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1. Introduction

We will assume throughout this paper that X and X∗ stand for a Banach space and its dual
space, respectively. By S(X) and B(X)we denote the unit sphere and the unit ball of a Banach
space X, respectively. The nontrival Banach space will mean later on that X is a real space
and dimX ≥ 2. Let us recall some definitions of modulus in Banach space. The modulus of
smoothness (see [5]) of X is the function ρX(t) defined by

ρX(t) = sup

{∥∥x + ty
∥∥ +

∥∥x − ty
∥∥

2
− 1 : x, y ∈ S(X)

}
. (1.1)

X is called uniformly smooth if limt→ 0(ρX(t))/t = 0. X is called q-uniformly smooth (1 < q ≤
2) if there exists a constant K > 0 such that ρX(t) ≤ Ktq for all t > 0. Pythagorean modulus is
introduced by Gao [6] is given by

E(t, X) = sup
{∥∥x + ty

∥∥2 +
∥∥x − ty

∥∥2 : x, y ∈ S(X)
}
, ∀t > 0. (1.2)
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For t > 0, the parameterized James constant J(t, X) is defined by

J(t, X) = sup
{
min

{∥∥x + ty
∥∥,∥∥x − ty

∥∥} : x, y ∈ S(X)
}
. (1.3)

Some basic properties concerning this constant were studied in [1].
A Banach spaceX is called uniformly nonsquare (see [7]) if there exists δ > 0, such that

‖x+y‖/2 ≤ 1−δ or ‖x−y‖/2 ≤ 1−δwherever x, y ∈ S(X). The number r(A) = inf{sup{‖x−y‖ :
y ∈ A} : x ∈ A} is called Chebyshev radius ofA. The number diamA = sup{‖x−y‖ : x, y ∈ A}
is called diameter of A. A Banach space X is said to have the normal structure provided
r(A) < diamA for every bounded closed convex subset A of X with diamA > 0.

Recall the ultraproduct of Banach spaces. LetU be a free ultrafilter on the set of natural
numbers, the closed linear subspace of l∞(X), NU = {{xi} ∈ l∞(I, Xi) : limU‖xi‖ = 0}. The
ultraproduct of {Xi} is the quotient space l∞(I, Xi)/NU equipped with the quotient norm. we
write X̃ to denote the ultraproduct. For more details see [8].

In this paper, we consider the coefficient JX,p(t) as a generalization of the modulus
of smoothness and Pythagorean modulus of Banach space X. Some basic properties of this
new coefficient are investigated, which generalized some known results. Meanwhile some
sufficient conditions which imply the normal structure are obtained.

2. Some Properties on Coefficient JX,p(t)

Definition 2.1. Let x ∈ S(X), y ∈ S(X), for any t > 0, 1 ≤ p < ∞we set

JX,p(t) = sup

⎧⎨
⎩
(∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p

2

)1/p
⎫⎬
⎭. (2.1)

It is easily seen that JX,p(t) ≥ ρX(t) + 1, the case of p = 1, 2, JX,1 (t) = ρX(t) + 1, 2J2X,2(t) =
E(t, X), respectively.

The proof of the following proposition is trivial, so it is omitted.

Proposition 2.2. Let X be a nontrival Banach space and t > 0. Then one has

JX,p(t) = sup
{
JY,p(t) : Y ∈ P(X)

}
, (2.2)

where P(X) = {Y : Y is a two-dimensional subspace of X}.

Proposition 2.3. Let X be a nontrival Banach space and t > 0. Then

(1) JX,p(t) is a nondecreasing function;

(2) JX,p(t) is a convex function;

(3) JX,p(t) is a continuous function;

(4) (JX,p(t) − 1)/t is a nondecreasing function.
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Proof. ( 1)Note that f(t) = ‖x + ty‖p + ‖x − ty‖p is a convex and even function. Let 0 < t1 ≤ t2,
x, y ∈ S(X). Then we have

∥∥x + t1y
∥∥p +

∥∥x − t1y
∥∥p = f(t1) = f

(
t2 + t1
2t2

t2 +
t2 − t1
2t2

( − t2)
)

≤ f(t2) =
∥∥x + t2y

∥∥p +
∥∥x − t2y

∥∥p

≤ 2JpX,p(t2),

(2.3)

which implies that 2JpX,p(t1) ≤ 2JpX,p(t2), that is, the inequality JX,p(t1) ≤ JX,p(t2) holds.

