∣

= (1 − |z|)α
(

ln
eβ/α

1 − |z|

)β

×
∣∣
∣
∣
∣

(α − 1)w

(1 − zw)α(ln(eγ/(1 − zw)))β
− βw

(1 − zw)α(ln(eγ/(1 − zw)))β+1

∣∣
∣
∣
∣

≤ |α − 1| (1 − |z|)α(ln(eβ/α/(1 − |z|)))β

|1 − zw|α(ln(eγ/|1 − zw|))β
+ β

(1 − |z|)α(ln(eβ/α/(1 − |z|)))β

|1 − zw|α(ln(eγ/|1 − zw|))β+1

≤
(
|α − 1| + β

ln(eγ/2)

)
(1 − |z|)α(ln(eγ/(1 − |z|)))β
|1 − zw|α(ln(eγ/|1 − zw|))β

(2.13)

≤ |α − 1| + β

ln(eγ/2)
, (2.14)

where in (2.13) we have used that γ > β/α and in (2.14) we have used the fact that the
function in (2.1) is increasing on the interval (0, 2].

From (2.13), since 1 − |w| ≤ |1 − zw|, z,w ∈ D, and by Lemma 2.1(a), we have that

(1 − |z|)α
(

ln
eβ/α

1 − |z|

)β
∣∣f ′

w(z)
∣∣

≤
(
|α − 1| + β

ln(eγ/2)

)
(1 − |z|)α(ln(eγ/(1 − |z|)))β
(1 − |w|)α(ln(eγ/(1 − |w|)))β

−→ 0,

(2.15)

as |z| → 1 − 0, from which it follows that fw ∈ Bα

logβ,0
, as desired.

(b) For fixed w ∈ D, we have

(1 − |z|)
(

ln
eβ

1 − |z|

)β∣∣∣∣
(
f
(1)
w

)′
(z)

∣∣∣∣ = (1 − |z|)
(

ln
eβ

1 − |z|

)β∣∣∣∣∣

(
1 − β

)
w

(1 − zw)(ln(eγ/(1 − zw)))β

∣∣∣∣∣

≤ ∣∣β − 1
∣∣ (1 − |z|)(ln(eγ/(1 − |z|)))β
|1 − zw|(ln(eγ/|1 − zw|))β

(2.16)

≤ ∣∣β − 1
∣∣, (2.17)

where in (2.16) we have used the assumption γ > β, while in (2.17), as in (a), we have used
the fact that the function in (2.1) is increasing on the interval (0, 2].
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From (2.16), and by Lemma 2.1(a), we obtain

(1 − |z|)
(

ln
eβ

1 − |z|

)β∣
∣
∣
∣
(
f
(1)
w

)′
(z)

∣
∣
∣
∣ ≤

∣
∣β − 1

∣
∣ (1 − |z|)(ln(eγ/(1 − |z|)))β
(1 − |w|)(ln(eγ/(1 − |w|)))β

−→ 0, (2.18)

as |z| → 1 − 0. Hence f (1)
w ∈ B1

logβ,0
, finishing the proof of this statement.

(c)We have

(1 − |z|)
(
ln

e

1 − |z|
)∣
∣
∣
∣
(
f
(2)
w

)′
(z)

∣
∣
∣
∣ = (1 − |z|)

(
ln

e

1 − |z|
)∣
∣
∣
∣

w

(1 − zw) ln(eγ/(1 − zw))

∣
∣
∣
∣

≤ (1 − |z|) ln(e/(1 − |z|))
|1 − zw| ln(eγ/|1 − zw|)

(2.19)

≤ (1 − |z|) ln(eγ/(1 − |z|))
(1 − |z|) ln(eγ/(1 − |z|)) ≤ 1, (2.20)

where we have used the assumption γ > 1 and the fact that function (2.1) is increasing on
(0, 2].

From (2.19), Lemma 2.1(a), and since γ > 1 we obtain

(1 − |z|)
(
ln

e

1 − |z|
)∣∣f ′

w(z)
∣∣ ≤ (1 − |z|)(ln(eγ/(1 − |z|)))

(1 − |w|)(ln(eγ/(1 − |w|))) −→ 0, (2.21)

as |z| → 1−, that is, f (2)
w ∈ B1

log1,0
.

