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1. Introduction and Main Results

In [1], the following elementary problem was posed, showing that for x > 0,

arctan x >
3x

1 + 2
√

1 + x2
. (1.1)

In [2], the following three proofs for the inequality (1.1) were provided.

Solution by Grinstein

Direct computation gives

dF(x)
dx

=
(
√

1 + x2 − 1)
2

(1 + x2) (1 + 2
√

1 + x2)
2
, (1.2)
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where

F(x) = arctan x − 3x

1 + 2
√

1 + x2
. (1.3)

Now dF(x)/dx is positive for all x /= 0; whence F(x) is an increasing function.
Since F(0) = 0, it follows that F(x) > 0 for x > 0.

Solution by Marsh

It follows from (cos φ − 1)2 ≥ 0 that

1 ≥
3 + 6 cos φ

(cos φ + 2)2
. (1.4)

The desired result is obtained directly upon integration of the latter inequality with
respect to φ from 0 to arctanx for x > 0.

Solution by Konhauser

The substitution x = tan y transforms the given inequality into y > 3 sin y/(2+cos y), which
is a special case of an inequality discussed on [3, pages 105-106] .

It may be worthwhile to note that the inequality (1.1) is not collected in the authorized
monographs [4, 5].

In [4, pages 288-289], the following inequalities for the arc tangent function are
collected:

arctan x <
2x

1 +
√

1 + x2
, (1.5)

x

1 + x2
< arctan x < x,

x − x3

3
< arctan x < x,

(1.6)

1
2x

ln
(

1 + x2
)
< arctan x < (1 + x) ln(1 + x), (1.7)

where x > 0. The inequality (1.5) is better than (1.7).
The aim of this paper is to sharpen and generalize inequalities (1.1) and (1.5).
Our results may be stated as the following theorems.

Theorem 1.1. For x > 0, let

fa(x) =

(
a +

√
1 + x2

)
arctan x

x
, (1.8)

where a is a real number.
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(1) When a ≤ 1/2, the function fa(x) is strictly increasing on (0,∞).

(2) When a ≥ 2/π , the function fa(x) is strictly decreasing on (0,∞).

(3) When 1/2 < a < 2/π , the function fa(x) has a unique minimum on (0,∞).

As direct consequences of Theorem 1.1, the following inequalities may be derived.

Theorem 1.2. For −1 < a ≤ 1/2,

(1 + a)x

a +
√

1 + x2
< arctan x <

(π/2)x

a +
√

1 + x2
, x > 0. (1.9)

For 1/2 < a < 2/π ,

4a
(
1 − a2)x

a +
√

1 + x2
< arctan x <

max{π/2, 1 + a}x
a +

√
1 + x2

, x > 0. (1.10)

For a ≥ 2/π , the inequality (1.9) is reversed.
Moreover, the constants 1 + a and π/2 in inequalities (1.9) and (1.10) are the best possible.

2. Remarks

Before proving our theorems, we give several remarks on them.

Remark 2.1. The substitution x = tan y may transform inequalities in (1.9) and (1.10) into
some trigonometric inequalities.

Remark 2.2. The inequality (1.1) is the special case a = 1/2 of the left-hand side inequality in
(1.9).

Remark 2.3. The inequality (1.5) is the special case a = 1 of the reversed version of the left
hand-side inequality in (1.9).

Remark 2.4. Let

hx(a) =
a
(
1 − a2)

a +
√

1 + x2
(2.1)

for 1/2 < a < 2/π and x > 0. Direct computation gives

h′
x(a) =

(
1 − 3a2)√1 + x2 − 2a3

(a +
√

1 + x2)
2

. (2.2)

Hence,

(1) when 2/π > a ≥ 1/
√

3, the derivative h′
x(a) is negative for x > 0;

(2) when 1/2 < a < 1/
√

3, the derivative h′
x(a) has a unique zero which is the unique

maximum point of hx(a) for x > 0.
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Accordingly,

(1) when 2/π > a ≥ 1/
√

3, the function hx(a) attains its maximum

hx

(
1√
3

)
=

2

3
[
1 +

√
3
√

1 + x2
] , (2.3)

(2) when 1/2 < a < 1/
√

3, the unique zero of h′
x(a) equals

a0 =
√

1 + x2
[

sin
(

2
3

arctan
1
x
+
π

6

)
− 1

2

]
, (2.4)

and the function hx(a) attains its maximum

hx(a0)

=
[sin((2/3) arctan(1/x) + π/6) − 1/2]

{
1 −

(
1 + x2)[sin((2/3) arctan(1/x) + π/6) − 1/2]2

}

sin((2/3) arctan(1/x) + π/6) + 1/2
(2.5)

for x > 0.