(2) Let x, y ∈ S(X), t1, t2 > 0, λ ∈ (0, 1) and r(s) = sgn(sin2πs). Then we have

(∫1

0

∥∥x + r(s)(λt1 + (1 − λ)t2)y
∥∥p

dt

)1/p

≤
(∫1

0

(
λ
∥∥x + r(s)t1y

∥∥ + (1 − λ)
∥∥x + r(s)t2y

∥∥)pdt
)1/p

≤ λ

(∫1

0

∥∥x + r(s)t1y
∥∥p

dt

)1/p

+ (1 − λ)

(∫1

0

∥∥x + r(s)t2y
∥∥p

dt

)1/p

≤ λJX,p(t) + (1 − λ)JX,p(t).

(2.4)

Since x, y are arbitrary, we have

JX,p(λt1 + (1 − λ)t2) ≤ λJX,p(t1) + (1 − λ)JX,p(t2). (2.5)

(2) The continuity of JX,p(t) follows from the case of ( 2).

(3) Let 0 < t1 ≤ t2, then t1 = λt2(0 < λ ≤ 1). Thus

JX,p(t1) − 1
t1

≤ JX,p((1 − λ)0 + λt2) − 1
λt2

≤ JX,p(t2) − 1
t2

. (2.6)

Proposition 2.4. Let X be a nontrival Banach space and t > 0. Then

JX,p(t) = sup

⎧⎨
⎩
(∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p

2

)1/p

: x ∈ S(X), y ∈ B(X)

⎫⎬
⎭

= sup

⎧⎨
⎩
(∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p

2

)1/p

: x, y ∈ B(X)

⎫⎬
⎭.

(2.7)
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Proof. From Proposition 2.3( 1), we have

sup
x∈S(X)

sup
y∈B(X)

⎧⎨
⎩
(∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p

2

)1/p
⎫⎬
⎭ ≤ JX,p(t

∥∥y∥∥) ≤ JX,p(t). (2.8)

Since the opposite inequality holds obviously, we get the first equality.
Let t be fixed. And we set h(λ) = ‖λx + ty‖p + ‖λx − ty‖p. Then h(λ) is a convex and

even function, therefore h(λ) ≥ h(1) for all λ ≥ 1. For x, y ∈ B(X)we have

∥∥∥∥ x

‖x‖ + ty

∥∥∥∥
p

+
∥∥∥∥ x

‖x‖ − ty

∥∥∥∥
p

≥ ∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p

. (2.9)

Therefore

sup
x∈S(X)

sup
y∈B(X)

(
∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p) ≥ sup
x∈B(X)

sup
y∈B(X)

(
∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p). (2.10)

Since the opposite inequality holds obviously, then we obtain the second equality.

Theorem 2.5. For any nontrival Banach spaceX, let 1 ≤ p < ∞, t > 0. Then the following conditions
are equivalent:

(1) JX,p(t) < 1 + t;

(2) J(t, X) < 1 + t.

Proof. ( 1)⇒( 2) . It is well known that JX,p(t) ≤ 1+ t for all p. Suppose that J(t, X) = 1+ t. From
the definition of J(t, X), for any ε > 0 there are x, y ∈ S(X) such that

min
{∥∥x + ty

∥∥,∥∥x − ty
∥∥} ≥ (1 + t − ε). (2.11)

Then we have

(∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p

2

)1/p

≥ (1 + t − ε). (2.12)

Since ε are arbitrary this implies that JX,p(t) ≥ 1 + t—a contradiction
( 2)⇒( 1) . Similarly suppose that JX,p(t) = 1+ t, for any ε > 0 there are x, y ∈ S(X) such

that

(∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p) ≥ 2(1 + t − ε)p, (2.13)

and ‖x + ty‖p + ‖x − ty‖p ≤ 2(1 + t)p. Since ε are arbitrary, we have

∥∥x + ty
∥∥ =

∥∥x − ty
∥∥ = 1 + t. (2.14)
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From the equivalent definition of J(t, X), we get J(t, X) ≥ 1 + t. This is a contradiction and
thus we complete the proof.