Estimations (2.12) follow from (2.14), (2.17), (2.20) and by using the following facts

fw(0) =
1
γβ

, α /= 1, β ≥ 1,

f
(1)
w (0) = γ1−β, α = 1, β ∈ (0, 1),

f
(2)
w (0) = ln γ, α = β = 1,

(2.22)

we finish the proof of the lemma.

Remark 2.7. Note that from Lemmas 2.2 and 2.6 the functions fw, f
(1)
w , f

(2)
w defined in (2.9)–

(2.11) have maximal growths in the corresponding logarithmic Bloch-type spaces.
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3. Boundedness and Compactness of the Operator
uCϕ : Bα

logβ
(D) (or Bα

logβ,0
(D)) → Bμ(D)

This section studies the boundedness and compactness of the weighted composition operator
uCϕ : Bα

logβ
(D) (or Bα

logβ,0
(D)) → Bμ(D).

Case 1. α > 1, β ≥ 0.

Theorem 3.1. Assume α > 1, β ≥ 0, ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a
weight. Then the operator uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded if and only if

sup
z∈D

μ(z)
∣
∣u′(z)

∣
∣

⎛

⎜
⎝1 +

1
(
1 − ∣

∣ϕ(z)
∣
∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣

∣ϕ(z)
∣
∣2
)))β

⎞

⎟
⎠ < ∞, (3.1)

sup
z∈D

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(
1 − ∣∣ϕ(z)

∣∣2
)α(

ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

< ∞. (3.2)

Proof. First assume that (3.1) and (3.2) hold. Then, by Lemma 2.2 and the definition of Bα

logβ
,

we have

∥∥uCϕf
∥∥
Bμ

=
∣∣u(0)f

(
ϕ(0)

)∣∣ + sup
z∈D

μ(z)
∣∣u′(z)f

(
ϕ(z)

)
+ u(z)f ′(ϕ(z)

)
ϕ′(z)

∣∣ (3.3)

≤ C|u(0)|∥∥f∥∥Bα

logβ

⎛

⎜
⎝1 +

1
(
1 − ∣∣ϕ(0)

∣∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣∣ϕ(0)

∣∣2
)))β

⎞

⎟
⎠

+ C
∥∥f

∥∥
Bα

logβ
sup
z∈D

⎛

⎜
⎝μ(z)

∣∣u′(z)
∣∣ +

μ(z)|u′(z)|
(
1 − ∣∣ϕ(z)

∣∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

⎞

⎟
⎠

+ ‖f‖Bα

logβ
sup
z∈D

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(
1 − ∣∣ϕ(z)

∣∣2
)α(

ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

.

(3.4)

Applying (3.1) and (3.2) in (3.4), the boundedness of uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ follows.

Now assume the operator uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded. By taking the test

functions f(z) ≡ 1 and f(z) ≡ z (which obviously belong to Bα

logβ,0
), we obtain

sup
z∈D

μ(z)
∣∣u′(z)

∣∣ < ∞, (3.5)

sup
z∈D

μ(z)
∣∣u′(z)ϕ(z) + u(z)ϕ′(z)

∣∣ < ∞. (3.6)
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From (3.5) and (3.6), and since the function ϕ is bounded, it follows that

sup
z∈D

μ(z)
∣
∣u(z)ϕ′(z)

∣
∣ < ∞. (3.7)

For w ∈ D, set

gw(z) =

(
1 − |w|2

)

(1 −wz)α
(
ln
(
eβ/α/(1 −wz)

))β −

(
1 − |w|2

)2

(1 −wz)α+1
(
ln
(
eβ/α/(1 −wz)

))β , z ∈ D. (3.8)

We have that gw(w) = 0,

g ′
w(w) = − w

(
1 − |w|2

)α(
ln
(
eβ/α/

(
1 − |w|2

)))β
, (3.9)

and as an easy consequence of Lemma 2.6(a), supw∈D‖gw‖Bα

logβ
≤ C and gw ∈ Bα

logβ,0
for each

w ∈ D.
Using these facts and the boundedness of uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ, for the test

functions gϕ(w), where w ∈ D and ϕ(w)/= 0, we get

μ(w)
∣∣∣u(w)ϕ′(w)ϕ(w)

∣∣∣
(
1 − ∣∣ϕ(w)

∣∣2
)α(

ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β

≤ ∥∥uCϕgϕ(w)
∥∥
Bμ

≤ C
∥∥uCϕ

∥∥
Bα

logβ
→Bμ

. (3.10)

From (3.10) it follows that

sup
|ϕ(w)|>1/2

μ(w)
∣∣u(w)ϕ′(w)