In a word, the sharp lower bounds of (1.10) are

arctan x >
8x

3
[
1 +

√
3
√

1 + x2
] , (2.6)

arctan x

>
4x[sin((2/3) arctan(1/x)+ π/6) − 1/2]

{
1 −

(
1 + x2)[sin((2/3) arctan(1/x)+ π/6)− 1/2]2

}

sin((2/3) arctan(1/x) + π/6) + 1/2
(2.7)

for x > 0. Similarly, the sharp upper bound of (1.10) is

arctan x <
πx

π − 2 + 2
√

1 + x2
, x > 0. (2.8)

Remark 2.5. Similar to the deduction of inequalities (2.6) and (2.7), the sharp versions of (1.9)
and its reversion are

3x

1 + 2
√

1 + x2
< arctan x <

πx

1 + 2
√

1 + x2
, x > 0, (2.9)

π2x

4 + 2π
√

1 + x2
< arctan x <

(π + 2)x

2 + π
√

1 + x2
, x > 0. (2.10)



Journal of Inequalities and Applications 5

15105

0.002

0.004

0.006

0.008

0.01

0.012
πx

π − 2 + 2
√

1 + x2
− arctanx

Figure 1: The differences between terms in (2.11).
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Figure 2: The ratios between terms in (2.11).

Remark 2.6. It is easy to verify that the right-hand side inequalities in (2.9) and (2.10) are
included in the inequality (2.8).

By the famous software Mathematica, it is revealed that the inequality (2.7) contains
(2.6) and the left-hand side inequality in (2.9), and that the inequality (2.7) and the left-hand
side inequality in (2.10) are not included in each other.

In conclusion, the following double inequality is the best accurate one:

max

{
π2x

4 + 2π
√

1 + x2
,

4x[sin((2/3) arctan(1/x) + π/6) − 1/2]K
sin((2/3) arctan(1/x) + π/6) + 1/2

}

< arctan x

<
πx

π − 2 + 2
√

1 + x2
, x > 0.

(2.11)

where R denotes {1 − (1 + x2)[sin((2/3) arctan(1/x) + π/6) − 1/2]2}.

Remark 2.7. For possible applications of the double inequality (2.11) in the theory of
approximations, the accuracy of bounds in (2.11) for the arc tangent function is described
by Figures 1 and 2.
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The upper curves in Figures 1 and 2 are, respectively, the graphs of the functions

πx

π − 2 + 2
√

1 + x2
− arctan x,

πx/
(
π − 2 + 2

√
1 + x2

)
− arctan x

arctan x
, (2.12)

and the lower curves in Figures 1 and 2 are, respectively, the graphs of the functions

arctan x − max

{
π2x

4 + 2π
√

1 + x2
,

A

sin((2/3) arctan(1/x) + π/6) + 1/2

}
,

arctan x − max
{
π2x/

(
4 + 2π

√
1 + x2

)
, A/(sin((2/3) arctan(1/x) + π/6) + 1/2)

}

arctan x

(2.13)

on the interval (0, 19), where A denotes 4x[sin((2/3) arctan(1/x) + π/6) − 1/2]{1 − (1 +
x2)[sin((2/3) arctan(1/x) + π/6) − 1/2]2}.

These two figures are plotted by the famous software Mathematica 7.0.

Remark 2.8. The approach below used in the proofs of Theorems 1.1 and 1.2 has been
employed in [6–9].

Remark 2.9. This paper is a revised version of the preprint [10].

3. Proofs of Theorems

Now we are in a position to prove our theorems.

Proof of Theorem 1.1. Direct calculation gives

f ′
a(x) =

(
1 + x2)(1 + a

√
1 + x2

)

x2(1 + x2)3/2

⎡
⎢⎣ x + x3 + ax

√
1 + x2

(1 + x2)
(

1 + a
√

1 + x2
) − arctan x

⎤
⎥⎦. (3.1)

Let

ga(x) =
x + x3 + ax

√
1 + x2

(1 + x2)
(

1 + a
√

1 + x2
) − arctan x, (3.2)

then

g ′
a(x) = −

x2
(

2a2
√
x2 + 1 + a −

√
x2 + 1

)

(x2 + 1)3/2(a
√
x2 + 1 + 1)

2
, (3.3)
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and the function

ha(x) =
2a2

√
x2 + 1 + a −

√
x2 + 1

(a
√
x2 + 1 + 1)

2
(3.4)

has two zeros

a1(x) = −1 +
√

9 + 8x2

4
√

1 + x2
, a2(x) =

−1 +
√

9 + 8x2

4
√

1 + x2
. (3.5)

Further differentiation yields

a′
1(x) =

x
(

1 +
√

9 + 8x2
)

4(1 + x2)3/2√9 + 8x2
> 0,

a′
2(x) =

x
(√

9 + 8x2 − 1
)

4(1 + x2)3/2√9 + 8x2
> 0.