Corollary 2.6. Let 1 ≤ p < ∞, t > 0. Then the following conditions are equivalent:

(1) X is uniformly nonsquare;

(2) JX,p(t) < 1 + t, for some t > 0;

(3) JX,p(t) < 1 + t, for all t > 0.

Proof. This follows from Theorem 2.5 and the conclusion of J(t, X) in [1].

Theorem 2.7. A Banach space X is uniformly smooth if and only if

lim
t→ 0

(
JX,p(t) − 1

t

)
= 0. (2.15)

Proof. The sufficiency is trivial since (ρX(t) + 1) ≤ JX,p(t) holds for any t > 0 and 1 ≤ p < ∞. To
see the necessity, we suppose that limt→ 0(JX,p(t) − 1/t) > 0. Proposition 2.3( 4) implies that
there exist a c ∈ (0, 1) such that JX,p(t) − 1/t ≥ c for any t > 0. In particular, let 0 < t < 1 and
choose x, y with ‖x‖ = 1, ‖y‖ = t such that

∥∥x + y
∥∥p +

∥∥x − y
∥∥p ≥ 2(1 + ct)p. (2.16)

Without loss of generality, we assume that min{‖x + y‖, ‖x − y‖} = ‖x − y‖ = h then h ∈
[1 − t, 1 + ct]. From the above inequality we get that

∥∥x + y
∥∥ +

∥∥x − y
∥∥ ≥ h + (2(1 + ct)p − hp)1/p =: f(h). (2.17)

Note that f(h) attain its minimum at h = 1 − t; in the view of the definition ρX(t) implies that

ρX(t)
t

≥ f(1 − t) − 2
2t

=
1 − t + (2(1 + ct)p − (1 − t)p)1/p − 2

2t
. (2.18)

Letting t → 0, and using L’Hôpital’s rule, we get

lim
t→ 0

ρX(t)
t

≥ c > 0. (2.19)

This is a contradiction, and thus we complete the proof.

Theorem 2.8 ([2]). Let 1 ≤ p < ∞ and 1 < q ≤ 2. Then X is q-uniformly smooth if and only if there
exists K ≥ 1 such that

∥∥x + y
∥∥p +

∥∥x − y
∥∥p

2
≤ ‖x‖q + ∥∥Ky

∥∥q
, ∀x, y ∈ X. (2.20)
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Theorem 2.9. Let 1 ≤ p < ∞ and 1 < q ≤ 2. The following conditions are equivalent:

(1) X is q-uniformly smooth;

(2) there is K ≥ 1 such that

JX,p(t) ≤ (1 +Ktq)1/q, ∀t > 0. (2.21)

Proof. This follows from Theorem 2.8 and the definition of JX,p(t).

Theorem 2.10. Let X be the space lr or Lr[ 0, 1] with dimX ≥ 2.

(1) Let 1 < r ≤ 2 and 1/r + 1/r ′ = 1. Then for all t > 0

if 1 < p < r ′ then JX,p(t) = (1 + tr)1/r .
If r ′ ≤ p < ∞ then JX,p(t) ≤ (1 +Ktr)1/r , for some K ≥ 1.

(1) Let 2 ≤ r < ∞,1 ≤ p < ∞ and h = max{r, p}. Then

JX,p(t) =

(
(1 + t)h + |1 − t|h

2

)1/h

, ∀t > 0. (2.22)

Proof. Note that when 1 < r ≤ 2, lr , Lr[0, 1] are r-uniformly smooth and lr , Lr[0, 1] satisfying
Clarkson’s inequality

⎛
⎝∥∥x + y

∥∥r ′ +
∥∥x − y

∥∥r ′

2

⎞
⎠

1/r ′

≤ (‖x‖r + ∥∥y∥∥r)1/r . (2.23)

In the case of 1 < p < r ′, we get that K = 1 in Theorem 2.8 from [2, Remark 1]; therefore

JX,p(t) ≤ (1 + tr)1/r , ∀t ≥ 0. (2.24)

On the other hand, we take x = (1, 0, . . . ), y = (0, 1, 0, . . . ). Then ‖x‖ = ‖y‖ = 1, and

(∥∥x + ty
∥∥p

r +
∥∥x − ty

∥∥p

r

2

)1/p

= (1 + tr)1/r . (2.25)

Hence JX,p(t) = (1 + tr)1/r when 1 < p < r ′.
In the case of Lr[0, 1] we take x(s), y(s) such that

∫b

0
|x(s)|rds = 1,

∫1

b

∣∣y(s)∣∣rds = 1. (2.26)
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Set

x1(s) =

⎧⎨
⎩
x(s), if 0 ≤ s < b,

0, if b ≤ s ≤ 1,

y1(s) =

⎧⎨
⎩
0, if 0 ≤ s < b,

y(s), if b ≤ s ≤ 1.