∣∣
(
1 − ∣∣ϕ(w)

∣∣2
)α(

ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β

≤ 2C
∥∥uCϕ

∥∥
Bα

logβ
→Bμ

. (3.11)

On the other hand, by using (3.7) and Lemma 2.1(b), we have

sup
|ϕ(w)|≤1/2

μ(w)
∣∣u(w)ϕ′(w)

∣∣
(
1 − ∣∣ϕ(w)

∣∣2
)α(

ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β

< sup
|w|<1

μ(w)|u(w)|∣∣ϕ′(w)
∣∣

(3/4)αlnβ(4eβ/α/3
) < ∞. (3.12)

Hence, (3.11) and (3.12) imply (3.2).
Let

Fw(z) =
(α + 1)

(
1 − |w|2

)

(1 −wz)α
(
ln
(
eβ/α/(1 −wz)

))β −
α
(
1 − |w|2

)2

(1 −wz)α+1
(
ln
(
eβ/α/(1 −wz)

))β . (3.13)



10 Journal of Inequalities and Applications

Then

Fw(w) =
1

(
1 − |w|2

)α−1(
ln
(
eβ/α/

(
1 − |w|2

)))β
,

F ′
w(w) = − βw

(
1 − |w|2

)α(
ln
(
eβ/α/

(
1 − |w|2

)))β+1
,

(3.14)

and by Lemma 2.6(a)we get supw∈D‖Fw‖Bα

logβ
≤ C, and Fw ∈ Bα

logβ,0
for everyw ∈ D. Using the

boundedness of uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ, the test functions Fϕ(w), and equalities (3.14)

we get

μ(w)|u′(w)|
(
1 − ∣∣ϕ(w)

∣∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β

≤ ∥∥uCϕFϕ(w)
∥∥
Bμ

+
βμ(w)|u(w)|∣∣ϕ′(w)

∣∣∣∣ϕ(w)
∣∣

(
1 − ∣∣ϕ(w)

∣∣2
)α(

ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β+1

(3.15)

for each ϕ(w)/= 0, w ∈ D.
From (3.2), (3.5), (3.15), and using the fact that

sup
x∈[0,1)

(

ln
eβ/α

1 − x2

)−1
≤ α

β
, when β > 0, (3.16)

condition (3.1) follows.

Theorem 3.2. Assume α > 1, β ≥ 0, ϕ is an analytic self-map of the unit disk, u ∈ H(D), and
μ is a weight. Then the operator uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is compact if and only if uCϕ :

Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded

lim
|ϕ(z)|→ 1

μ(z)
∣∣u′(z)

∣∣

⎛

⎜
⎝1 +

1
(
1 − ∣∣ϕ(z)

∣∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

⎞

⎟
⎠ = 0, (3.17)

lim
|ϕ(z)|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(1 − ∣∣ϕ(z)
∣∣2)

α(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

= 0. (3.18)

Proof. Suppose that uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is compact. Then it is clear that uCϕ :

Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded. If ‖ϕ‖∞ < 1, then (3.17) and (3.18) are vacuously satisfied.
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Hence assume that ‖ϕ‖∞ = 1. Let (zm)m∈N be a sequence in D such that |ϕ(zm)| → 1 as m →
∞, and gm(z) = gϕ(zm)(z), m ∈ N, where gw is defined in (3.8). Then supm∈N‖gm‖Bα

logβ
< ∞,

gm → 0 uniformly on compacts of D as m → ∞, gm(ϕ(zm)) = 0, and

g ′
m

(
ϕ(zm)

)
= − ϕ(zm)

(1 − |ϕ(zm)|2)α
(
ln
(
eβ/α/

(
1 − ∣

∣ϕ(zm)
∣
∣2
)))β

. (3.19)

Hence from (3.10) and Lemma 2.5 we have that

μ(zm)
∣
∣
∣u(zm)ϕ′(zm)ϕ(zm)

∣
∣
∣

(1 − |ϕ(zm)|2)α
(
ln
(
eβ/α/

(
1 − ∣

∣ϕ(zm)
∣
∣2
)))β

≤ ∥
∥uCϕgm

∥
∥
Bμ

−→ 0 as m −→ ∞ (3.20)

from which (3.18) follows.
Let Fm = Fϕ(zm), m ∈ N where Fw is defined in (3.13). Then supm∈N‖Fm‖Bα

logβ
< ∞ and

Fm → 0 uniformly on compact subsets of D asm → ∞. Since uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is

compact, we see that

lim
m→∞

‖uCϕFm‖Bμ
= 0. (3.21)