(3.6)

This means that the functions a1(x) and a2(x) are increasing on (0,∞). From

lim
x→ 0+

a1(x) = −1, lim
x→∞

a1(x) = −
√

2
2

,

lim
x→ 0+

a2(x) =
1
2
, lim

x→∞
a2(x) =

√
2
2

,

(3.7)

it follows that
(1) when a ≤ −1 or a ≥

√
2 /2, the derivative g ′

a(x) is negative and the function ga(x)
is strictly decreasing on (0,∞). From

lim
x→ 0+

ga(x) = 0, lim
x→∞

ga(x) =
1
a
− π

2
, (3.8)

it is deduced that ga(x) < 0 on (0,∞). Accordingly,

(a) when a ≤ −1, the derivative f ′
a(x) > 0 and the function fa(x) is strictly increasing

on (0,∞);

(b) when a ≥
√

2 /2, the derivative f ′
a(x) is negative and the function fa(x) is strictly

decreasing on (0,∞);

(2) when 1/2 ≥ a ≥ 0, the derivative g ′
a(x) is positive and the function ga(x) is

increasing on (0,∞). By (3.8), it follows that the function ga(x) is positive on (0,∞). Thus,
the derivative f ′

a(x) is positive and the function fa(x) is strictly increasing on (0,∞);
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(3) when 1/2 < a <
√

2 /2, the derivative g ′
a(x) has a unique zero which is a minimum

of ga(x) on (0,∞). Hence, by the second limit in (3.8), it may be deduced that

(a) when 2/π ≤ a <
√

2 /2, the function ga(x) is negative on (0,∞), so the derivative
f ′
a(x) is also negative and the function fa(x) is strictly decreasing on (0,∞);

(b) when 1/2 < a < 2/π , the function ga(x) has a unique zero which is also a unique
zero of the derivative f ′

a(x), and so the function fa(x) has a unique minimum of the
function fa(x) on (0,∞).

On the other hand, the derivative f ′
a(x) can be rewritten as

f ′
a(x) =

1 + x2

x2(1 + x2)3/2

[
x + x3 + ax

√
1 + x2

1 + x2
−
(

1 + a
√

1 + x2
)

arctan x

]
, (3.9)

and the function

Ga(x) =
x + x3 + ax

√
1 + x2

1 + x2
−
(

1 + a
√

1 + x2
)

arctan x (3.10)

satisfies

G′
a(x) = −

x
[
x
(
a −

√
x2 + 1

)
+ a

(
x2 + 1

)
arctan x

]

(x2 + 1)3/2
. (3.11)

When a ≤ 0, the derivative G′
a(x) is positive and the function Ga(x) is strictly increasing on

(0,∞). Since limx→ 0+Ga(x) = 0, the function Ga(x) is positive, and so the derivative f ′
a(x) is

positive, on (0,∞) for a ≤ 0. Consequently, when a ≤ 0, the function fa(x) is strictly increasing
on (0,∞). The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. Direct calculation yields

lim
x→ 0+

fa(x) = 1 + a, lim
x→∞

fa(x) =
π

2
. (3.12)

By the increasing monotonicity in Theorem 1.1, it follows that 1 + a < fa(x) < π/2 for a ≤
1/2, which can be rewritten as (1.9) for −1 < a ≤ 1/2. Similarly, the reversed version of the
inequality (1.9) and the right-hand side inequality in (1.10) can be procured.

When 1/2 < a < 2/π , the unique minimum point x0 ∈ (0,∞) of the function fa(x)
satisfies

arctan x0 =
x0 + x3

0 + ax0

√
1 + x2

0

(
1 + x2

0

)(
1 + a

√
1 + x2

0

) , (3.13)
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and so the minimum of fa(x) on (0,∞) is

fa(x0) =
x0 + x3

0 + ax0

√
1 + x2

0

(
1 + x2

0

)(
1 + a

√
1 + x2

0

) ·
a +

√
1 + x2

0

x0

=

(
a +

√
1 + x2

0

)(
1 + x2

0 + a
√

1 + x2
0

)

(
1 + x2

0

)(
1 + a

√
1 + x2

0

)

=
(a + u)2

u(1 + au)

> 4a
(

1 − a2
)
,

(3.14)

where u =
√

1 + x2
0 ∈ (1,∞), as a result, the left-hand side inequality in (1.10) follows. The

proof of Theorem 1.2 is complete.
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