(2.27)

Then ‖x1(s)‖ = 1, ‖y1(s)‖ = 1 and

(∥∥x1(s) + ty1(s)
∥∥p

r +
∥∥x1(s) − ty1(s)

∥∥p

r

2

)1/p

= (1 + tr)1/r . (2.28)

Hence JX,p(t) = (1+tr)1/r when 1 < p < r ′. If r ′ ≤ p < ∞, then JX,p(t) ≤ (1+Ktr)1/r , whereK ≥ 1
from Theorem 2.8. ( 2) Note that when 2 ≤ r < ∞, lr , Lr[0, 1] satisfying Hanner’s inequality

∥∥x + y
∥∥r +

∥∥x − y
∥∥r ≤ ∣∣‖x‖ + ∥∥y∥∥∣∣r + ∣∣‖x‖ − ∥∥y∥∥∣∣r . (2.29)

From [3] we know that the inequality

∥∥x + y
∥∥r +

∥∥x − y
∥∥r ≤ ∣∣‖x‖ + ∥∥γy∥∥∣∣r + ∣∣‖x‖ − ∥∥γy∥∥∣∣r (2.30)

holds if and only if the inequality

(∥∥x + y
∥∥s +

∥∥x − y
∥∥s

2

)1/s

≤
(∣∣‖x‖ + ∥∥γy∥∥∣∣α + ∣∣‖x‖ − ∥∥γy∥∥∣∣α

2

)1/a

(2.31)

holds with some γ > 0, where 1 < r, s, a < ∞. First let s = a = p. We get

JX,p(t) ≤
(
(1 + t)p + |1 − t|p

2

)1/p

. (2.32)

Similarly, let s = p and a = r. We also get

JX,p(t) ≤
(
(1 + t)r + |1 − t|r

2

)1/r

. (2.33)
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On the other hand, we take x1 = y1 = (1, 0, . . . ), x2 = ((1/2)1/r , (1/2)1/r , . . .) and y2 =
((1/2)1/r , (1/2)1/r , . . .). Then ‖xi‖ = ‖yj‖ = 1, i, j = 1, 2, and

(∥∥x1 + ty1
∥∥p

r +
∥∥x1 − ty1

∥∥p

r

2

)1/p

=
(
(1 + t)p + |1 − t|p

2

)1/p

,

(∥∥x2 + ty2
∥∥p

r +
∥∥x2 − ty2

∥∥p

r

2

)1/p

=
(
(1 + t)r + |1 − t|r

2

)1/r

.

(2.34)

Therefore we get the conclusion ( 2).
In the case of Lr[0, 1], we take x(s) ∈ S(Lr[0, 1]). Then

∫1
0|x(s)|rds = 1. Take b ∈ [0, 1]

such that
∫b
0|x(s)|rds = 1/2. Then

∫1
b|x(s)|rds = 1/2. Let

y(s) =

⎧⎨
⎩
x(s), if 0 ≤ s < b,

−x(s), if b ≤ s ≤ 1,
(2.35)

and set x1(s) = y1(s) = x(s), x2(s) = x(s), and y2(s) = y(s). Then xi(s) ∈ S(Lr[0, 1]), yi(s) ∈
S(Lr[0, 1]), i = 1, 2, and

(∥∥x1(s) + ty1(s)
∥∥p

r +
∥∥x1(s) − ty1(s)

∥∥p

r

2

)1/p

=
(
(1 + t)p + |1 − t|p

2

)1/p

,

(∥∥x2(s) + ty2(s)
∥∥p

r +
∥∥x2(s) − ty2(s)

∥∥p

r

2

)1/p

=
(
(1 + t)r + |1 − t|r

2

)1/r

.

(2.36)

Theorem 2.11. The following statements are equivalent:

(1) X is isometric to a Hilbert space;

(2) JX,p(t) = (1 + t2)1/2 for all t > 0 and 1 ≤ p ≤ 2.