From (3.15)we have

μ(zm)|u′(zm)|
(1 − |ϕ(zm)|2)α−1

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(zm)

∣∣2
)))β

≤ ‖uCϕFm‖Bμ
+

βμ(zm)
∣∣∣u(zm)ϕ′(zm)ϕ(zm)

∣∣∣

(1 − |ϕ(zm)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(zm)

∣∣2
)))β+1

,

(3.22)

which along with (3.16), (3.18), and (3.21) implies

lim
|ϕ(z)|→ 1

μ(z)|u′(z)|
(1 − |ϕ(z)|2)α−1

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

= 0. (3.23)

On the other hand, we have

μ(z)|u′(z)|
(1 − |ϕ(z)|2)α−1

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

≥ Cμ(z)
∣∣u′(z)

∣∣, (3.24)

for some positive C. From (3.23) and (3.24), equality (3.17) follows.
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Conversely, assume that uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded and (3.17) and (3.18)

hold. From the proof of Theorem 3.1 we know that

Bμ(u) = sup
z∈D

μ(z)
∣
∣u′(z)

∣
∣ < ∞, K2 = sup

z∈D
μ(z)

∣
∣ϕ′(z)

∣
∣|u(z)| < ∞. (3.25)

On the other hand, from (3.17) and (3.18) we have that, for every ε > 0, there is a δ ∈ (0, 1),
such that

μ(z)
∣
∣u′(z)

∣
∣

⎛

⎜
⎝1 +

1
(
1 − ∣

∣ϕ(z)
∣
∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣

∣ϕ(z)
∣
∣2
)))β

⎞

⎟
⎠ < ε,

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

< ε

(3.26)

whenever δ < |ϕ(z)| < 1.
Assume (fm)m∈N is a sequence in Bα

logβ
(or Bα

logβ,0
) such that supm∈N‖fm‖Bα

logβ
≤ L and fm

converges to 0 uniformly on compact subsets of D as m → ∞. Let K = {z ∈ D : |ϕ(z)| ≤ δ}.
Then from (3.25), (3.26), and by Lemma 2.2, it follows that

sup
z∈D

μ(z)
∣∣∣
(
uCϕfm

)′(z)
∣∣∣

≤ sup
z∈K

μ(z)
∣∣ϕ′(z)

∣∣|u(z)|∣∣f ′
m

(
ϕ(z)

)∣∣ + sup
z∈K

μ(z)
∣∣u′(z)

∣∣∣∣fm
(
ϕ(z)

)∣∣

+ sup
z∈D\K

μ(z)
∣
∣ϕ′(z)

∣∣|u(z)|∣∣f ′
m

(
ϕ(z)

)∣∣ + sup
z∈D\K

μ(z)
∣
∣u′(z)

∣∣∣∣fm
(
ϕ(z)

)∣∣

≤ K2 sup
|w|≤δ

∣∣f ′
m(w)

∣∣ + C sup
z∈D\K

μ(z)
∣∣u′(z)

∣∣

×

⎛

⎜
⎝1 +

1
(
1 − ∣∣ϕ(z)

∣∣2
)α−1(

ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

⎞

⎟
⎠‖fm‖Bα

logβ

+ Bμ(u)sup
|w|≤δ

∣∣fm(w)
∣∣ + C sup

z∈D\K

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

‖fm‖Bα

logβ

≤ K2 sup
|w|≤δ

∣∣f ′
m(w)

∣∣ + Bμ(u)sup
|w|≤δ

∣∣fm(w)
∣∣ + 2Cε‖fm‖Bα

logβ
.

(3.27)
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Therefore

‖uCϕfm‖Bμ
=
∣
∣fm

(
ϕ(0)

)∣∣|u(0)| + sup
z∈D

μ(z)
∣
∣
∣
(
uCϕfm

)′(z)
∣
∣
∣

≤ K2 sup
|w|≤δ

∣
∣f ′

m(w)
∣
∣ + Bμ(u)sup

|w|≤δ

∣
∣fm(w)

∣
∣ + 2CLε +

∣
∣fm

(
ϕ(0)

)∣∣|u(0)|.
(3.28)

Since (fm)m∈N converges to zero on compact subsets of D as m → ∞, by the Weierstrass
theorem it follows that the sequence (f ′

m)m∈N also converges to zero on compact subsets of D
as m → ∞, in particular limm→∞sup|w|≤δ|f ′

m(w)| = 0 and limm→∞|fm(ϕ(0))| = 0. Using these
facts and letting m → ∞ in the last inequality, we obtain that

lim sup
m→∞

∥
∥uCϕfm

∥
∥
Bμ

≤ 2CLε. (3.29)

Since ε is an arbitrary positive number it follows that the last limit is equal to zero. Applying
Lemma 2.5, the implication follows.