Proof. ( 1)⇒( 2). A Banach space X is isometric to a Hilbert space l2; then JX,p(t) = (1 + t2)1/2

for all t ≥ 0 from Theorem 2.10 when 1 ≤ p ≤ 2.
( 2)⇒( 1). In the case of p = 1, JX,1(t) = ρX(t) ≤

√
1 + t2 − 1; therefore X is isometric to a

Hilbert space (see [4]).

Remark 2.12. The above theorem is not true for the case of p > 2. In fact if p > 2, let X be a
Hilbert space, then JX,p(t) = ((1 + t)p + |1 − t|p/2)1/p for all t > 0 from Theorem 2.10.

3. Banach-Mazur Distance and Constant’s Stability

Let X and Y be isomorphic Banach space. The Banach-Mazur distance between X and Y ,
denoted by d(X,Y ), is defined to be the infimum of ‖T‖ ‖T−1‖ taken over all isomorphisms T
from X and Y .
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Theorem 3.1. If X and Y be isomorphic Banach space, then for t > 0, 1 ≤ p < ∞

JX,p(t)
d(X,Y )

≤ JY,p(t) ≤ JX,p(t)d(X,Y ). (3.1)

Proof. Let x, y ∈ S(X). For each ε > 0 there exist an isomorphism T from X and Y such
that ‖T‖ ‖T−1‖ ≤ (1 + ε)d(X,Y ). Set x′ = Tx/‖T‖, y′ = Ty/‖T−1‖. Then x′, y′ ∈ B(Y ). By
Proposition 2.4, we obtain that

(∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p

2

)1/p

= ‖T‖
(∥∥T−1(x′ + ty′)

∥∥p +
∥∥T−1(x′ − ty′)

∥∥p

2

)1/p

≤ (1 + ε)d(X,Y )

(∥∥x′ + ty′∥∥p +
∥∥x′ − ty′∥∥p

2

)1/p

≤ (1 + ε)d(X,Y )JY,p(t).

(3.2)

Since ε > 0 are arbitrary, it follows that

JX,p(t) ≤ d(X,Y )JY,p(t). (3.3)

The second inequality follows by simply interchanging X and Y .

Corollary 3.2. Let X be a Banach space and t > 0, X1 = (X, ‖ · ‖1) where ‖ · ‖1 is an equivalent norm
on X satisfying , for a, b > 0, and x ∈ X,

a‖x‖ ≤ ‖x‖1 ≤ b‖x‖, (3.4)

then a/bJX,p(t) ≤ JX1,p(t) ≤ b/aJX,p(t).

Proof. It follows from Theorem 3.1 and the fact that d(X,X1) ≤ b/a.

A Banach space X is finitely representable in a Banach space Y if for every ε > 0 and
for every finite-dimensional subspace X0 of X, there exist is a finite-dimensional subspace Y0

of Y with dim(X0)=dim(Y0) such that d(X0, Y0) ≤ 1 + ε.

Corollary 3.3. Let X be a Banach space, X be finitely representable in Y and t > 0. Then

(1) JX,p(t) ≤ JY,p(t),

(2) JX,p(t) = JX∗∗,p(t).

Proof. ( 1) For any x, y ∈ S(X), let X0 be a two-dimensional subspace that contains x and y.
For any ε > 0, since X is finitely representable in Y , there exist is a two-dimensional subspace
Y0 of Y such that d(X0, Y0) ≤ 1+ ε . Applying Theorem 3.1 to the pair of X0 and Y0 , we obtain
JX,p(t) ≤ (1 + ε)JY,p(t). The proof is complete since ε > 0 is arbitrary.
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(2) For any Banach space X, by the principle of local reflexivity, X∗∗ is always finitely
representable in X. Then JX,p(t) ≥ JX∗∗,p(t) by (1). On the other hand, X is isometric
to a subspace of X∗∗; therefore JX,p(t) ≤ JX∗∗,p(t).

Next we illustrate the above results by the following examples, which can give rough
estimates of the constant. For λ > 0, let Zλ be R2 with the norm

|x|λ = (‖x‖22 + λ‖x‖2∞)
1/2

, (3.5)

then we have

√
(λ + 2)/2‖x‖2 ≤ |x|λ ≤

√
λ + 1‖x‖2, ∀x ∈ Zλ. (3.6)

From Corollary 3.2 we get

JZλ,p(t) ≤
√

2(λ + 1)
λ + 2

Jl2,p(t). (3.7)

Similarly we get

JXλ,r ,p(t) ≤ λJlr ,p(t), JYλ,r ,p(t) ≤ λJLr ,p(t),

Jlr,r′ ,p(t) ≤ 21/r
′−1/rJlr ,p(t), Jbr,r′ ,p(t) ≤ 21/r

′−1/rJlr ,p(t),
(3.8)

where Xλ,r(λ ≥ 1) is the space lr(2 ≤ r < ∞)with the norm

‖x‖λ,r = max{‖x‖r , λ‖x‖∞}, (3.9)

Yλ,r(λ ≥ 1) is the space Lr[ 0, 1](1 ≤ r ≤ 2) with the norm

‖x‖λ,r = max{‖x‖r , λ‖x‖1}, (3.10)

and lr,r ′ is the Day-James spaces, and br,r ′ is the Bynum spaces, respectively. Unfortunately
we cannot get the exact value of JX,p(t) in the above spaces. However we have the following
result.

Let X = R2 with the norm defined by

‖x‖ =

⎧⎨
⎩
‖x‖∞, x1x2 ≥ 0,

‖x‖1, x1x2 ≤ 0.
(3.11)
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Then we have

JX,p(t) =
[
1 + (1 + t)p

2

]1/p
, (0 < t ≤ 1),

JX,p(t) =
[
tp + (1 + t)p

2

]1/p
, (1 < t < ∞).

(3.12)

Proof. It is well known that ρX(t) = max{t/2, t − 1/2}(see [9]), then
∥∥x + ty

∥∥p +
∥∥x − ty

∥∥p ≤ 1 + (1 + t)p, ∀x, y ∈ S(X). (3.13)

In fact, if ‖x + ty‖ ≤ 1, then the inequality holds obviously. If ‖x + ty‖ = h(1 ≤ h ≤ 1 + t), then
we have

∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p ≤ hp + [2(ρX(t) + 1) − h]p. (3.14)

(1) If 0 < t ≤ 1, then ‖x + ty‖p + ‖x − ty‖p ≤ hp + (2 + t − h)p := f(h). Note that the
function f(h) attain is its maximum at h = 1; thus we obtain the above inequality.
Put x = (1, 1), y = (0, 1), then

∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p = 1 + (1 + t)p. (3.15)

Finally we have JX,p(t) = [1 + (1 + t)p/2]1/p.

(2) If 1 < t < ∞, then ‖x + ty‖p + ‖x − ty‖p ≤ hp + (2t + 1 − h)p := f(h). Note that the
function f(h) attain is its maximum at h = 1 + t; thus we obtain

∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p ≤ tp + (1 + t)p. (3.16)

Put x = (1, 1), y = (0, 1), then

∥∥x + ty
∥∥p +

∥∥x − ty
∥∥p = tp + (1 + t)p. (3.17)

Thus we have JX,p(t) = [tp + (1 + t)p/2]1/p.

4. The Constant and the Property of Fixed Point

In 1997, Garcı́a-Falset introduced the following coefficient:

R(X) := sup
{
lim inf
n→∞

‖xn + x‖
}
, (4.1)
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where the supremum is taken over all weakly null sequences in B(X) and all x ∈ S(X). He
proved that a reflexive Banach space X with R(X) < 2 enjoys the fixed property (see [10]). In
[11], B. Sims defined the coefficient of weak orthogonality,

ω(X) := sup
{
λ : λ lim inf

n→∞
‖xn + x‖ ≤ lim inf

n→∞
‖xn − x‖

}
, (4.2)

where the supremum is taken over all x ∈ X and all weakly null sequences {xn}. In [12],
the relation between the coefficient of weak orthogonality, the Garcı́a-Falset coefficient, and
James and von Neumann-Jordan constant is given in the following Theorem.

Theorem 4.1. Let X be a Banach space. Then

(1) R(X)ω(X) ≤ J(X), and

(2) (R(X))2(1 + (ω(X))2) ≤ 4CNJ(X).

Similarly, one can get the relation between the coefficient of weak orthogonality, the Garcı́a-Falset
coefficient, and the JpX,p(1) in the following Theorem.