Theorem 3.3. Assume α > 0, β ≥ 0, ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is
a weight. Then uCϕ : Bα

logβ,0
→ Bμ,0 is bounded if and only if uCϕ : Bα

logβ,0
→ Bμ is bounded

lim
|z|→ 1

μ(z)
∣∣u′(z)

∣∣ = 0, (3.30)

lim
|z|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣∣ = 0. (3.31)

Proof. First assume that uCϕ : Bα

logβ,0
→ Bμ,0 is bounded. Then, it is clear that uCϕ : Bα

logβ,0
→

Bμ is bounded, and as usual by taking the test functions f(z) ≡ 1 and f(z) ≡ z, and using the
fact ‖ϕ‖∞ ≤ 1, we obtain (3.30) and (3.31).

Conversely, assume that the operator uCϕ : Bα

logβ,0
→ Bμ is bounded, u ∈ Bμ,0, and

condition (3.31) holds.
Then, for each polynomial p, we have

μ(z)
∣∣∣
(
uCϕp

)′(z)
∣∣∣ ≤ μ(z)

∣∣u′(z)
∣∣∣∣p

(
ϕ(z)

)∣∣ + μ(z)
∣∣u(z)ϕ′(z)p′

(
ϕ(z)

)∣∣

≤ μ(z)
∣∣u′(z)

∣∣‖p‖∞ + μ(z)
∣∣u(z)ϕ′(z)

∣∣‖p′‖∞,
(3.32)

from which along with conditions (3.30) and (3.31) it follows that uCϕp ∈ Bμ,0. Since
according to Theorem A the set of all polynomials is dense in Bα

logβ,0
, we see that for every

f ∈ Bα

logβ,0
there is a sequence of polynomials (pn)n∈N such that

lim
n→∞

∥∥f − pn
∥∥
Bα

logβ
= 0. (3.33)
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From this and by the boundedness of the operator uCϕ : Bα

logβ,0
→ Bμ we have that

∥
∥uCϕf − uCϕpn

∥
∥
Bμ

≤ ∥
∥uCϕ

∥
∥
Bα

logβ,0
→Bμ

∥
∥f − pn

∥
∥
Bα

logβ,0

−→ 0 (3.34)

as n → ∞.Hence uCϕ(Bα

logβ,0
) ⊆ Bμ,0, and consequently uCϕ : Bα

logβ,0
→ Bμ,0 is bounded.

Remark 3.4. Note that Theorem 3.3 holds for all α > 0 and β ≥ 0.

Theorem 3.5. Assume α > 1, β ≥ 0, ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is
a weight. Then the operator uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ,0 is compact if and only if

lim
|z|→ 1

μ(z)|u′(z)|
(1 − |ϕ(z)|2)α−1

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

= 0, (3.35)

lim
|z|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

= 0. (3.36)

Proof. If uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ,0 is compact, then it is bounded so that conditions (3.30)

and (3.31) hold. On the other hand, uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is compact, which implies

that (3.17) and (3.18) hold.
By (3.18) we have that, for every ε > 0, there exists an r ∈ (0, 1) such that

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

< ε, (3.37)

when r < |ϕ(z)| < 1. From (3.31), there exists a ρ ∈ (0, 1) such that

μ(z)|u(z)|∣∣ϕ′(z)
∣∣ < εh1

(
1 − r2

)
(3.38)

when ρ < |z| < 1, and where h1 is the function in Lemma 2.1(b).
Therefore, when ρ < |z| < 1 and r < |ϕ(z)| < 1, we have that

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

< ε. (3.39)
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On the other hand, if ρ < |z| < 1 and |ϕ(z)| ≤ r, from (3.38) and Lemma 2.1(b) we have

μ(z)|u(z)|∣∣ϕ′(z)
∣
∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣

∣ϕ(z)
∣
∣2
)))β

≤ μ(z)|u(z)|∣∣ϕ′(z)
∣
∣

h1(1 − r2)
< ε. (3.40)

Combining (3.39) and (3.40), we obtain (3.36). Similarly, from (3.17) and (3.30) is obtained
(3.35), as claimed.

Conversely, assume that (3.35) and (3.36) hold. First note that (3.35) implies (3.30).
Indeed if (3.30) did not hold then there would be a sequence (zn)n∈N and a δ > 0 such that

inf
n∈N

μ(zn)
∣
∣u′(zn)

∣
∣ ≥ δ (3.41)

and limn→∞|ϕ(zn)| = L ∈ D. From this and the continuity of the function

h2(x) =
1

(1 − x2)α−1
(
ln
(
eβ/α/(1 − x2)

))β , x ∈ [0, 1), (3.42)

we would have that

inf
n∈N

μ(zn)|u′(zn)|
(1 − |ϕ(zn)|2)α−1

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(zn)

∣∣2
)))β

≥ δ inf
[0,1)

h2(x) > 0, (3.43)

which is a contradiction with (3.35).
For any f ∈ Bα

logβ
, we have

μ(z)
∣∣∣
(
uCϕf

)′(z)
∣∣∣ ≤ C‖f‖Bα

logβ

⎛

⎜
⎝μ(z)

∣∣u′(z)
∣∣ +

μ(z)|u′(z)|
(1 − |ϕ(z)|2)α−1

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

+
μ(z)|u(z)|∣∣ϕ′(z)

∣∣

(1 − |ϕ(z)|2)α
(
ln
(
eβ/α/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

⎞

⎟
⎠.

(3.44)

Using conditions (3.30), (3.35), and (3.36) in (3.44), it follows that uCϕf ∈ Bμ,0 for each f ∈
Bα

logβ
, moreover the set

uCϕ

({
f ∈ Bα

logβ

(
or Bα

logβ,0

)
:
∥∥f

∥∥
Bα

logβ
≤ 1

})
(3.45)

is bounded in Bμ,0.
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Taking the supremum in (3.44) over the unit ball of the space Bα

logβ
(or Bα

logβ,0
), then

letting |z| → 1 and using conditions (3.30), (3.35), and (3.36), we obtain

lim
|z|→ 1

sup
‖f‖Bα

logβ
≤1

μ(z)
∣
∣
∣
(
uCϕf

)′(z)
∣
∣
∣ = 0, (3.46)

from which along with Lemma 2.3 the compactness of the operator uCϕ : Bα

logβ
(or Bα

logβ,0
) →

Bμ,0 follows.

Case 2. α = 1, β ∈ (0, 1).

Theorem 3.6. Assume that ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a weight.
Then the operator uCϕ : B1

logβ
(or B1

logβ,0
) → Bμ is bounded if and only if

sup
z∈D

μ(z)
∣∣u′(z)

∣∣

⎛

⎝1 +

(

ln
eβ

1 − ∣∣ϕ(z)
∣∣2

)1−β⎞

⎠ < ∞,

sup
z∈D

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(
1 − |ϕ(z)|2

)(
ln
(
eβ/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

< ∞.

(3.47)

Proof. The proof of the theorem is similar to the proof of Theorem 3.1. The sufficiency follows
by using the triangle inequality in (3.3) and then the third inequality in Lemma 2.2 and the
definition of the space B1

logβ
.

For the necessity it is enough to follow the lines of the corresponding part of the proof
of Theorem 3.1 and use the test functions f(z) ≡ 1, f(z) ≡ z,

fw(z) =

(
f
(1)
w (z)

)2

f
(1)
w (w)

−

(
f
(1)
w (z)

)3

(
f
(1)
w (w)

)2
, w ∈ D, (3.48)

gw(z) = 3

(
f
(1)
w (z)

)2

f
(1)
w (w)

− 2

(
f
(1)
w (z)

)3

(
f
(1)
w (w)

)2
, w ∈ D, (3.49)

which belong toB1
logβ

(for the functions in (3.48) and (3.49) it easily follows by Lemma 2.6(b)),

where f (1)
w (z) is the function in (2.10). We omit the details.