Theorem 4.2. Let X be a Banach space. Then

2JpX,p(1) ≥
(
1 + (ω(X))p

)
[R(X)]p. (4.3)

Proof. For any ε > 0 there exist x ∈ S(X) and (xn) in B(X) such that

lim inf
n→∞

‖xn + x‖ ≥ R(X) − ε. (4.4)

Without loss of generality wemay assume that limn→∞‖xn+x‖ ≥ R(X)−ε and limn→∞‖xn−x‖
exist. Now we have

2JpX,p(1) ≥ lim
n→∞

(‖xn + x‖p + ‖xn − x‖p)

≥ (1 + (ω(X))p) lim
n→∞

‖xn + x‖p

≥ (1 + (ω(X))p)(R(X) − ε)p.

(4.5)

Letting ε → 0 gives the results.

Corollary 4.3. If JX,p(1) < 21−1/p(1 +ω(X)p)1/p. Then R(X) < 2.

Proof. This is a direct result of Theorem 4.2.

Remark 4.4. In particular p = 1, we get that ρX(1) = ρX∗(1) < ω(X); then R(X) < 2 and
R(X∗) < 2. (Note that the fact that ω(X) = ω(X∗) whenever X is reflexive is proved in [13].)

The weakly convergent sequence coefficient WCS(X) (see [14]) of X is the number

WCS(X) := inf
{
A({xn})
ra({xn})

}
, (4.6)
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where the infimum is taken over all sequences {xn} in X which are weakly (not strongly)
convergent, A({xn}) := lim supn{||xi − xj || : i, j ≥ n} is the asymptotic diameter of {xn}, and
ra({xn}) := inf{lim supn‖xn − y‖ : y ∈ co({xn})} is the asymptotic radius of {xn}. In this
paper, we utilize the following equivalent definitions (see [15]):

WCS(X) = inf
{
lim
n/=m

‖xn − xm‖
}
, (4.7)

where the infimum is taken over all weakly null sequence {xn} ⊂ X with ‖xn‖ = 1 for all n
and limn/=m‖xn − xm‖ exist. It is known that WCS(X) > 1 implies that X has weak uniform
normal structure (see [14]).

The following lemma can be found in [16].

Lemma 4.5. Let X be a superreflexive Banach space. Denote that WCS(X) = d and X does not have
Schur property. Then, there exist x̃1, x̃2 ∈ S(X̃) and f̃1, f̃2 ∈ S(X̃∗) such that

(1) ‖x̃1 − x̃2‖ = d, ‖x̃1 + x̃2‖ ≤ R(X), and f̃i(x̃j) = 0 for all i /= j;

(2) f̃i(x̃i) = 1 for i = 1, 2.

Theorem 4.6. Suppose that a Banach space X fails the Schur property and d = WCS(X). Then

2JpX∗,p(t) ≥
(1 + t)p

dp
+
(1 + t)p

R(X)p
. (4.8)

Specially when p = 1 and t = 1, p = 2, we have

ρX∗(t) + 1 ≥ 1 + t

2d
+

1 + t

2R(X)
, E(X∗) ≥ 4

d2
+

4

R(X)2
. (4.9)

Proof. Using Lemma 4.5, we have

2JpX∗,p(t) ≥
∥∥∥f̃2 − tf̃1

∥∥∥p
+
∥∥∥f̃2 + tf̃1

∥∥∥p

≥
∥∥∥∥(f̃2 − tf̃1)

(
x̃2 − x̃1

d

)∥∥∥∥
p

+
∥∥∥∥(f̃2 + tf̃1)

(
x̃2 + x̃1

R(X)

)∥∥∥∥
p

≥ (1 + t)p

dp
+
(1 + t)p

R(X)p
.

(4.10)

Corollary 4.7. Let X be a Banach space.

(1) If ρX∗(t) < ((t − 1)R(X) + (1 + t))/2R(X), then X has normal structure.

(2) If E(X∗) < 4 + (4/R(X)2), then X has normal structure.

Remark 4.8. The inequality ( 2) in Corollary 4.7 become is equality when X = l2,∞ and X = lp
where 2 ≤ p < ∞ (see [6, 17]). Therefore the condition ( 2) in Corollary 4.7 isstrict.
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