The proofs of the following two theorems are similar to the proofs of Theorems 3.2 and
3.5, where the test functions in (3.48) and (3.49) are used as well as the lemmas in Section 2.
Hence their proofs are omitted.
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Theorem 3.7. Assume that ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a weight.
Then the operator uCϕ : B1

logβ
(or B1

logβ,0
) → Bμ is compact if and only if uCϕ : B1

logβ
(or B1

logβ,0
) →

Bμ is bounded

lim
|ϕ(z)|→ 1

μ(z)
∣
∣u′(z)

∣
∣

⎛

⎝1 +

(

ln
eβ

1 − ∣
∣ϕ(z)

∣
∣2

)1−β⎞

⎠ = 0,

lim
|ϕ(z)|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣
∣

(
1 − ∣

∣ϕ(z)
∣
∣2
)(

ln
(
eβ/

(
1 − ∣

∣ϕ(z)
∣
∣2
)))β

= 0.

(3.50)

Theorem 3.8. Assume that ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a weight.
Then the operator uCϕ : B1

logβ
(or B1

logβ,0
) → Bμ,0 is compact if and only if

lim
|z|→ 1

μ(z)
∣∣u′(z)

∣∣

⎛

⎝1 +

(

ln
eβ

1 − ∣∣ϕ(z)
∣∣2

)1−β ⎞

⎠ = 0,

lim
|z|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(
1 − ∣∣ϕ(z)

∣∣2
)(

ln
(
eβ/

(
1 − ∣∣ϕ(z)

∣∣2
)))β

= 0.

(3.51)

Case 3. α = β = 1.

The following results were proved in [15]. Hence we quote them for the benefit of the
reader, and without any proof.

Theorem 3.9. Assume that ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a weight.
Then the operator uCϕ : B1

log1
(or B1

log1,0
) → Bμ is bounded if and only if

sup
z∈D

μ(z)|u′(z)|max

{

1, ln ln
e

1 − ∣∣ϕ(z)
∣∣2

}

< ∞,

sup
z∈D

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(
1 − |ϕ(z)|2

)
ln
(
e/

(
1 − |ϕ(z)|2

)) < ∞.

(3.52)

Theorem 3.10. Assume that ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a weight.
Then the operator uCϕ : B1

log1
(or B1

log1,0
) → Bμ is compact if and only if uCϕ : B1

log1
(or B1

log1,0
) →

Bμ is bounded

lim
|ϕ(z)|→ 1

μ(z)
∣∣u′(z)

∣∣max

{

1, ln ln
e

1 − ∣∣ϕ(z)
∣∣2

}

= 0,

lim
|ϕ(z)|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣∣

(
1 − ∣∣ϕ(z)

∣∣2
)
ln
(
e/

(
1 − |ϕ(z)|2

)) = 0.

(3.53)
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Theorem 3.11. Assume that ϕ is an analytic self-map of the unit disk, u ∈ H(D), and μ is a weight.
Then the operator uCϕ : B1

log1
(or B1

log1,0
) → Bμ,0 is compact if and only if

lim
|z|→ 1

μ(z)|u′(z)|max

{

1, ln ln
e

1 − ∣
∣ϕ(z)

∣
∣2

}

= 0,

lim
|z|→ 1

μ(z)|u(z)|∣∣ϕ′(z)
∣
∣

(
1 − ∣

∣ϕ(z)
∣
∣2
)
ln
(
e/

(
1 − |ϕ(z)|2

)) = 0.

(3.54)

Case 4. α ∈ (0, 1), or α = 1 and β > 1.

Here we consider the cases α ∈ (0, 1), or α = 1 and β > 1.

Theorem 3.12. Assume that α ∈ (0, 1), or α = 1 and β > 1, u ∈ H(D), μ is a weight, and ϕ is a
holomorphic self-map of D. Then uC

g
ϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded if and only if u ∈ Bμ and

condition (3.2) holds.

Proof. The sufficiency follows by using the first inequality in Lemma 2.2 and the definition of
the space Bα

logβ
in (3.3).

For the necessity, by using the test functions f(z) ≡ 1, f(z) ≡ z we first get conditions
(3.5) and (3.7). To get (3.2) for the case α = 1 and β > 1 we use the test functions

fw(z) = 2
1 − |w|2
1 − zw

f
(1)
w (z) −

(
1 − |w|2

)2

(1 − zw)2
f
(1)
w (z), w ∈ D. (3.55)

Note that fw(w) = f
(1)
w (w),

f ′
w(w) =

(
1 − β

)
w

(
1 − |w|2

)(
ln
(
eγ/

(
1 − |w|2

)))β
, (3.56)

and similar to Lemma 2.6(b), supw∈D‖fw‖Bα

logβ
≤ C and fw ∈ Bα

logβ,0
for each w ∈ D.

Hence for the family (fϕ(w))w∈D, we get

(
1 − β

)
μ(w)|u(w)|∣∣ϕ′(w)

∣∣∣∣ϕ(w)
∣∣

(
1 − ∣∣ϕ(w)

∣∣2
)(

ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β

≤ C
∥∥uCϕfϕ(w)

∥∥
Bμ

+
μ(w)|u′(w)|

(
ln
(
eβ/α/

(
1 − ∣∣ϕ(w)

∣∣2
)))β−1 ,

(3.57)

from which along with (3.5) and the assumption β > 1, easily follows (3.2) in this case.
When α ∈ (0, 1), condition (3.2) follows as in Theorem 3.1, by using the test functions

in (3.8).



Journal of Inequalities and Applications 19

Theorem 3.13. Assume that α ∈ (0, 1), or α = 1 and β > 1, u ∈ H(D), μ is a weight,
and ϕ is a holomorphic self-map of D, and uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is bounded. Then

uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ is compact if

lim
|ϕ(z)|→ 1

μ(z)
∣∣u′(z)

∣∣ = 0, (3.58)

and condition (3.18) holds.

Proof. The proof is similar to the corresponding parts of the proofs of Theorems 3.2 and 3.7,
so is omitted.

Remark 3.14. Note that if α ∈ (0, 1), or α = 1 and β > 1 and uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ

is compact, then condition (3.18) is proved as in Theorems 3.2 and 3.7, by using the test
functions in (3.8) and (3.48). If ‖ϕ‖∞ < 1 then condition (3.58) is vacuously satisfied. At the
moment, we are not sure if the compactness implies condition (3.58) in the case ‖ϕ‖∞ = 1.
Hence for the interested readers we leave this as an open problem.

The following theorem is proved as the corresponding part of Theorem 3.5.

Theorem 3.15. Assume that α ∈ (0, 1), or α = 1 and β > 1, u ∈ H(D), μ is a weight, and ϕ is a
holomorphic self-map of D. Then the operator uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ,0 is compact if u ∈ Bμ,0

and condition (3.36) holds.

Remark 3.16. Note that if uCϕ : Bα

logβ
(or Bα

logβ,0
) → Bμ,0 is compact, then clearly u ∈ Bμ,0.
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[37] S. Stević, “Weighted composition operators from weighted Bergman spaces to weighted-type spaces
on the unit ball,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 499–504, 2009.

[38] S.-I. Ueki, “Composition operators on the Privalov spaces of the unit ball of Cn,” Journal of the Korean
Mathematical Society, vol. 42, no. 1, pp. 111–127, 2005.

[39] S.-I. Ueki and L. Luo, “Compact weighted composition operators and multiplication operators
between Hardy spaces,” Abstract and Applied Analysis, vol. 2008, Article ID 196498, 12 pages, 2008.

[40] S.-I. Ueki and L. Luo, “Essential norms of weighted composition operators between weighted
Bergman spaces of the ball,” Acta Scientiarum Mathematicarum, vol. 74, no. 3-4, pp. 829–843, 2008.



Journal of Inequalities and Applications 21

[41] E. Wolf, “Compact differences of composition operators,” Bulletin of the Australian Mathematical
Society, vol. 77, no. 1, pp. 161–165, 2008.

[42] E. Wolf, “Weighted composition operators between weighted Bergman spaces and weighted Bloch
type spaces,” Journal of Computational Analysis and Applications, vol. 11, no. 2, pp. 317–321, 2009.

[43] W. Yang, “Weighted composition operators from Bloch-type spaces to weighted-type spaces,” to
appear in Ars Combinatoria.

[44] S. Ye, “Weighted composition operator between the little α-Bloch spaces and the logarithmic Bloch,”
Journal of Computational Analysis and Applications, vol. 10, no. 2, pp. 243–252, 2008.

[45] X. Zhu, “Generalized weighted composition operators from Bloch type spaces to weighted Bergman
spaces,” Indian Journal of Mathematics, vol. 49, no. 2, pp. 139–150, 2007.

[46] X. Zhu, “Weighted composition operators from F(p, q, s) spaces to H∞
μ spaces,” Abstract and Applied

Analysis, vol. 2009, Article ID 290978, 14 pages, 2009.
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